首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Isolates of Trichoderma spp grew and produced chlamydospores as well as conidia in molasses-corn steep liquor (M-CSL), sucrose nitrate (SN), and glucose tartrate (GT) media. In M-SCL, isolates of T. hamatum, T. viride, and T. harzianum formed 10.4, 5.9 and 1.1 × 108 chlamydospores g?1 dry weight of mycelium. Fewer chlamydospores formed in SN and GT. Although T. harzianum formed the least number of chlamydospores, it produced the highest number of conidia in all three media. Molasses-corn steep liquor was superior to SN or GT in supporting development of both spore types. Spore production was not influenced by initial pH of the media or by continuous maintenance of the media at pH 4 or 7. Equal numbers of chlamydospores were formed in liquid media incubated in shake or static culture. Conidia formation, however, was stimulated in static culture. Chlamydospores and conidia of several naturally occurring isolates and induced biotypes of Trichoderma spp were abundantly produced on a variety of solid substrates moistened with liquid nutrients or water, preferably at pH 4. Bran, cornmeal, and peanut hull meal were better than eight other solid substrates for production of chlamydospores and conidia. A u.v.-induced, benomyl-resistant biotype of T. viride (T-1-R9) formed 22 × 107 and 18 × 108 chlamydospores and conidia, respectively, g?1 of bran-SN. The ratio of conidia to chlamydospores was always greater in solid than liquid media. In solid media, 10 times more conidia than chlamydospores were formed, whereas in liquid only two or three times more were formed. Chlamydospores from liquid and solid fermentations were viable (ca 80%) and fresh chlamydospores germinated well (ca 75%) on nutrient agar. Although dried chlamydospores were viable, as determined with tetrazolium bromide, their germination on agar was poor (ca 8%).  相似文献   

2.
The infection and survival of sclerotia of Sclerotinia minor and the production ofmacroconidia of the mycoparasite, Sporidesmium sclerotivorum, were studied in vitro when each fungus was added to soil at various initial inoculum densities. The rate at which S. sclerotivorum invaded host sclerotia and caused their decay varied with the amount of the mycoparasite added to soil. The results suggest that approximately 5 macroconidia of the mycoparasite g?1 of soil are needed to successfully infect sclerotia and bring about their decay, when soils are sampled and mixed every 2 weeks. The rate at which S. sclerotivorum infects sclerotia of S. minor and causes their decay is also dependent on the initial inoculum density of the host. Each infected sclerotium supports the production of about 15,000 new macroconidia in soil regardless of the initial inoculum density of the host. It is concluded that successful biological control by S. sclerotivorum is dependent on the soil population of both the host and the mycoparasite.  相似文献   

3.
The bacterium Wautersia [Ralstonia] basilensis has been shown to enhance the mycorrhizal symbiosis between Suillus granulatus and Pinus thunbergii (Japanese black pine). However, no information is available about this bacterium under field conditions. The objectives of this study were to detect W. basilensis in bulk and mycorhizosphere soils in a Japanese pine plantation in the Tottori Sand Dunes, determine the density of W. basilensis in soil, and determine the optimal cell density of W. basilensis for mycorrhizal formation in pine seedlings. We designed and validated 16S rRNA gene-targeted specific primers for detection and quantification of W. basilensis. SYBR Green I real-time PCR assay was used. A standard curve relating cultured W. basilensis cell density (103-108 cells ml−1) to amplification of DNA showed a strong linear relationship (R = 0.9968). The specificity of the reaction was confirmed by analyzing DNA melting curves and sequencing of the amplicon. The average cell density of W. basilensis was >4.8 × 107 cells g−1 of soil in the mycorrhizosphere and 7.0 × 106 cells g−1 in the bulk soil. We evaluated the W. basilensis cell density required for mycorrhizal formation using an in vitro microcosm with various inoculum densities ranging from 102 to 107 cells g−1 soil (104-109 cells ml−1). Cell densities of W. basilensis of >106 cells g−1 of soil were required to stimulate mycorrhizal formation. In vivo and in vitro experiments showed that W. basilensis was sufficiently abundant to enhance mycorrhizal formation in the mycorrhizosphere of Japanese black pine sampled from the Tottori Sand Dunes.  相似文献   

4.
Direct observation of washed conidia of Cylindrocladium scoparium on non-sterile soils, air dried and rewetted immediately before deposition of conidia, indicated that peak germination (33–58%) occurred after 24 h incubation at 26°C. Peak germination on continually moist soils was lower (18–26%) than on rewetted soils. Lysis of germ tubes and germinating conidia on continually moist soils at 26°C was evident with 48 h. Conidia did not germinate on continually moist soils at 6°C and lysis did not become apparent until 168 h. Conidia germinated at a high level (93–99%) in axenic culture in the absence of exogenous C and N sources. The inhibition of conidial germination on soils may be attributed, in part, to the presence of soil volatiles. Germination of conidia placed on washed agar disks and exposed to volatiles from four soils ranged from 51 to 86% of the no-soil controls. Addition of carbon (13 ng C per conidium as glucose) and nitrogen (65 pg N ng?1 C as NH4C1) nullified the inhibitory effect of the soil volatiles. Germinability assayed on a selective medium at 26°C of conidia in artificially infested soils (approximately 104 conidia g?1 soil) decreased progressively during incubation at 26°C from 1 week to 4 months. No germinable conidia were recovered from artificially infested soils after 2 months incubation at 6°C. Conidia of C. floridanum and C. crotalariae responded similarly to C. scoparium in many assays.  相似文献   

5.
The usage of sewage sludge on agricultural lands is an effective and inexpensive practice that provides nutrients for crops. A successful legume crop also depends on the survival of Rhizobium in the soil environment. The number of R. japonicum (USDA 110) in treatment groups containing various soil-to-sludge ratios (control, 13:1, 9:1 and 5:1) during incubation for 1, 21 and 42 days was investigated. The control group contained soil without sludge. Mecklenburg clay and Enon sandy loam soils (both are fine, mixed, thermic, ultic Hapludalfs) were used. All treatments were adjusted to pH 6.7 and brought to 75% of field capacity with 1 ml inoculum (9 × 108 cells ml? 1) and distilled water. Samples were incubated at 25 C and monitored periodically for the number of surviving R. japonicum (USDA 110) organism by the plant infcction-MPN method. Strains were identified by gel-immunodiffusion. Recovery of rhizobia from both soils was < 1% in all treatment groups after 42 days. However, for control, 13:1, 9:1 and 5:1 groups, the percentage recovery was higher in Enon sandy loams (7.9, 2.3, 2.3 and 2.3%, respectively) at 21 days. Recovery of rhizobia in the 5:1 group from both soils was 7.9% after 1 day, whereas control values were 92%. A decline in rhizobial populations in higher sludge soils may be due to the heavy metals present and available during mineralization of sludge in soils. However, the number of R. japonicum that survived to 21 days was 1.7 × 105g?1 and 1.7 x 106g?1 for Mecklenburg clay and Enon sandy loam soils with highest sludge, respectively.  相似文献   

6.
Bacteria, Pseudomonas paucimobilis, were inoculated at two concentrations (6.56 × 104 g?1 and 6.56 × 106g?1) into sterilized soil amended with 700 μg glucose-C g?1. Two levels of NH+4-N (11.0μg g?1 and 81.0 μg g?1) were used. The subsequent development was followed for three days by measurement of several biological, chemical and physiological parameters.The amount of bacterial biomass-C (μg g?1 soil) became twice as great in high as in low N treatments, and significantly decreased between 39.5 and 63.5 h for the high inoculum, high N level treatment due to decreasing cell size. By the end of the experiment the cumulative respired carbon was twice as great and more inorganic P was immobilized for high compared to low N treatments and all available NH+4-N was taken up by the final sample time. Soil ATP concentrations were twice as large in high N treatments but the turnover times were twice as long compared to low N systems. The yield coefficient (Y), calculated from respiration and biomass-C values, equalled 0.61 while substrate was plentiful. Nitrogen limitation did not alter the efficiencey with which glucose was transformed into biomass, but rather controlled the total amount of glucose used and biomass produced.  相似文献   

7.
Recovery of soil organic matter, organic matter turnover and mineral nutrient cycling is critical to the success of rehabilitation schemes following major ecosystem disturbance. We investigated successional changes in soil nutrient contents, microbial biomass and activity, C utilisation efficiency and N cycling dynamics in a chronosequence of seven ages (between 0 and 26 years old) of jarrah (Eucalyptus marginata) forest rehabilitation that had been previously mined for bauxite. Recovery was assessed by comparison of rehabilitation soils to non-mined jarrah forest references sites. Mining operations resulted in significant losses of soil total C and N, microbial biomass C and microbial quotients. Organic matter quantity recovered within the rehabilitation chronosequence soils to a level comparable to that of non-mined forest soil. Recovery of soil N was faster than soil C and recovery of microbial and soluble organic C and N fractions was faster than total soil C and N. The recovery of soil organic matter and changes to soil pH displayed distinct spatial heterogeneity due to the surface micro-topography (mounds and furrows) created by contour ripping of rehabilitation sites. Decreases in the metabolic quotient with rehabilitation age conformed to conceptual models of ecosystem energetics during succession but may have been more indicative of decreasing C availability than increased metabolic efficiency. Net ammonification and nitrification rates suggested that the low organic C environment in mound soils may favour autotrophic nitrifier populations, but the production of nitrate (NO3?) was limited by the low gross N ammonification rates (≤1 μg N g?1 d?1). Gross N transformation rates in furrow soils suggested that the capacity to immobilise N was closely coupled to the capacity to mineralise N, suggesting NO3? accumulation in situ is unlikely. The C:N ratio of the older rehabilitation soils was significantly lower than that of the non-mined forest soils. However, variation in ammonification rates was best explained by C and N quantity rather than C:N ratios of whole soil or soluble organic matter fractions. We conclude that the rehabilitated ecosystems are developing a conservative N cycle as displayed by non-mined jarrah forests. However, further investigation into the control of nitrification dynamics, particularly in the event of further ecosystem disturbance, is warranted.  相似文献   

8.
The symbioses between Trifolium subterraneum, mycorrhizal fungi and Rhizohium are affected by (NH4)2SO4 and by the nitrification inhibitors 2-chloro-6 (trichloromethyl) pyridine (N-Serve) and 2-trichloromethyl pyridine (2TMP). At 50 μg · g?1 soil N-Serve and 2TMP had toxic effects on plant growth, measured as leaf expansion, root length and dry weight. Lower concentrations of N-Serve also produced some toxic symptoms. The addition of (NH4)2SO4 to the soil at 2 and 6 m-equiv NH+4 per pot, resulted in reduced root length and nodulation. Shoot dry weight was reduced at 6 m-equiv NH+4 per pot. In the presence of (NH4)2SO4 the toxic effects of the nitrification inhibitors on plant growth were less.Both nitrification inhibitors reduced development of mycorrhizal entry-points and extent of root colonization (% infection). Percentage infection of the root system was also reduced by (NH4)2SO4. Development of nodules on the lateral roots was increased in the presence of N-Serve at 5 and 15 μ · g?1. This effect, however, was accompanied by a marked reduction in N2ase activity. Smaller increases in nodulation were apparent with 2TMP and were associated with variable N2ase activity.  相似文献   

9.
The incidence and severity of take-all disease, due to Gaeumannomyces graminis (Sacc.) Arx & Olivier var. tritici Walker, was observed on spring barley plants growing in soil in two glasshouse experiments. Soil amendments of NH+4-N significantly increased the number of diseased plants and roots during the first month after germination in comparison with controls unamended with N (P < 0.05). No significant difference in the incidence of take-all disease was detected between more mature barley plants growing in soil amended with either NH+4 or NO?3-N and unamended controls. The least take-all disease in 3 month-old barley plants was observed when N was supplied as foliar sprays of urea at 0.5 mg N kg?1 soil (P < 0.01). There was no significant correlation between the degree of infection and the NH+4-N to NO?3-N ratio in the rhizosphere soil  相似文献   

10.
The effects of three Coniothyrium minitans isolates (Conio, IVT1 and Contans®), applied to soil as conidial suspensions or as maizemeal-perlite (MP) inocula (Conio), on apothecial production and infection of Sclerotinia sclerotiorum sclerotia were assessed in two soil pot bioassays and two novel box bioassays in the glasshouse at different times of the year. C. minitans isolate Conio applied as either MP or ground MP at full rate (106-107 cfu cm−3 soil) consistently decreased the carpogenic germination, recovery and viability of sclerotia and increased C. minitans infection of the sclerotia of S. sclerotiorum by in comparison with either MP or conidial suspension treatments applied at lower rates (103-104 cfu cm−3 soil). Additionally, when applied at the same rate, MP inoculum of C. minitans was consistently more effective at reducing carpogenic germination than a conidial suspension. The effect of MP and ground MP at full rate on carpogenic germination was expressed relatively early as those sclerotia recovered before apothecia appeared on the soil surface already had reduced numbers of apothecial initials. In general, there were few differences between the isolates of C. minitans applied as conidial suspensions. Box bioassays carried out at different times of the year indicated that temperature and soil moisture influenced both apothecial production and mycoparasitism. Inoculum concentration of C. minitans and time of application appear to be important factors in reducting apothecial production by S. sclerotiorum.  相似文献   

11.
This study investigated the effects of inoculation with three individual ectomycorrhizal (ECM) fungal species on soil microbial biomass carbon and indigenous bacterial community functional diversity in the rhizosphere of Chinese pine (Pinus tabulaeformis Carr.) seedlings under field experimental conditions. The results showed that ECM fungal inoculation significantly increased the ectomycorrhizal colonization compared with non-inoculated seedlings. ECM fungal inoculations have higher soil microbial biomass carbon than that of control, ranging from 49.6 μg C g?1 dry soil in control to 134.02 μg C g?1 dry soil in treatment inoculated with Boletus luridus Schaeff ex Fr. Multivariate analyses (PCA) of BIOLOG data revealed that the application of ECM fungi significantly influenced bacterial functional diversity in the rhizosphere of P. tabulaeformis seedlings. The highest average well-color development (AWCD) and functional diversity indices were also observed in treatment inoculated with B. luridus. A wider range of sole carbon sources were utilized by the bacterial community in the rhizosphere of inoculated seedlings. The data gathered from this study provides important information for utilization of ECM fungi in forest restoration project in the Northwestern China. The present study will also significantly broaden our understanding of practical importance in the application of ECM fungal inoculum to promote soil microbial community diversity of soil.  相似文献   

12.
A 67-day incubation experiment was carried out with a soil initially devoid of any organic matter due to heating, which was amended with sugarcane sucrose (C4-sucrose with a δ13C value of ?10.5‰), inorganic N and an inoculum for recolonisation and subsequently at day 33 with C3-cellulose (δ13C value of ?23.4‰). In this soil, all organic matter is in the microbial biomass or in freshly formed residues, which makes it possible to analyse more clearly the role of microbial residues for decomposition of N-poor substrates. The average δ13C value over the whole incubation period was ?10.7‰ in soil total C in the treatments without C3-cellulose addition. In the CO2 evolved, the δ13C values decreased from ?13.4‰ to ?15.4‰ during incubation. In the microbial biomass, the δ13C values increased from ?11.5‰ to ?10.1‰ at days 33 and 38. At day 67, 36% of the C4-sucrose was left in the treatment without a second amendment. The addition of C3-cellulose resulted in a further 7% decrease, but 4% of the C3-cellulose was lost during the second incubation period. Total microbial biomass C declined from 200 μg g?1 soil at day 5 to 70 μg g?1 soil at day 67. Fungal ergosterol increased to 1.5 μg g?1 soil at day 12 and declined more or less linearly to 0.4 μg g?1 soil at day 67. Bacterial muramic acid declined from a maximum of 35 μg g?1 soil at day 5 to a constant level of around 16 μg g?1 soil. Glucosamine showed a peak value at day 12. Galactosamine remained constant throughout the incubation. The fungal C/bacterial C ratio increased more or less linearly from 0.38 at day 5 to 1.1 at day 67 indicating a shift in the microbial community from bacteria to fungi during the incubation. The addition of C3-cellulose led to a small increase in C3-derived microbial biomass C, but to a strong increase in C4-derived microbial biomass C. At days 45 and 67, the addition of N-free C3-cellulose significantly decreased the C/N ratio of the microbial residues, suggesting that this fraction did not serve as an N-source, but as an energy source.  相似文献   

13.
Arthrobacter globiformis was grown under both carbon- and nitrogen-limiting conditions in a chemostat at a variety of growth rates. Under C-limiting conditions at 25°C, the true growth yield was 602 mg g?1h?1 and the specific maintenance rate 0.01 h?1. However, at dilution rates less than 0.026 h?1, the energy diverted for maintenance fell. Specific maintenance rates also fell as the growth temperature was lowered to a value of 0.0022 h?1 at 10°C. The viability of populations at all temperatures remained above 80%. Under N-limiting conditions, viabilities were even higher and cell yields increased markedly as the dilution rate decreased, due to the formation of a glycogen-like reserve material. This made it difficult to calculate a meaningful specific maintenance rate.The chemical composition of the cells depended upon the nature of the medium and the growth rate, with exceptionally high carbohydrate levels, under N-limiting conditions where up to 65% of the cell material was carbohydrate at low growth rates. This accumulation of carbohydrate increased mean cell weights more than four-fold. If C-limited cells were starved, their weight decreased slowly and Q(O2) rates fell to values close to 1 within a few days. Nitrogen-limited cells when starved lost weight faster due to rapid utilization of the excess carbohydrate. Their viability also decreased and Q(O2) values only fell to about 3.6 after 28 days.The changes in maintenance requirement and rates of endogenous metabolism are discussed in the context of a fluctuating environment which might be found in soil.  相似文献   

14.
Sodium chloride, at rates up to 100 mg g?1, was added to a Sassafras sandy loam amended with finely-ground alfalfa to determine the effect of NaCl on CO2 evolution, ammonification, and nitrification in a 14-week study. A NaCl concentration of 0.25 mg g?1 significantly reduced CO2 evolution by 16% in unamended soil and 5% in alfalfa-amended soil. Increasing NaCl progressively reduced CO2 evolution, with no CO2 evolved from the soil receiving 100 mg NaCl g?1. A 0.50 mg NaCl g?1 rate was required before a significant reduction in decomposition of the alfalfa occurred. The NO?2-N + NO?3-N content of the soil was significantly reduced from 40 to 37 μg g?1 at 0 and 0.25 mg NaCl g?1, respectively in the unamended soil. In the alfalfa amended soil, nitrification was significantly reduced at 5 mg NaCl g?1. At 10 mg NaCl g?1, nitrification was completely inhibited, there being only 6 and 2 μg NO?2-N + NO?3-N g?1 in the alfalfa amended and unamended soil, respectively. In the alfalfa amended soil NH+4-N accumulated from 6 μg g?1 at the 0 NaCl rate to a maximum of 54 μg g?1 with 25 mg NaCl g?1. These higher NH+4-N values resulted in a 0.5 unit increase in the pHw over that of the 0 NaCl rate in the alfalfa amended soil. At NaCl concentrations above 25 mg g?1 there was a reduction in NH+4-N. The addition of alfalfa to the soil helped to alleviate the adverse affects of NaCl on CO2 evolution and nitrification.  相似文献   

15.
The effect of 50, 100, 150, and 400 μg sodium pentachlorophenate (Na-PCP) per gram soil was studied in nonsterile soil incubated under aerobic and anaerobic conditions, and in sterilized soil inoculated withAzotobacter sp. isolated from the soil. N2 fixation was determined by acetylene reduction. Pentachlorophenate at a concentration of 50 μg g?1 had an inhibitory effect in nonsterile soil incubated aerobically while strong inhibition of dinitrogen fixation in nonsterile soil occurred in the presence of 100 μg g?1 and above. The EC50 values for the inhibition of nitrogenase activity in nonsterile soil incubated aerobically and anaerobically and in sterilized soil inoculated withAzotobacter sp. suspensions were 49.8±1.4 μg Na-PCP g?1, 186.8±2.8 μg Na-PCP g?1, and 660.8±29.3 μg Na-PCP g?1, respectively.  相似文献   

16.
Innovative techniques for quantifying rhizobia in soil are needed. Immunodiffusion was adapted for use in evaluating four strains of Rhizobium japonicum incubated in soil. Reproducible precipitin bands were obtained using uniform soil cores 5 mm dia × 4 mm length collected with a cork borer. A flocculent of Ca(OH)2 and MgCO3 added to the microcores enhanced band formation. Clear distinct bands developed from populations in soil of 1 × 108 cells g?1 or greater. The complete set of bands which characterized cells cultured on artificial media did not develop from cells inoculated into soil, but at least one detectable band was always observed. Parameters of intensity value and band positioning were related to the population in the soil. Detection by immunodiffusion of a series of rhizobial populations in soil decreased with time almost linearly as the initial population decreased. Direct diffusion of antigens from soil and the development of specific precipitin bands provides a new approach to studying soil microorganisms.  相似文献   

17.
The effects of ozone (O3) and excess soil nitrogen (N), singly and in combination, on growth, needle gas exchange rates and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) contents of Pinus densiflora seedlings were investigated. One-year-old seedlings were grown in 1.5-L pots filled with brown forest soil with 3 levels of N supply (0, 100 or 300 mg N·L?1 fresh soil volume). The seedlings were exposed to charcoal-filtered air or 60±5 nL·L?1 O3 (8 hours a day) in naturally-lit phytotrons for 173 days from 22 May to 11 November. The exposure to O3 or high N supply to the soil caused a significant reduction in the dry weights of the seedlings. Although no significant interactive effects of O3 and excess soil N were detected on the dry weight growth of the seedlings, the whole-plant dry weight of the O3-exposed seedlings grown in the soil treated with 300 mg N·L?1 was greatly reduced compared with the control value. Ozone reduced net photosynthetic rate at 350 µmol·mol?1 CO2 (A 350 ), carboxylation efficiency (CE) of photosynthesis and Rubisco content without a significant change in the gaseous phase diffusive conductance to CO2 (gs) of the needles. The excess soil N reduced the A 350 , CE, gs and Rubisco content of the needles. These results suggest that the reduction in the dry weight growth of Pinus densiflora seedlings induced by the exposure to O3 and/or excess soil N was caused by reduction in the net photosynthetic rate mainly due to the decrease of Rubisco quantity in the chloroplasts.  相似文献   

18.
Dry matter production, net photosynthetic rate, leaf nutrient status and trunk anatomical characteristics of Fagus crenata seedlings grown in brown forest soil acidified by adding H2SO4 solution were investigated. The soil acidification leaded to decreased (Ca+Mg+K)/Al molar ratio in the soil solution. Dry mass per plant of the seedlings grown in the soil treated with H+ at 120 mg·L?1 was significantly reduced compared with the control value at 0 mg·L?1. When net photosynthetic rate was reduced in the seedlings grown in the soil treated with H+ at 120 mg·L?1, the carboxylation efficiency and maximum net photosynthetic rate at saturated CO2-concentration were lower than the control values. The addition of H+ to the soil at 120 mg·L?1iinduced a reduction in the concentration of Ca in the leaf. By contrast, the concentration of Al in the leaf was increased with increasing the amount of H+ added to the soil. The annual ring formed in the seedlings grown in the soil treated with H+ at 120 mg·L?1 was significantly narrower than that at 0 (control), 10, 30, 60 or 90 mg·L?1. Based on the results obtained in the present study, we conclude that Fagus crenata is relatively sensitive to a reduction in the (Ca+Mg+K)/Al molar ratio of soil solution compared with Picea abies.  相似文献   

19.
Pinus radiata seedlings were inoculated with basidiospores of Rhizopogon roseolas and Suillus granulatus, and with chlamylospores of two unidentified but highly effective mycorrhizal fungi in undisturbed cores of natural soil fumigated with methyl bromide. Fumigation stimulated mycorrhizal infection rate and enhanced the response of seedlings to increasing concentrations of both inoculum types, but the effect of chlamydospore inoculum was more favoured by fumigation than that of basidio-spores. Chlamydospore inocula appear more sensitive to competitive and antagonistic soil microorganisms than basidiospores. Soil fumigation appears a necessary adjunct to the use of chlamydospores as inoculants in nurseries and is discussed in relation to nursery culture of pines.  相似文献   

20.
Ninety-one percent of Salix aquatica cv. gigantea litter disappeared within 6 months from experimental cages containing Lumbricus terrestris L. in reclaimed peat, compared with only 28% when L. terrestris was absent. Litter consumption rate was 6–9 mg dry wt g?1 fresh wt day?1 in the field and 10–15 mg g?1 fresh wt day?1 in the laboratory at 15°C. Maximum growth rate in the field was 4mg fresh wt g?day? and 4.55 mg in the laboratory. Cocoon production in the field was 1.3worm?1 month?1 and 2.1 in the laboratory. Mean gut contents were 48-23 mg dry wt g?1 fresh wt over the size range 1–6 g fresh wt and gut transit time was 10h. It was estimated that a Lumbricus biomass of 100gm?2 could consume 1.34 kg soil m?2 yr?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号