首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
植物水通道蛋白研究综述   总被引:1,自引:0,他引:1  
植物所有的生长发育过程都与水分传导息息相关,而植物水通道蛋白(AQPs)在维持植物体内水分平衡中有着重要意义。植物水通道蛋白通过改变质膜的水分渗透性促进了水在细胞间的流动。植物水通道蛋白不仅是水选择性通道蛋白,同时还具有许多生理生化功能,是一类多功能蛋白。它在水分及其他物质运输、细胞伸长与分化、气孔运动等生理过程中均扮演着重要角色。植物水通道蛋白基因在植物所有的组织中都能够表达,有些是受环境因子或激素诱导表达的,还有一些是植物组织或器官特异表达的。从结构、生理功能和基因表达等方面综述了植物水通道蛋白研究领域最新进展。  相似文献   

2.
水是生物体的主要组成部分,水在细胞和组织间的进出是所有生物代谢的基础。水通道蛋白形成选择性运输水、小分子溶质及气体的膜通道,在植物生长发育过程中起重要的作用。基因所编码蛋白的结构特征及其表达调控与其行使的功能密切相关。随着越来越多的水通道蛋白基因在高等植物中发现,人们对其结构、调控和功能有了更多了解。就水通道蛋白的分子结构以及表达调控方面的研究进展进行了概述。  相似文献   

3.
研究苹果不同矮化砧木水力学特性与水通道蛋白基因表达对干旱胁迫的响应,以探讨干旱条件下苹果矮化砧木的水力学机制。以不同苹果矮化砧木自根苗M9、M26、MM106、GM256、SH6为试材,测定在干旱胁迫条件下,苹果矮化砧木叶片水势、光合作用相关参数、水力学特性参数,并采用荧光定量PCR的方法,对不同苹果矮化砧木叶片和根系中水通道蛋白基因PIPs(MpPIP1;1、MpPIP2;1)转录水平相对表达量进行测定。结果表明,水分亏缺下,5种苹果矮化砧木的叶片水势和对照相比均显著降低。净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2摩尔分数(Ci)均出现下降。干旱胁迫下,5种苹果矮化砧木根系水力学导度均降低,但是水分处理间差异不显著。水通道蛋白基因MpPIP1;1、MpPIP2;1在5种苹果矮化砧木根系和叶片中的表达具有器官和组织特异性,MpPIP1;1、MpPIP2;1在各苹果矮化砧木根系中转录水平表达量均高于叶片。水通道蛋白PIPs(MpPIP1;1、MpPIP2;1)转录水平的表达对水分亏缺的响应在5种苹果矮化砧木间差异很大,干旱胁迫诱导后,水通道蛋白PIPs(MpPIP1;1、MpPIP2;1)既有表达上调,也有表达下调。MM106根系水力学导度和其他砧木相比,水分处理间差异最小,可能与干旱胁迫条件下PIPs(MpPIP1;1、MpPIP2;1)在MM106砧木根系中表达量较高相关联。水通道蛋白基因PIPs经干旱胁迫诱导后,在不同苹果矮化砧木品种中具有不同的表达模式。水分亏缺条件下,水通道蛋白基因PIPs在苹果矮化砧木水分运输、细胞水分的保持和维持适当的叶片水势以及光合作用中的积极作用,有助于提高苹果矮化砧木对水分胁迫的耐受性。  相似文献   

4.
水通道蛋白是一类特异的、高效转运水及其它小分子底物的整合膜蛋白,在植物中具有丰富的亚型。水通道蛋白通过转录调控、门控机制、聚合调控、重新定位等多种活性调控方式影响细胞膜系统的通透性,参与调节植物的水分吸收和运输。盐害引起渗透胁迫、离子毒害、活性氧胁迫,影响植物生长;水通道蛋白通过多种调控方式,全程参与植物的盐胁迫应答。结合水通道蛋白的功能特征及盐胁迫对高等植物的影响,综述了水通道蛋白在植物盐胁迫应答过程中的功能,并探讨了水通道蛋白研究的重点方向。  相似文献   

5.
利用生物信息学软件对已获得的枣树水通道蛋白基因cDNA序列ZjPIP2(DDBJ/EMBL/GenBank的注册号为:AB530493)进行了同源性及功能位点等多项参数分析,结果表明,此序列为全长846 bp的开放读码框(ORF),编码281氨基酸,分子量为29.87 kD,理论等电点为8.77;具有膜蛋白(MIP)家族典型的保守氨基酸序列HINPAVTFG和2个NPA保守肽段。序列相似性分析表明,该蛋白与已知的其他12种植物膜蛋白中的水通道蛋白具有极高的同源性,属于水通道蛋白的质膜膜内蛋白PIP2类。三级结构预测表明,其与菠菜(Spinacia oleracea)水通道蛋白(1z98A)有相似的三维结构。以克隆载体pSPORT1携带的枣树水通道蛋白基因cDNA序列为模板,PCR扩增后,经BamHⅠ和SalⅠ消化,与pET28a载体进行重组连接,测序结果显示,其原核表达载体构建成功。此结果为研究枣水通道蛋白基因在植物组织的分布、生物学功能以及可能的活性调节方式奠定了基础。  相似文献   

6.
为揭示杨树溃疡病发生进程中的水分生理学机制,本研究以1年生北京杨为材料,对干旱-溃疡病菌胁迫下的杨树管家基因表达稳定性、与植物水分运输密切相关的杨树水通道蛋白基因家族的表达特征进行了实时定量PCR(RT-qPCR)分析。结果表明:12个管家基因的表达稳定性不同,TUB、UBQ、EIF4β-L、CYP、EF1α2表达稳定性最高,ACT2和ACT11稳定性最差;配对分析显示TUB、EIF4β-L和UBQ为干旱胁迫-溃疡病菌胁迫下基因表达检测的最优内参基因组合;干旱及溃疡病菌胁迫下,水通道蛋白基因的表达模式并不相同,说明这两种胁迫对杨树水分代谢具有不同的影响;干旱-溃疡病菌双重作用下,PIP1;1、PIP1;3、PIP1;5、PIP2;4、PIP2;7等5个基因的表达显著高于干旱、溃疡病菌两种胁迫的单独作用,揭示这两种环境胁迫对水通道蛋白基因表达具有一定的协同作用。  相似文献   

7.
水通道蛋白在维持植物中水和离子平衡、细胞完整性、生长和生存等方面起着至关重要的作用。文章综述了水通道蛋白的结构与亚细胞定位,蛋白功能与调控,基因表达与分析,并初步对水通道蛋白后续的研究进行了展望,以供参考。  相似文献   

8.
传统观点认为水分可自由顺渗透梯度跨质膜进入细胞,最新研究表明水分可以通过膜上的水通道运动。水通道(waterchannels)或水通道蛋白(aquaporins)的发现使人们对水分运动的观念发生了变化。水通道是一种仅让水分通过而限制离子运动的选择性通道(Chrispeels&Agre,1994,TIBS,19:421~425)。植物中水通道蛋白首先是在液泡膜上发现的,最近在质膜上也发现有水通道蛋白。水通道的研究除了用分子生物学方法外还可用汞试剂处理组织或细胞并测量水分转运的变化,进而推测水通道的存在。植物组织中已有用(p-chloromercuri-Phenylsu…  相似文献   

9.
【目的】质膜内在蛋白(plasma membrane intrinsic proteins,PIPs)广泛存在于植物细胞的膜系统上,在植物体内水分运输和水分平衡的过程中至关重要。对ZmPIP2;6在植物水分胁迫耐性中的功能进行探究,为玉米培育抗旱耐盐新品种提供优秀基因资源。【方法】分析并比对ZmPIP2;6与其他物种中报道参与水分胁迫的PIPs的氨基酸序列,构建ZmPIP2;6-GFP载体并通过PEG介导转化玉米原生质体,对ZmPIP2;6进行亚细胞定位。采集玉米的不同组织样品,包括根、茎、叶、未成熟雄穗、未成熟雌穗、胚和胚乳;对玉米进行PEG或NaCl处理,在处理的不同时间点采集玉米的根和叶样品。提取总RNA并通过qRT-PCR调查ZmPIP2;6在玉米不同组织以及在水分胁迫下的表达模式。构建ZmPIP2;6超表达载体,发展并鉴定ZmPIP2;6超表达拟南芥材料,观察转基因植株对渗透、盐及干旱胁迫的耐性生理表型,并测量其根长、叶片水分散失率等性状。检测在干旱或盐胁迫条件下,拟南芥胁迫信号通路上的相关基因在ZmPIP2;6超表达植株中的表达。【结果】氨基酸序列分析比对结果显示ZmPIP2;6具有PIP蛋白的典型结构与并且其他物种的PIP蛋白具有很高的同源性。转化玉米原生质体试验结果显示ZmPIP2;6蛋白定位在细胞质膜。qRT-PCR结果显示ZmPIP2;6在玉米未成熟雄穗中表达量最高,并且在玉米受到渗透和盐胁迫后根和叶中的ZmPIP2;6表达受到显著诱导。在MS固体培养基上进行渗透胁迫处理和盐胁迫处理以及进一步的土培试验中进行干旱胁迫处理,ZmPIP2;6超表达拟南芥植株相对野生型都显示出更强的胁迫耐性。在干旱或盐胁迫条件下,拟南芥胁迫信号通路上的相关基因在ZmPIP2;6超表达植株中的表达受到不同程度的影响。【结论】玉米内在质膜蛋白基因ZmPIP2;6在渗透或盐胁迫下表达上调,在拟南芥中超表达ZmPIP2;6会增强植株对渗透、盐和干旱胁迫的耐性,并且在盐或干旱胁迫条件下会影响拟南芥中胁迫相关基因的表达。ZmPIP2;6可能参与植物水分胁迫响应过程。  相似文献   

10.
通过对珠眉海棠盐胁迫微列阵分析,从盐胁迫cDNA文库中分离得到盐诱导的水通道蛋白基因MzPIP1;1 cDNA序列全长1 135bp,开放阅读框共870bp,5′-UTR和3′-UTR的长度分别是91和174bp。MzPIP1;1编码289个氨基酸,有6个跨膜结构和2个NPA(Asp-Pro-Ala)保守区。聚类分析表明:MzPIP1;1和其他4个物种PIP1类同源性在80%以上,属于质膜水通道蛋白PIP1类。拟南芥原生质体瞬时转化结果表明MzPIP1;1定位在质膜上。半定量RT-PCR表明MzPIP1;1基因受到盐和低温诱导。推断MzPIP1;1基因在盐胁迫下的表达调控与珠眉海棠耐盐能力密切相关。  相似文献   

11.
Aquaporin proteins were demonstrated to play an important regulatory role in transporting water and other small molecules. To better understand physiological functions of aquaporins in extremophile plants, a novel ThPIP1 gene from the Thellungiella halophila was isolated and functionally characterized in the transgenic rice. Data showed that the ThPIP1 protein encoded 284 amino acids, and was identified to be located on the plasma membrane. The expression of ThPIP1 gene in the shoots and roots of T. halophila seedlings were induced by high salinity. The transgenic rice overexpressing ThPIP1 gene significantly increased plants tolerance to salt stress through the pathway regulating the osmotic potentials, accumulation of organic small molecules substances and the ratio of K+/Na+ in the plant cells. Moreover, split-ubiquitin yeast two-hybrid assay showed that Th PIP1 protein specifically interacted with ThPIP2 and a non-specific lipid-transfer protein 2, suggesting that ThPIP1 probably play a key role in responding to the reactions of multiple external stimulus and in participating in different physiological processes of plants exposed to salt stress.  相似文献   

12.
Plants maintain water balance by varying hydraulic properties, and plasma membrane intrinsic proteins(PIPs) may be involved in this process. Leaf xylem and root hydraulic conductivity and the m RNA contents of four highly expressed Zm PIP genes(Zm PIP1;1, Zm PIP1;2, Zm PIP2;2, and Zm PIP2;5) in maize(Zea mays) seedlings were investigated. Under well-watered conditions, leaf hydraulic conductivity(K_(leaf)) varied diurnally and was correlated with whole-plant hydraulic conductivity. Similar diurnal rhythms of leaf transpiration rate(E), K_(leaf) and root hydraulic conductivity(K_(root)) in well-watered plants are important for maintaining whole-plant water balance. After 2 h of osmotic stress treatment induced by 10% polyethylene glycol 6000, the K_(root) of stressed plants decreased but K_(leaf) increased, compared with well-watered plants. The m RNA contents of four Zm PIPs were significantly up-regulated in the leaves of stressed plants, especially for Zm PIP1;2. Meanwhile, Zm PIP2;5 was significantly down-regulated in the roots of stressed plants. After 4 h of osmotic stress treatment, the E and leaf xylem water potentials of stressed plants unexpectedly increased. The increase in K_(leaf) and a partial recovery of K_(root) may have contributed to this process. The m RNA content of Zm PIP1;2 but not of the other three genes was up-regulated in roots at this time. In summary, the m RNA contents of these four Zm PIPs associated with K_(leaf) and K_(root) change in maize seedlings during short-term osmotic stress, especially for Zm PIP1;2 and Zm PIP2;5, which may help to further reveal the hydraulic resistance adjustment role of Zm PIPs.  相似文献   

13.
植物水孔蛋白的生理功能及其基因表达调控的研究进展   总被引:3,自引:0,他引:3  
在植物细胞的原生质膜和液泡膜上存在水孔蛋白,它们在水分长途运输、渗透调节等方面具有重要的生理作用。在植物组织中水孔蛋白的分布与其生理功能具有密切的关系,编码水孔蛋白的基因的表达受环境因子的影响,存在多种调控机理,继续对植物水孔蛋白的生理进行研究具有重大的实际意义。  相似文献   

14.
15.
植物水孔蛋白研究进展   总被引:4,自引:0,他引:4  
从分子生物学角度综述了近年来植物水孔蛋白研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号