首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum concentrations of thyrotropin (TSH), prolactin, thyroxine, and 3,5,3'-triiodothyronine in 15 euthyroid dogs and 5 thyroidectomized and propylthiouracil-treated dogs after thyrotropin-releasing hormone (TRH) administration were measured. Although thyroidectomized and propylthiouracil-treated dogs had higher (P less than 0.01) base-line concentrations of TSH in serum than did euthyroid dogs, concentrations of TSH after TRH administration varied at 7.5, 15, and 30 minutes with 14 of 45 samples obtained from healthy dogs having lower TSH concentrations than before TRH challenge. Similarly, concentrations of 3,5,3'-triiodothyronine in the serum of euthyroid dogs 4 hours after TRH administration were similar (P less than 0.05) to concentrations before TRH challenge. Although the mean concentration of thyroxine in serum was elevated (P less than 0.05) 4 hours after administration of TRH to euthyroid animals, as compared with base-line levels, the individual response was variable with concentrations not changing or decreasing in 4 dogs. Therefore, the TRH challenge test as performed in the current investigation was of limited value in evaluating canine pituitary gland function. Although mean concentrations of TSH in serum were higher (P less than 0.05) in euthyroid dogs after TRH administration, the response was too variable among individual animals for accurate evaluation of pituitary gland function. Concentrations of prolactin in the sera of dogs after TRH administration, confirmed previous reports that exogenously administered TRH results in prolactin release from the canine pituitary and indicated that the TRH used was biologically potent.  相似文献   

2.
OBJECTIVE: To determine how rapidly trimethoprim-sulfamethoxazole affects serum total thyroxine (T4) and thyroid-stimulating hormone (TSH) concentrations in euthyroid dogs and how quickly hormone concentrations return to reference values following discontinuation of administration. DESIGN: Prospective study. ANIMALS: 7 healthy euthyroid dogs. PROCEDURE: Dogs were given trimethoprim-sulfamethoxazole (26.5 to 31.3 mg/kg [12 to 14.2 mg/lb], PO, q 12 h) for a maximum of 6 weeks. A CBC and Schirmer tear test were performed and serum total T4 and TSH concentrations were measured weekly. Administration of trimethoprim-sulfamethoxazole was discontinued if total T4 concentration was less than the lower reference limit and TSH concentration was greater than the upper reference limit or if persistent neutropenia developed. RESULTS: Six dogs had total T4 concentrations less than the lower reference limit within 3 weeks; T4 concentration was decreased after 1 week in 3 of these 6 dogs. In these 6 dogs, TSH concentration was greater than the upper reference limit within 4 weeks. In 1 dog, T4 and TSH concentrations were not affected, despite administration of trimethoprim-sulfamethoxazole for 6 weeks. Neutropenia developed in 4 dogs. In 1 dog, the neutropenia resolved while trimethoprim-sulfamethoxazole was still being administered. In the other 3, neutrophil counts returned to reference values 1 week after drug administration was discontinued. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of trimethoprim-sulfamethoxazole at a dosage of 26.5 to 31.3 mg/kg, PO, every 12 hours can substantially alter serum total T4 and TSH concentrations and neutrophil counts in dogs within as short a time as a few weeks.  相似文献   

3.
Concentrations of serum thyroxine (T4) and 3,5,3'-triiodothyronine (T3) were determined after the administration of freshly reconstituted thyrotropin-releasing hormone (TRH), reconstituted TRH that had been previously frozen, or thyrotropin (TSH) to 10 mature dogs (6 Greyhounds and 4 mixed-breed dogs). Thyrotropin-releasing hormone (0.1 mg/kg) or TSH (5 U/dog) was administered IV; venous blood samples were collected before and 6 hours after administration of TRH or TSH. Concentrations of the T4 and T3 were similar (P greater than 0.05) in serum after administration of freshly reconstituted or previously frozen TRH, indicating that TRH can be frozen at -20 C for at least 1 week without a loss in potency. Concentrations of T4, but not T3, were higher after the administration of TSH than they were after the administration of TRH (P less than 0.01). Concentrations of T4 increased at least 3-fold in all 10 dogs given TSH, whereas a 3-fold increase occurred in 7 of 10 dogs given freshly reconstituted or previously frozen TRH. Concentrations of T4 did not double in 1 dog given freshly reconstituted TRH and in 1 dog given previously frozen TRH. Concentrations of T3 doubled in 5 of 10, 2 of 10, and 5 of 10 dogs given TSH, freshly reconstituted TRH, or previously frozen TRH, respectively. Results suggested that concentrations of serum T4 are higher 6 hours after the administration of TSH than after administration of TRH, using dosage regimens of 5 U of TSH/dog or 0.1 mg of TRH/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
OBJECTIVE: To determine the effects of levothyroxine sodium (L-T4) on serum concentrations of thyroid gland hormones and responses to injections of thyrotropin-releasing hormone (TRH) in euthyroid horses. ANIMALS: 12 healthy adult mares. PROCEDURE: 8 horses received an incrementally increasing dosage of L-T4 (24, 48, 72, or 96 mg of L-T4/d) for weeks 1 to 8. Each dose was provided for 2 weeks. Four additional horses remained untreated. Serum concentrations of total triiodothyronine (tT3), total thyroxine (tT4), free T3 (fT3), free T4 (fT4), and thyroid-stimulating hormone (TSH) were measured in samples obtained at weeks 0, 2, 4, 6, and 8; 1.2 mg of TRH was then administered i.v., and serum concentrations of thyroid gland hormones were measured 2 and 4 hours after injection. Serum reverseT3 (rT3) concentration was also measured in the samples collected at weeks 0 and 8. RESULTS: Treated horses lost a significant amount of weight (median, 19 kg). Significant treatment-by-time effects were detected for serum tT3, tT4, fT3, fT4, and TSH concentrations, and serum tT4 concentrations were positively correlated (r, 0.95) with time (and therefore dosage) in treated horses. Mean +/- SD serum rT3 concentration significantly increased in treated horses (3.06 +/- 0.51 nmol/L for week 8 vs 0.74 +/- 0.22 nmol/L for week 0). Serum tT3, tT4, fT3, and TSH concentrations in response to TRH injections differed significantly between treated and untreated horses. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of levothyroxine sodium increased serum tT4 concentrations and blunted responses toTRH injection in healthy euthyroid horses.  相似文献   

5.
To determine the effects of long-term thyroxine treatment, histomorphometric analysis was performed on the pituitary and thyroid glands of healthy dogs, dogs treated for 9 weeks with a replacement dose of L-thyroxine, and dogs at 6 weeks after cessation of thyroxine treatment. In treated dogs, the volume density of thyrotropes decreased during thyroxine treatment and increased 6 weeks after cessation of treatment, compared with thyrotropes of healthy nontreated dogs. The activity of the thyroid gland was decreased in dogs during thyroxine treatment, as evidenced by decreases in epithelial volume density, epithelial height, and follicular area, and increase in colloid volume density, compared with thyroid gland activity in nontreated dogs. After cessation of thyroxine treatment, the thyroid gland had decreased colloid area, follicular area, and epithelial volume density, and increased interstitial volume density, compared with the thyroid gland of healthy nontreated dogs. Thyroxine treatment resulted in suppression of pituitary thyrotropes and thyroid follicular activity.  相似文献   

6.
Thyroid function was evaluated in 20 healthy dogs by thyrotropin (TSH) response testing. Two dose regimens were used: 5 IU of TSH given IV and 1 IU of TSH given IV. Blood samples were collected prior to and at 4 and 6 hours after TSH administration. Serum was obtained and analyzed for total 3,5,3'-tri-iodothyronine and thyroxine (T4) concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 5 IU of TSH at 4 and 6 hours. The 1-IU dose of TSH failed to induce adequate increase in T4 concentration in 7 dogs at 4 and 6 hours when the criteria for normal response were post-TSH serum concentration T4 greater than or equal to 3.0 micrograms/dl and serum T4 increase by greater than or equal to 100% over baseline serum T4 concentration. One IU of TSH induced increase in serum T4 concentration over baseline; however, the increase was significantly (P less than 0.05) less than that in response to a 5-IU dose at 6 hours after administration of TSH.  相似文献   

7.
Serum triiodothyronine (T3) and thyroxine (T4) concentrations were determined after IV administration of 200 micrograms of thyrotropin-releasing hormone (TRH) to 10 healthy euthyroid dogs. Significant (P less than 0.05) changes were not found in the T3 concentration throughout an 8-hour sampling interval. All dogs had a significant increase (P less than 0.05) in the T4 concentration at 4, 5, 6, 7, and 8 hours after TRH administration. The largest increase in the serum T4 concentration occurred 4 hours after TRH injection. From 4 to 8 hours after TRH administration, the mean increase above basal T4 concentrations was 13.9 +/- 5.4 ng/ml.  相似文献   

8.
A multicentric prospective study was conducted to monitor the effect of phenobarbital on serum total thyroxine (T4) and thyroid-stimulating hormone (TSH) concentrations in epileptic dogs. Serum T4 concentrations were determined for 22 epileptic dogs prior to initiation of phenobarbital therapy (time 0), and 3 weeks, 6 months, and 12 months after the start of phenobarbital. Median T4 concentration was significantly lower at 3 weeks and 6 months compared to time 0. Thirty-two percent of dogs had T4 concentrations below the reference range at 6 and 12 months. Nineteen of the 22 dogs had serum TSH concentrations determined at all sampling times. A significant upward trend in median TSH concentration was found. No associations were found between T4 concentration, dose of phenobarbital, or serum phenobarbital concentration. No signs of overt hypothyroidism were evident in dogs with low T4, with one exception. TSH stimulation tests were performed on six of seven dogs with low T4 concentrations at 12 months, and all but one had normal responses. In conclusion, phenobarbital therapy decreased serum T4 concentration but did not appear to cause clinical signs of hypothyroidism. Serum TSH concentrations and TSH stimulation tests suggest that the hypothalamic-pituitary-thyroid axis is functioning appropriately.  相似文献   

9.
The short-term effects of prednisone and phenobarbital on serum total thyroxine (tT4), free thyroxine (fT4), and thyroid stimulating hormone (TSH) were evaluated in euthyroid dogs. Twenty-six beagles were randomly divided into 3 groups receiving, respectively, a placebo, prednisone (1.2 to 2 mg/kg body weight, per os, every 12 hours for 3 weeks), or phenobarbital (1.8 to 3 mg/kg body weight for 1 week, then 2.7 to 4.5 mg/kg body weight, per os, every 12 hours for 2 weeks). Blood samples taken over a 6-week period were assayed for serum tT4, fT4, and TSH. Phenobarbital therapy in our study did not affect serum tT4, fT4, or TSH concentrations. Prednisone therapy, however, significantly decreased serum tT4 and fT4, but did not affect serum TSH concentrations.  相似文献   

10.
OBJECTIVE: To evaluate effects of trimethoprim-sulfamethoxazole (T/SMX) on thyroid function in dogs. ANIMALS: 6 healthy euthyroid dogs. PROCEDURE: Dogs were administered T/SMX (14.1 to 16 mg/kg, PO, q 12 h) for 3 weeks. Blood was collected weekly for 6 weeks for determination of total thyroxine (TT4), free thyroxine (fT4), and canine thyroid-stimulating hormone (cTSH) concentrations. Schirmer tear tests were performed weekly. Blood was collected for CBC prior to antimicrobial treatment and at 3 and 6 weeks. RESULTS: 5 dogs had serum TT4 concentrations equal to or less than the lower reference limit, and 4 dogs had serum fT4 less than the lower reference limit after 3 weeks of T/SMX administration; cTSH concentrations were greater than the upper reference limit in 4 dogs. All dogs had TT4 and fT4 concentrations greater than the lower reference limit after T/SMX administration was discontinued for 1 week, and cTSH concentrations were less than reference range after T/SMX administration was discontinued for 2 weeks. Two dogs developed decreased tear production, which returned to normal after discontinuing administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of T/SMX at a dosage of 14.1 to 16 mg/kg, PO, every 12 hours for 3 weeks caused decreased TT4 and fT4 concentrations and increased cTSH concentration, conditions that would be compatible with a diagnosis of hypothyroidism. Therefore, dogs should not have thyroid function evaluated while receiving this dosage of T/SMX for >2 weeks. These results are in contrast to those of a previous study of trimethoprim-sulfadiazine.  相似文献   

11.
Effects of thyrotropin-releasing hormone (TRH) on serum concentrations of thyroid hormones were studied in 36 mixed-bred dogs. Dogs were randomly assigned to 7 groups. Significant increases (P less than 0.05) of serum thyroxine (T4) values occurred as early as 2 hours and reached a peak at 6 to 8 hours after IV injection of 300 to 1,100 micrograms of TRH. Thyroxine concentrations in response to a TRH dose greater than 500 micrograms were similar to those observed with the 300-micrograms dose. Transient coughing, vomiting, salivation, and defecation after large doses (900 and 1,100 micrograms) were observed. Mean serum T4 concentration decreased from 2.1 micrograms/dl to 0.9 micrograms/dl within 1 day of thyroidectomy. Clinical signs of hypothyroidism, including lethargy, dry coats, and diffuse alopecia, were present in 2 dogs at a month after surgical operation. Thyroxine concentrations were detectable for greater than 2 months. Injection (IV) of 700 micrograms of TRH 6 weeks after surgical operation had no effect on serum concentration of T4 in thyroidectomized dogs. In 5 T4-treated dogs, TRH (700 micrograms, IV) significantly increased the serum T4 value, indicating that pituitary thyrotropes were responsive to TRH, in spite of daily medication of 0.8 mg of T4. Four dogs were treated orally with 200 mg of propylthiouracil/day for 5 weeks. Intravenous injection of 700 micrograms of TRH in propylthiouracil-treated dogs had no effect on the serum T4 concentration, indicating that TRH had no effect on serum T4 values in these dogs during the experimental period. These results indicate that TRH can replace bovine thyrotropin for the canine thyroid function test.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The purpose of this study was to validate a thyroid-stimulating hormone (TSH) assay in a model of equine hypothyroidism. Thyrotropin-releasing hormone (TRH) stimulation tests were performed in 12 healthy adult mares and geldings, aged 4 to greater than 20 years. before and during administration of the antithyroid drug propylthiouracil (PTU) for 6 weeks. Serum concentrations of equine TSH, total and free thyroxine (T4), and total and free triiodothyronine (T3) were measured. Before PTU administration, mean +/- standard deviation baseline concentrations of TSH were 0.40 +/- 0.29 ng/mL. TSH increased in response to TRH, reaching a peak concentration of 0.78 +/- 0.28 ng/mL at 45 minutes. Total and free T4 increased from 12.9 +/- 5.6 nmol/L and 12.2 +/- 3.5 pmol/L to 36.8 +/- 11.4 nmol/L and 23.1 +/- 5.9 pmol/L, respectively, peaking at 4-6 hours. Total and free T3 increased from 0.99 +/- 0.51 nmol/L and 2.07 +/- 1.14 pmol/L to 2.23 +/- 0.60 nmol/l and 5.78 +/- 1.94 pmol/L, respectively, peaking at 2-4 hours. Weekly measurements of baseline TSH and thyroid hormones during PTU administration showed that total and free T, concentrations fell abruptly and remained low throughout PTU administration. Total and free T4 concentrations did not decrease dramatically until weeks 5 and 4 of PTU administration, respectively. A steady increase in TSH concentration occurred throughout PTU administration, with TSH becoming markedly increased by weeks 5 and 6 (1.46 +/- 0.94 ng/mL at 6 weeks). During weeks 5 and 6 of PTU administration, TSH response to TRH was exaggerated, and thyroid hormone response was blunted. Results of this study show that measurement of equine TSH in conjunction with thyroid hormone measurement differentiated normal and hypothyroid horses in this model of equine hypothyroidism.  相似文献   

13.
Thyroid function was assessed in euthyroid dogs (n = 20), dogs suffering from canine recurrent flank alopecia (CRFA, n = 18), and hypothyroid dogs (n = 21). Blood samples obtained from all dogs in each group were assayed for total thyroxine (TT4), thyrotropin (TSH), and thyroglobulin autoantibody (TgAA) serum concentrations. Total T4 and TSH serum concentrations were significantly decreased and increased, respectively, in the hypothyroid group compared with the other 2 groups. No significant differences in TT4 and TSH serum values were found between the euthyroid and CRFA groups. Thyroglobulin autoantibodies were detected in 10, 11.1, and 61.9% of euthyroid dogs, dogs with CRFA, and hypothyroid dogs, respectively. In conclusion, dogs suffering from CRFA have a normal thyroid function, and the determination of TT4 and TSH serum concentrations allows differentiation of these dogs from dogs with hypothyroidism, in most cases. Occasionally, the 2 diseases can be concomitant.  相似文献   

14.
Phenobarbital is the drug of choice for control of canine epilepsy. Phenobarbital induces hepatic enzyme activity, can be hepatotoxic, and decreases serum thyroxine (T4) concentrations in some dogs. The duration of liver enzyme induction and T4 concentration decreases after discontinuation of phenobarbital is unknown. The purpose of this study was to characterize the changes in serum total T4 (TT4), free T4 (FT4), thyroid-stimulating hormone (TSH), cholesterol and albumin concentrations, and activities in serum of alanine aminotransferase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT) after discontinuation of long-term phenobarbital administration in normal dogs. Twelve normal dogs were administered phenobarbital at a dosage of approximately 4.4-6.6 mg/kg PO q12h for 27 weeks. Blood was collected for analysis before and after 27 weeks of phenobarbital administration and then weekly for 10 weeks after discontinuation of the drug. The dogs were clinically normal throughout the study period. Serum ALT and ALP activity and TSH and cholesterol concentrations were significantly higher than baseline at week 27. Serum T4 and FT4 were significantly lower. Serum albumin and GGT were not changed from baseline at week 27. Changes in estimate of thyroid function (TT4, FT4, TSH) persisted for 1-4 weeks after discontinuation of phenobarbital, whereas changes in hepatic enzyme activity (ALT, ALP) and cholesterol concentration resolved in 3-5 weeks. To avoid false positive results, it is recommended that thyroid testing be performed at least 4 weeks after discontinuation of phenobarbital administration. Elevated serum activity of hepatic enzymes 6-8 weeks after discontinuation of phenobarbital may indicate hepatic disease.  相似文献   

15.
The purpose of this study was to determine the usefulness of free thyroxine (FT4) measured by chemiluminescence in evaluating thyroid function in dogs. Total thyroxine (TT4) concentration measured by radioimmunoassay (RIA) and FT4 measured by chemiluminescence were evaluated in 30 healthy dogs, 60 euthyroid dogs with concurrent dermatopathies, and 30 hypothyroid dogs before and after intravenous stimulation with 1 or 2 IU of thyrotropin (TSH). Median basal TT4 and median TT4 concentrations at 4 h post-TSH administration were not significantly different (P < 0.0001) between healthy dogs and euthyroid dogs with dermatopathies, but were significantly higher than those in hypothyroid dogs. In healthy dogs, the median TT4 concentrations at 4 and 6 h post-TSH administration were not significantly different. Median basal FT4 and median FT4 concentrations at 4 h post-TSH administration in healthy dogs were significantly lower (P < 0.0001) than those in euthyroid dogs with dermatopathies, but significantly higher than the same parameters in hypothyroid dogs. There was a significant difference between the median FT4 concentrations at 4 h post-TSH administration and median basal FT4 concentrations for healthy dogs and euthyroid dogs with dermatopathies, but not for hypothyroid dogs. Lastly, in healthy dogs, median FT4 concentrations at 4 and 6 h post-TSH administration were not significantly different. Free thyroxine measured by chemiluminescence was highly correlated (P < 0.0001; Spearman r = 0.91) with FT4 measured by the reference method for free hormone analysis, namely, equilibrium dialysis, when sera from 56 dogs were used.  相似文献   

16.
Thyrotropin (thyroid stimulating hormone; TSH) stimulus to thyroid cells of horses and dogs resulted in increased serum triiodothyronine (T3) concentrations that were detected earlier than those of thyroxine (T4). Doubling of the base-line T3 values in horses was detected 0.5 hours after injection of 5 IU of TSH IV, with peak response of 5 times base-line value detected 2 hours after injection. Doubling of T4 values in horses was noticed between 2 and 3 hours, with the peak response of 2.4 times base-line value at 4 hours after injection of TSH. Doubling of base-line T3 values in dogs in response to 0.2 IU TSH/kg of body weight (IV-5 IU maximum dose) was noticed at 1 hour, whereas T4 response doubled between 1.5 and 2 hours. Peak release of T3 and T4 in response to TSH in dogs had not developed by 4 hours; however, the percentage increase over base-line values was greater for T3 than T4 at early sampling time points, and this response has resulted in an increased T3/T4 ratio in hypothyroid dogs. Thus, in both dogs and horses, these studies indicated that T3 response to TSH could be used as a measure of thyroid function at earlier time intervals after TSH administration than one measures T4 response.  相似文献   

17.
Thyroid function was evaluated in 18 healthy dogs by thyrotropin (TSH) stimulation. Two dose regimens were used in each dog: 0.1 IU/kg body weight of freshly reconstituted lyophilized TSH and 1 IU/dog of previously frozen and stored TSH (up to 200 days), both given intravenously. Blood samples were collected prior to and at four and six hours after TSH administration. Serum was evaluated for total thyroxine concentrations by radioimmunoassay. All dogs were classified as euthyroid on the basis of response to 0.1 IU/kg body weight of freshly reconstituted TSH at four and six hours. The 1 IU dose of TSH, previously frozen for up to 200 days, induced increases in serum total thyroxine concentration over baseline at four and six hours that were not significantly different from those resulting from the use of the higher dose of fresh TSH. In all test groups, there were no statistically significant differences between total thyroxine concentrations at four and six hours post-TSH administration. It was concluded that an adequate TSH response can be achieved with the use of 1 IU of TSH/dog for clinically normal dogs between 29.0 kg and 41.6 kg body weight, even if this TSH has been frozen at -20 degrees C for up to 200 days. Further, blood collection can be performed at any time between four and six hours. Similar studies are needed to evaluate this new protocol in hypothyroid dogs and euthyroid dogs suffering nonthyroidal systemic diseases.  相似文献   

18.
OBJECTIVE: To evaluate thyroid function in healthy Greyhounds, compared with healthy non-Greyhound pet dogs, and to establish appropriate reference range values for Greyhounds. ANIMALS: 98 clinically normal Greyhounds and 19 clinically normal non-Greyhounds. PROCEDURES: Greyhounds were in 2 groups as follows: those receiving testosterone for estrus suppression (T-group Greyhounds) and those not receiving estrus suppressive medication (NT-group Greyhounds). Serum thyroxine (T4) and free thyroxine (fT4) concentrations were determined before and after administration of thyroid-stimulating hormone (TSH) and thyroid-releasing hormone (TRH). Basal serum canine thyroid stimulating hormone (cTSH) concentrations were determined on available stored sera. RESULTS: Basal serum T4 and fT4 concentrations were significantly lower in Greyhounds than in non-Greyhounds. Serum T4 concentrations after TSH and TRH administration were significantly lower in Greyhounds than in non-Greyhounds. Serum fT4 concentrations after TSH and TRH administration were significantly lower in NT-group than T-group Greyhounds and non-Greyhounds. Mean cTSH concentrations were not different between Greyhounds and non-Greyhounds. CONCLUSIONS AND CLINICAL RELEVANCE: Previously established canine reference range values for basal serum T4 and fT4 may not be appropriate for use in Greyhounds. Greyhound-specific reference range values for basal serum T4 and fT4 concentrations should be applied when evaluating thyroid function in Greyhounds. Basal cTSH concentrations in Greyhounds are similar to non-Greyhound pet dogs.  相似文献   

19.
The stability of reconstituted, refrigerated thyrotropin was evaluated. Thyrotropin (TSH) was reconstituted at the start of the study and stored at 4 degrees C. A TSH stimulation test was performed in eight healthy, euthyroid dogs at weekly intervals for 1 month. In seven of eight dogs, there was no significant difference (P less than 0.05) between the post-TSH T3 concentrations and the post-TSH T4 concentrations for the duration of the study. For one dog, the post-TSH T4 concentration was below the normal post-TSH T4 range following the administration of reconstituted TSH that had been stored 4 weeks. The T3 response to the TSH, however, was normal. This dog responded normally to freshly reconstituted TSH. The results of this study suggest that reconstituted bovine TSH can be stored at 4 degrees C for at least 3 weeks without loss of biologic activity in the dog.  相似文献   

20.
A similar and significant (P less than 0.001) increase in plasma thyroxine (T4) concentration was seen in seven clinically normal thoroughbred horses 2 h after the intravenous administration of either 2.5 iu or 5 iu of thyroid stimulating hormone (TSH) with a peak response around 4 h after administration. The intravenous administration of 0.2, 0.5 or 1 mg thyrotrophin releasing hormone (TRH) resulted in a significant (P less than 0.01) increase in T4 concentration in three groups of animals; six thoroughbreds in full work, five thoroughbreds at rest and four ponies at rest. The peak response was recorded at 3 or 4 h after administration. A significant difference between the groups in the degree of response to TRH was only found between the thoroughbreds in work and those at rest with 1 mg TRH (P less than 0.05). When two additional ponies were investigated in a similar way, a reduced response to TRH was observed: a pregnant mare had a similar response to 5 iu TSH as the thoroughbreds; the other pony also showed a lowered response to TSH. In a group of 2- or 3-year-old thoroughbreds in training no difference in the T4 response 4 h after intravenous administration of 0.5 mg TRH could be determined, according to the month, age, sex or work intensity. Although resting T4 concentrations did not differ significantly between animals believed to be suffering from the equine rhabdomyolysis syndrome (ERS) and those suffering from a variety of other conditions, some ERS sufferers may have a lowered response to TRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号