首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four experiments were conducted to determine the effect of adding corn gluten mean (CGM) or soybean meal (SBM) at 24- or 48-h intervals to diets based on corn stalks. In each experiment corn stalks was the primary diet ingredient fed to wethers or steers. Monensin was also fed to determine whether its effects on ruminal fermentation would improve the efficiency of N utilization under these conditions. Evaluation criteria included ruminal fermentation characteristics, DM intake and utilization, N balance in sheep, and steer feedlot performance. Ruminal ammonia nitrogen (NH3 N) concentrations measured over time were higher (P < .05) when diets contained SBM. Diet did not influence (P > .10) total VFA concentrations in ruminal fluid. Differences in diurnal shifts in ruminal NH3 N and total VFA due to protein source resulted in diet x hour interactions (P < .05). Dry matter intake response to protein source and frequency of supplement feeding was variable. Dry matter digestibility and nitrogen digestibility were not affected (P > .10) by protein source or feeding interval. The 48-h interval feeding of CGM was favorable compared with 24-h interval feeding (P < .05). The opposite response occurred with SBM, resulting in a diet x feeding interval interaction (P < .05). Nitrogen retention was greater (P < .05) when CGM was fed and with alternate day feeding. Diets that contained CGM supported higher (P < .05) ADG and gain/feed than diets that contained SBM when fed to steer calves. Alternate day feeding of supplements that contained monensin was detrimental to steer performance under the conditions of these experiments. Corn gluten meal is an effective substitute for SBM when alternate day protein supplementation is practiced.  相似文献   

2.
Six Japanese Black (Wagyu) steers (average initial weight 467 ± 45 kg) fitted with a ruminal cannula were used in a split‐plot design experiment comprising a 3 × 3 Latin square design (whole‐plot) and a randomized block design (subplot). The whole‐plot treatments were three different feeding levels of urea‐treated potato pulp (PP) silage‐based concentrate: 1.00%, 1.75% and 2.50% of body weight (BW) (on a dry matter (DM) basis). The subplot treatments consisted of the concentrate formulated to contain either soybean meal (SBM) as a rapidly rumen‐degraded protein source or corn gluten meal (CGM) as a slowly degraded protein source. Dry matter intake tended to be lower (P = 0.071) for CGM (8.9 kg/day) than for SBM (9.4 kg/day). Protein sources had no significant effect on digestibility and in situ degradation. Ruminal ammonia nitrogen (NH3‐N) was lower (P = 0.033) for CGM (7.5 mg/dL) than for SBM (9.5 mg/dL). Protein sources did not affect ruminal pH and the total volatile fatty acids (VFA) concentrations. The molar proportions of ruminal acetate and valerate were higher (P = 0.032) for CGM than for SBM. The maximum daily intake of the PP silage‐based concentrate expressed as a percentage of BW was approximately 1.4% of BW. Dry matter intake was higher (P = 0.046) for steers fed at 1.0% of BW of the PP silage‐based concentrate than for steers fed at 1.75% or 2.5% of BW of the concentrate. The feeding levels of the PP silage‐based concentrate had no effect on DM and nutrients digestibility, except for crude protein (CP) digestibility. CP digestibility tended to be lower (P = 0.071) for steers fed at 1.75% of BW of the PP silage‐based concentrate than for steers fed at 1.0% or 2.5% of BW of the concentrate. The feeding levels of the PP silage‐based concentrate also did not affect the in situ degradation parameter of hay and PP silage. The feeding levels of the PP silage‐based concentrate did not affect ruminal pH, NH3‐N and total VFA concentrations. The molar proportion of acetate was highest for steers fed at 1.0% of BW of the concentrate. In conclusion, in the urea‐treated PP silage‐based concentrate, CGM seems to be more effective than SBM for stabilizing the ruminal NH3‐N concentration and to be advantageous for fiber digestion in the rumen. The feeding levels of the PP silage‐based concentrate did not change the amount of VFA production in the rumen and the DM digestibility.  相似文献   

3.
The effects of grazing and supplemental protein concentrations, provided during the grazing period, on subsequent finishing performance and carcass quality were investigated. This experiment was carried out using 15 Japanese Black cattle (Wagyu) steers. The steers were fed as follows: (i) grazing supplemented with moderate protein concentrate (GMP) (18% crude protein (CP); dry matter (DM) basis) before finishing, followed by feeding in a barn until slaughter; (ii) grazing supplemented with low protein concentrate (GLP) (14% CP; DM basis) before finishing, followed by feeding in the barn until slaughter; and (iii) no grazing before finishing (NG). From the end of the grazing season to the end of the growing period, the GMP and GLP steers were managed in the same way as the NG steers. All of the animals were fed the same diet in the finishing period (9 months to 28 months). None of the three treatments affected the average daily gains. For all treatments, chilled carcass weights were more than 450 kg and did not differ significantly among the groups. The longissimus muscle areas in the grazed steers were numerically larger than in those receiving the NG treatment. Fat thickness was significantly greater (P < 0.05) in the NG steers than in the grazed steers. The intramuscular fat and marbling scores were not affected in the grazed steers. In conclusion, the carcass quality of grazed steers was similar to that of the NG steers at a similar final age, and the quantity of meat in the NG steers would be less than that of the GMP and GLP steers. Therefore, spring‐born Wagyu steers should be grazed using the GLP supplement before fattening.  相似文献   

4.
Hanwoo (Korean native) steers (274.8 ± 4.6 kg) with ruminal and duodenal cannulae were used in a 4 × 4 Latin square design experiment to examine the effects of dietary treatments on starch disappearance in the gastrointestinal tract. Dietary treatments consisted of concentrate that were based on ground corn with soybean meal (C‐SBM), ground corn with corn gluten meal (C‐CGM), ground barley with soybean meal (B‐SBM) and ground barley with corn gluten meal (B‐CGM). Although the intakes of starch and protein for steers fed experimental diets were different, it did not change ruminal pH and total volatile fatty acid concentrations. Average duodenal CP flow and quantity of CP apparently digested post‐ruminally was higher (P = 0.001) for CGM‐based diets than SBM‐based diets. There were increases in quantity (P < 0.001) and percentage (P < 0.001) of corn starch digested post‐ruminally compared to barley starch. Synchronized diets showed higher percentages (P = 0.03) of starch apparently digested post‐ruminally than asynchronization. Hanwoo steers fed a corn‐based diet with a large quantity of starch reaching the duodenum and fed C‐CGM supplying great amounts of protein to the small intestine may have contributed to increased post‐ruminal starch digestion.  相似文献   

5.
Hydrolyzed feather meal as a protein source for growing calves   总被引:1,自引:0,他引:1  
Growth, digestion and in situ studies were conducted to determine the protein value of hydrolyzed feather meal (Fth) for growing ruminants. Dacron bags containing blood meal (BM), Fth, corn gluten meal (CGM) and soybean meal (SBM) were suspended in the rumen of two steers for 12 h to estimate escape protein. The escape protein value for Fth, 69.1%, was less than that for BM (82.8%) and CGM (80.4%; P less than .05) but greater than that for SBM (26.6%; P less than .05). Apparent protein digestion by lambs was similar (P greater than .10) for isonitrogenous diets containing urea (U), BM, Fth, CGM and SBM. Amino acid contents of the protein sources before vs after a 12-h ruminal in situ digestion were similar (P greater than .10). In a growth study, a basal diet of 80% ensiled corncobs and 20% alfalfa was fed to 60 individually fed crossbred steers (215 kg BW). Steers were supplemented with U, BM, Fth, 1/2 BM:1/2 Fth, 1/2 BM:1/2 CGM and 1/3 BM:1/3 Fth:1/3 CGM (protein basis). Protein sources were fed at 30, 45 and 60% of the supplemental N with urea supplying the remainder. Protein efficiency was calculated using the slope ratio technique. Protein efficiency was similar (P greater than .10) for BM- and Fth-supplemented calves. Protein efficiencies were similar (P greater than .10) for BM:CGM, BM:Fth and BM:Fth:CGM combinations. These data indicate the Fth is a digestible high escape protein source that is useful in diets for growing ruminants.  相似文献   

6.
The intestinal supply of amino acids (AA) in sheep fed alkaline hydrogen peroxide-treated wheat straw (AHPWS)-based diets supplemented with soybean meal (SBM) or corn grain plus combinations of corn gluten meal (CGM) and blood meal (BM) was measured in a 5 X 5 latin square. Sheep (avg wt 45 kg) with ruminal, duodenal and ileal cannulas were fed diets containing 65% AHPWS supplemented with the following protein sources: soybean meal (SBM), corn gluten meal (CGM), blood meal (BM), 2/3 CGM:1/3 BM and 1/3 CGM:2/3 BM. Total nitrogen (N) flow at the duodenum was not affected (P greater than .05) by protein source. Flows of bacterial N and AA increased (P less than .05) and flows of nonbacterial N and AA decreased (P less than .05) when wethers were fed SBM vs corn plus other protein sources. When diets contained SBM, quantities of total AA at the duodenum were lower (P less than .05) and the profile of AA supplied to the intestine was altered substantially. Total flows of AA at the duodenum and total quantities of AA disappearing from the small intestine were similar (P greater than .05) for all diets containing BM and CGM, but flows and disappearance of valine, histidine, lysine and arginine increased linearly (P less than .05), whereas flows and disappearance of leucine, isoleucine and methionine decreased linearly (P less than .05) as BM replaced CGM in the diets. Results suggest that quantities of individual AA flowing to the duodenum and disappearing from the intestine of wethers fed AHPWS-based diets can be altered by source of dietary protein. Furthermore, feeding protein sources resistant to ruminal degradation in combination may improve the profile of AA supplied to the intestine.  相似文献   

7.
A winter grazing study was conducted to determine whether DL-methionine could replace soybean meal as a N supplement for gestating beef cows. During two winters (Trial 1, n = 51; Trial 2, n = 60), crossbred beef cows grazed native foothill range. Three treatment groups were supplemented with either none (CON), DL-methionine (7.5 g Trial 1 and 9 g Trial 2) in .5 kg beet pulp carrier (BPM) or .4 kg soybean meal (SBM). Cows were supplemented individually every other day. Small differences were noted in cow BW, condition score and blood metabolites. Unsupplemented cows lost the greatest amount of BW (P less than .01) in both trials and lost more (P less than .05) condition during Trial 1 than cows fed BPM or SBM supplements. Blood samples were obtained on two consecutive days during each trial (45 d and 25 d prepartum) and analyzed for blood urea N, total bilirubin, creatinine, albumin, total protein and cholesterol. A treatment x day preparatum interaction (P less than .05) was noted for blood urea. Blood urea nitrogen declined as gestation length increased for CON and SBM cows, but blood urea of BPM-supplemented cows remained low and unchanged. In situ forage digestion was measured in 12 ruminally cannulated cows (four/treatment). In both trials, in situ rate of NDF disappearance was greater (P less than .05) for SBM than for BPM. In Trial 2, a treatment x sampling hour interaction was detected for purine concentration of whole ruminal contents; SBM maintained greater purine concentrations throughout the 48-h supplementation cycle than BPM did. Principal component analysis suggested that ruminal ammonia limited the microbial growth response to DL-methionine. Therefore, alternate-day supplementation of DL-methionine plus beet pulp did not effectively substitute for soybean meal in these trials.  相似文献   

8.
Seven Holstein steers (340 kg) fitted with ruminal, duodenal and ileal cannulae were used to measure the influence of supplemental N source on digestion of dietary crude protein (CP) and on ruminal rates of protein degradation. Diets used were corn-based (isonitrogenous, 12% CP on a dry matter basis, and isocaloric, 80% total digestible nutrients) with urea, soybean meal (SBM), linseed meal (LSM) or corn gluten meal (CGM) as supplemental N. Ruminal ammonia N concentrations were higher (P less than .05) in steers fed LSM than in those fed CGM, but did not differ from those in steers fed urea or SBM (11.7, 6.7, 9.1 and 9.2 mg/100 ml, respectively). Due to the high degradability of urea, ruminal digestion of dietary CP was greater (P less than .05) in steers fed urea than in those fed CGM, but intermediate in steers fed SBM and LSM (58.4, 48.8, 53.1 and 53.9%, respectively). Flow of bacterial nonammonia N to the duodenum was highest (P less than .05) in steers fed SBM or LSM, intermediate (P less than .05) for urea and lowest (P less than .05) for CGM (86.8, 86.1, 76.3 and 65.9 g/d, respectively). Efficiency of bacterial protein synthesis was lowest in steers fed CGM and differed (P less than .05) from SBM (15.6 vs 21.8 g N/kg organic matter truly digested, respectively). Rate of ruminal digestion for SBM-CP differed (P less than .05) from that of CGM-CP but not from that of LSM-CP (17.70, 5.20 and 10.13%/h, respectively). The slow rate of ruminal degradability of CGM resulted in increased amounts of dietary protein reaching the intestinal tract but lower amounts of bacterial protein, thus intestinal protein supply was not appreciably altered.  相似文献   

9.
Two experiments were conducted to determine whether elevating the percentage of ruminally undegradable protein (RUP) in the diet would influence the RUP value of the protein feedstuff. A single-effluent, continuous-culture study was designed to test the effect of RUP inclusion rate in the diet on ruminal degradability of the protein. Treatments consisted (DM basis) of a control diet with no supplemental protein, control + 2.5% bloodmeal (BM-L), control + 5% bloodmeal (BM-H), control + 4.45% soybean meal (SBM-L), and control + 8.89% soybean meal (SBM-H). Proteolytic activity and total VFA concentration were not affected (P = 0.73 and P = 0.13) by treatment. Within protein source, dietary RUP value was not affected (P = 0.94) by level of inclusion. When corrected for control diet RUP flow, the RUP value of the blood meal (BM) protein was higher (P = 0.01) than soybean meal (SBM); however, level of supplementation did not affect (P = 0.07) the RUP value of BM or SBM. In Exp. 2, 32 British x Continental crossbred steers (276 +/- 26.3 kg) were fed for 72 d to examine the effects of balancing the AA:energy ratio, using BM as a RUP source, on ADG, G:F, and lean tissue deposition. Diets were formulated to provide increasing levels of arginine, while ruminally degradable protein and energy were held constant. Four dietary treatments provided 0.5, 1, 1.5, and 2x the required amount of arginine, whereas the control diet had no BM included. Daily DMI averaged 7.6 kg/steer and did not differ (P = 0.71) among treatments. Steers gained an average of 1.9 kg/d and average G:F was 0.260, with no differences (P = 0.60 and P = 0.97, respectively) among treatments. There was no difference (P = 0.48) in the change in 12th-rib fat depth during the study; however, change in LM area was affected quadratically as the level of BM increased in the diet, with the greatest increase in LM area occurring in steers fed the 1x and 1.5x required arginine treatments. Balancing the AA:energy ratio did not affect G:F, DMI, or ADG; however, it increased deposition of lean in the LM quadratically. Level of dietary inclusion of BM as an RUP source does not affect its RUP value or efficacy of providing postruminal AA in growing steers.  相似文献   

10.
Six ruminal-cannulated nonlactating Holstein Friesian cows (mean body weight:660 ± 42.9 kg) were used to investigate the effect of soybean meal (SBM) supplementation on voluntary rice straw (RS) intake, feed particle size reduction, and passage kinetics in the rumen. They were allocated to two dietary treatments: RS alone or RS supplemented with SBM. Voluntary dry matter intake of RS and total tract fiber digestibility was increased by SBM supplementation (p < 0.05). Supplementation with SBM decreased rumination time per dietary dry matter (DM) and neutral detergent fiber (NDFom) intake (p < 0.01). Particle size distribution in the rumen and total ruminal NDFom digesta weights were not affected by SBM supplementation. However, the disappearance rates of total digesta and large and small particles from the rumen were increased by SBM supplementation (p < 0.01). Moreover, SBM supplementation increased the rate of size reduction in ruminal particles (p < 0.05). In situ disappearance of DM and NDFom of RS in the rumen was greater in SBM-supplemented cows than in nonsupplemented cows (p < 0.05). This study clearly showed that increased ruminal RS particle size reduction, passage, and fermentation due to SBM supplementation accelerated the RS particle clearance from the rumen and resulted in increased voluntary RS intake of dairy cows.  相似文献   

11.
This trial was conducted to evaluate if the effect of condensed tannin (CT) is associated with a true protein source on intake, ruminal and total digestibility, ruminal digestion rate, protein efficiency, and microbial efficiency in beef steers fed high concentrate diet (87% of DM). Four Bos indicus steers (407 ± 12 kg of BW) fitted with rumen cannula were assigned to a 4 × 4 Latin square design, arranged in a 2 × 2 factorial arrangement. Treatments consisted of either inclusion (0.4% of DM) or exclusion of condensed tannin (CT) from quebracho extract (76% of CT) with or without the use of soybean meal (SBM) as source of true protein. The level of inclusion was calculated to provide a daily intake of 1 g/10 kg of BW of CT. Intake of DM and nutrients was not affected (P > 0.10) by CT inclusion. However, there was an effect (P < 0.10) of CT inclusion on ether extract digestibility. An interaction (P < 0.10) was observed between CT and SBM on ruminal digestibility and digestion rate of crude protein (CP): when mixed with soybean meal, CT decreased the ruminal digestibility and, consequently, reduced the digestion rate of CP. Intake of CP increased (P < 0.10) with the inclusion of SBM. No differences in DM passage rate were observed (P > 0.10) among treatments. Effects of the interaction (P < 0.10) between CT and SBM were observed on flux of rumen undegradable protein (RUP), metabolizable protein (MP), and on the ratio MP:CP. In the presence of soybean meal, the addition of CT increased (P < 0.10) the flux of RUP and MP, and improved the ratio MP:CP. The yield of microbial protein on the abomasum and the microbial efficiency did not differ among treatments (P > 0.10). There was no difference (P > 0.10) on the pH, VFA, and ruminal ammonia (N-NH3) with the addition of condensed tannin. The N-NH3 increased and the ruminal pH decreased with the inclusion of soybean meal (P < 0.10). The utilization of condensed tannin as an additive in beef cattle diets with high level of concentrate and soybean meal as a source of true protein implies positive effects on crude protein utilization, decreasing digestion rate and ruminal digestibility of crude protein and consequently increasing the levels of metabolizable protein, with no changes in the ruminal fermentation parameters.  相似文献   

12.
Two trials were conducted to study the protein requirements of growing cattle grazing cornstalks. Diet composition and forage intake were determined at different periods during the grazing season. Residue intake and dietary CP content decreased (P less than .05) .079 kg and .044 percentage units per day of grazing, respectively. In vitro DM disappearance of the roughage fraction of the diet remained high early in the grazing period when husk availability was high, then declined in a curvilinear pattern. Calves required time to learn to find and consume the residual grain. During 54 d of grazing in Trial 1, calves supplemented with 409 g CP gained .105 kg/d more than those supplemented with 213 g CP. Maximal daily gain (.308 kg) in Trial 2 was obtained with 163 g/d of ruminal escape protein. Growing cattle grazing cornstalks responded to protein supplementation at levels above current National Research Council recommendations for 250-kg calves gaining .3 kg/d.  相似文献   

13.
Nine crossbred (Hereford X Angus X Charolais) heifer calves (139 kg; 6 mo of age) with abomasal and ileal cannulas were used in a repeated design to evaluate N balance and amino acid disappearance in the small intestine. Calves were fed either soybean meal (SBM), toasted SBM (TSBM, 93 C for 90 min) or corn gluten meal (CGM) as supplemental protein sources. Each calf received approximately 83 g N/d from a cottonseed hull-corn based diet with 43% of the total dietary N supplied by the test proteins. Each experimental period consisted of a 10-d adaptation, 6-d digesta collection and 5-d excreta collection. Following the first 21-d period, calves were randomly re-allotted to treatment and the sampling process was repeated. Dry matter (64%) and N digestibilities (61%) and N retention (36.8 g/d) were similar (P greater than .10) among treatments. Nitrogen flow to the small intestine was similar for TSBM- and CGM-fed calves (119.1 g/d), but greater (P less than .01) than for those offered SBM (96.3 g/d). Offering TSBM and CGM resulted in greater quantities of essential, nonessential and total amino acids reaching the abomasum compared with SBM. Total amino acid flow to the small intestine was 100, 120 and 128% of intake for SBM, TSBM and CGM, respectively. Numerically, amino acid digestibility was lower in CGM-fed calves. Methionine digestibility was highest (64.6%), while histidine was lowest (43.7%). Feeding CGM may result in greater quantities of amino acids reaching the small intestine; however, several of these amino acids may be less digestible than for TSBM.  相似文献   

14.
The value of soybean meal (SBM), corn gluten meal (CGM), blood meal (BM) and fish meal (FM) in supplying N and amino acids (AA) escaping ruminal microbial degradation and disappearing from the small intestine (SI) was studied in steers using a regression approach. Replacement of corn starch in diets with protein sources resulted in decreases (P less than .05) in efficiency of microbial protein synthesis. Ruminal ammonia-N (NH3-N) had the greatest increase (P less than .05) when SBM was fed; BM supplementation resulted in only nonsignificant increases in ruminal NH3-N (P greater than .05). Soybean meal had the lowest proportion of N escaping ruminal degradation (.21). Corn gluten meal-N (.86) and BM-N (.92) escaped ruminal degradation to the greatest extent, and FM-N was intermediate (.68). Protein sources followed similar trends in providing absorbable nonbacterial N to the SI. Thirteen (+/- 6.2) percent of SBM-N was absorbed from the SI; 69 (+/- 6.2), 68 (+/- 9.1) and 50 (+/- 10.1)% of CGM-N, BM-N and FM-N, respectively, were absorbed from the SI. Values for ruminal escape and SI availability for individual and total AA are presented. Of the essential AA (EAA), threonine, valine and isoleucine were more resistant to ruminal degradation; methionine, cysteine, histidine and arginine were more extensively degraded than the total AA supply. Of the EAA escaping ruminal degradation, cysteine, histidine and threonine tended to be less digestible, whereas arginine was more digestible in the SI than the total AA supply.  相似文献   

15.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

16.
Nine Angus x Gelbvieh heifers (average BW = 347 +/- 2.8 kg) with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of soybean oil or corn supplementation on intake, OM, NDF, and N digestibility. Beginning June 8, 1998, heifers continually grazed a 6.5-ha predominantly bromegrass pasture and received one of three treatments: no supplementation (Control); daily supplementation of cracked corn (Corn) at 0.345% of BW; or daily supplementation (0.3% of BW) of a supplement containing cracked corn, corn gluten meal, and soybean oil (12.5% of supplemental DM; Oil). Soybean oil replaced corn on a TDN basis and corn gluten meal was included to provide equal quantities of supplemental TDN and N. Three 23-d periods consisted of 14 d of adaptation followed by 9 d of sample collections. Treatment and sampling period effects were evaluated using orthogonal contrasts. Other than crude fat being greater (P = 0.01) for supplemented heifers, chemical and nutrient composition of masticate samples collected via ruminal evacuation did not differ (P = 0.23 to 0.56) among treatments. Masticate NDF and ADF increased quadratically (P < or = 0.003) and N decreased linearly (P = 0.0001) as the grazing season progressed. Supplementation did not influence (P = 0.37 to 0.83) forage OM intake, total and lower tract OM digestibility, ruminal and total tract NDF digestibility, or total ruminal VFA; however, supplemented heifers had lower ruminal molar proportions of acetate (P = 0.01), higher ruminal molar proportions of butyrate (P = 0.007), and greater quantities of OM digested in the rumen (P = 0.10) and total tract (P = 0.02). As the grazing season progressed, total tract OM and N and ruminal NH3 concentrations and NDF digestibility decreased quadratically (P < or = 0.04). Microbial N flow (P = 0.09) and efficiency (P = 0.04) and postruminal N disappearance (P = 0.02) were greater for Control heifers and declined linearly (P < or = 0.02) as the grazing season advanced. Depressed microbial N flow seemed to be more pronounced for Oil than for the Corn treatment. Although total digestible OM intake increased with supplementation, metabolizable protein supply was reduced in supplemented heifers. Therefore, feeding low levels of supplemental grain with or without soybean oil is an effective strategy to increase dietary energy for cattle grazing high-quality forages, but consideration should be given to reduced supply of metabolizable protein.  相似文献   

17.
Three experiments were conducted to compare soybean meal/sorghum grain (SBM/SG), alfalfa hay or dehydrated alfalfa pellets (DEHY) as supplemental protein sources for beef cattle grazing dormant range forage. In Exp. 1 (35-d digestion study), 16 ruminally cannulated steers were stratified by weight (average BW 259 kg) and assigned randomly within stratification to: 1) control, no supplement; 2) SBM/SG (25% CP) fed at .48% BW; 3) alfalfa hay (17% CP) fed at .70% BW; or 4) DEHY (17.4% CP) fed at .67% BW. Steers receiving protein supplements displayed at least a twofold increase in forage intake (P less than .10). In addition, steers supplemented with DEHY consumed approximately 15% more forage (P less than .10) than SBM/SG- or alfalfa hay-supplemented steers. Digestible DM intake (kg/d), however, was similar between alfalfa hay- and DEHY-supplemented steers and 20% greater (P less than .10) than for SBM/SG-supplemented steers. In Exp. 2, 82 mature, nonlactating Hereford x Angus cows (average BW 489 kg) were assigned randomly to SBM/SG, alfalfa hay or DEHY supplement treatments, which were replicated in three pastures. Cows supplemented with DEHY gained more weight (P less than .05) during the first 84 d of supplementation and displayed the least amount of weight loss at calving (d 127; P less than .05) and just prior to breeding (P less than .10). In contrast, calving interval (361 d) and pregnancy rate (94%) were unaffected (P greater than .10) by dam's previous supplemental treatment. In Exp. 3, one block (pasture) of cows from Exp. 2 was selected at random and grazing behavior was monitored during week-long periods in January and February. A treatment X time interaction (P less than .05) occurred for total time spent grazing; treatments did not differ in January, but cows supplemented with alfalfa hay spent less time grazing in the February grazing period. In conclusion, DEHY and alfalfa hay appear to be at least as effective as SBM/SG as a supplemental protein source for pregnant grazing cows when supplements are fed on an equal CP and ME basis.  相似文献   

18.
Effects of different dietary rumen undegradable (RUP) to degradable (RDP) protein ratios on ruminal nutrient degradation, feed intake, blood metabolites and milk production were determined in early lactation cows. Four multiparous (43 ± 5 days in milk) and four primiparous (40 ± 6 days in milk) tie‐stall‐housed Holstein cows were used in a duplicated 4 × 4 Latin square design with four 21‐day periods. Each period had 14‐day of adaptation and 7‐day of sampling. Diets contained on a dry matter (DM) basis, 23.3% alfalfa hay, 20% corn silage and 56.7% concentrate. Cows were first offered alfalfa hay at 7:00, 15:00 and 23:00 hours, and 30 min after each alfalfa hay delivery were offered a mixture of corn silage and concentrate. Treatments were diets with RUP:RDP ratios of (i) 5.2:11.6 (control), (ii) 6.1:10.6, (iii) 7.1:9.5 and (iv) 8.1:8.5, on a dietary DM% basis. Different RUP:RDP ratios were obtained by partial and total replacement of untreated soybean meal (SBM) with xylose‐treated SBM (XSBM). In situ study using three rumen‐cannulated non‐lactating cows showed that DM and crude protein (CP) of SBM had greater rapidly degradable fractions. The potentially degradable fractions were degraded more slowly in XSBM. Treatment cows produced greater milk, protein, lactose, solids‐non‐fat and total solids than control cows. Increasing RUP:RDP reduced blood urea linearly. Feed costs dropped at RUP:RDP ratios of 6.1:10.6 and 7.1:9.5, but not at 8.1:8.5, compared with the 5.2:11.6 ratio. Intake of DM and CP, rumen pH, blood glucose, albumin and total protein, faecal and urine pH, changes in body weight and body condition score, and milk lactose and solids‐non‐fat percentages did not differ among treatments. Results provide evidence that increasing dietary RUP:RDP ratio from 5.2:11.6 to 7.1:9.5 optimizes nitrogen metabolism and milk production and reduces feed costs in early lactation cows. Reduced blood urea suggests reprodutive benefits.  相似文献   

19.
Eighty-eight yearling beef steers (308 +/- 1.4 kg) were used in two separate trials to determine the protein-sparing value of the N added to wheat straw during the ammoniation process and to determine the effects of supplementing ammoniated straw diets with energy and ruminal escape protein. In Exp. 1, steers were fed untreated straw (US) with either 0, 150, or 500 g of soybean meal (SBM) for 88 d. The addition of SBM to US diets increased (P less than .01) straw intake and average daily gains (ADG), indicating that N was limiting. When ammoniated straw (AS) was substituted for US, the N in the AS was used as efficiently as 500 g of SBM for growth. In Exp. 2, steers had ad libitum access to AS with three levels of supplemental corn (0, 1.23, or 2.45 kg DM.animal-1.d-1) either with or without .41 kg DM of corn gluten meal (CGM) added. Straw intake decreased (P less than .01) as the amount of corn in the diet was increased, but ADG increased (P less than .01) with the addition of corn. Straw consumption was not altered by the addition of CGM, but ADG was increased (P less than .01) by an average .35 kg by CGM. Rumen and blood N components indicated that the N from AS was contributing to the ruminal N pool and that CGM was compensating for microbial protein deficiencies postruminally.  相似文献   

20.
本试验探讨了常用饲料在瘤胃的降解特性及非降解饲料的小肠消化率,旨在为研究反刍动物的营养平衡和消化规律及科学配制日粮提供依据。试验选用3头装瘤胃瘘管和十二指肠瘘管的肉牛,采用尼龙袋法研究反刍动物常用饲料粗蛋白质和氨基酸瘤胃降解参数和表观小肠消化率。结果表明,在本试验中粗蛋白质降解率由低到高的顺序为:酒糟蛋白、黄玉米、羊草、玉米胚芽饼、菜粕、棉粕、豆粕、花生饼、啤酒糟、苜蓿、米糠、小麦麸;总氨基酸瘤胃降解率由低至高的顺序依次为:酒糟蛋白、黄玉米、羊草、玉米胚芽饼、菜粕、豆粕、棉粕、啤酒糟、花生饼、苜蓿、米糠、小麦麸。除花生饼、酒糟蛋白和黄玉米外,粗蛋白质和总氨基酸的有效降解率差异不显著(P>0.05)。粗蛋白质的表观小肠消化率由低至高的顺序依次为:苜蓿、羊草、米糠、小麦麸、啤酒糟、玉米胚芽饼、棉粕、菜粕、玉米、酒糟蛋白、花生饼、豆粕;总氨基酸的小肠消化率由低至高的顺序依次为:羊草、苜蓿、米糠、小麦麸、啤酒糟、玉米胚芽饼、菜粕、棉粕、花生饼、玉米、酒糟蛋白、豆粕。由此可见,不同的饲料瘤胃降解特性是不同的,并且为小肠提供的各种可吸收氨基酸潜力也是不同的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号