首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tricyclazole (5-methyl-1,2,4-triazolo[3,4-b]benzothiazole) inhibits melanin synthesis in Pyricularia oryzae at concentrations less than 0.01 μg/ml. The primary site of inhibition in the biosynthetic pathway occurs between scytalone and vermelone. Accumulation of several metabolites derived from melanin precursors along branch pathways is associated with inhibition of melanin biosynthesis. At low tricyclazole concentrations (0.01–1 μg/ml), predominant accumulation of 2-hydroxyjuglone and 3,4-dihydro-3,4,8-trihydroxy-1-(2H)-naphthalenone (3,4,8-DTN) occurs as a result of the primary block between 1,3,8-trihydroxynaphthalene and vermelone. As the concentration of tricyclazole is increased from 1 to 10 μg/ml, flaviolin accumulation is markedly enhanced, whereas that of 3,4,8-DTN and 3,4-dihydro-4,8-dihydroxy-1-(2H)-naphthalenone is depressed, indicating possible secondary sites of inhibition in the main and branch pathways. Five melanin-deficient mutants of P. oryzae that phenotypically resemble the tricyclazole-treated wild-type strain were nonpathogenic or rarely infected two rice varieties. Three of the mutants studied were genetically defective in the melanin biosynthetic pathway at the site blocked by tricyclazole in the wild type. The wild-type strain converted both scytalone and vermelone to melanin; whereas the three mutants and the tricyclazole-treated wild type converted only vermelone to melanin. The data suggest a relationship between melanin biosynthesis and pathogenicity in P. oryzae.  相似文献   

2.
Pentachloroaniline or pentachloronitrobenzene at concentrations between 0.5 and 5 μg/ml blocked appressorial melanization and appressorial penetration of onion epidermal cell walls by Pyricularia oryzae, strain P-2, without affecting conidial germination or appressorial formation. Among polyphenol oxidase inhibitors, salicylhydroxamic acid, and phenylthiourea at 100 μg/ml inhibited appressorial penetration of onion epidermis without affecting appressorial melanization, whereas sodium diethyldithiocarbamate and 2,3-naphthalenediol did not affect either process at 1.0 μg/ml but inhibited conidial germination and appressorial formation at 10 μg/ml. EDTA was without effect on either melanization or penetration at 100 μg/ml. The melanized appressoria of Pyricularia grisea, strain BL-3, penetrated onion epidermal cell walls, whereas nonpigmented appressoria of an albino mutant (AL-3) of this fungus did not. Melanization and penetration ability of AL-3 appressoria were restored by adding melanin biosynthesis intermediates scytalone or 1,8-dihydroxynaphthalene (1,8-DHN). Tricyclazole blocked melanization and epidermal penetration by AL-3 appressoria treated with scytalone but not by those treated with 1,8-DHN. Scytalone (20 μg/ml) increased the effectiveness of tricyclazole in blocking penetration by appressoria of BL-3. Tricyclazole was about 10 times more effective in inhibiting penetration by P-2 appressoria than by BL-3 appressoria.  相似文献   

3.
Sensitivity to epoxiconazole of 90 single-spore isolates of Magnaporthe oryzae was determined. The EC50 values for epoxiconazole in inhibiting mycelial growth of the 90 M. oryzae isolates were 0.11–0.86 μg/ml, with an average EC50 value of 0.260?±?0.082 μg/ml. There was no correlation between sensitivity to epoxiconazole and sensitivity to carbendazim or iprobenfos. In protective and curative tests, epoxiconazole applied at 200 μg/ml provided over 70 % control efficacy, while tricyclazole exhibited better protective than curative activity. The results of four field trials performed in 2010 and 2011 at two sites showed that epoxiconazole at 112.5 g a.i/ha provided over 75 % control efficacy, which was similar to tricyclazole with 300 g a.i./ha and better than carbendazim with 562.5 g a.i./ha.  相似文献   

4.
Appressorial penetration of onion epidermal walls by wild-type strains P-2 and O-42 of Pyricularia oryzae was more sensitive to fthalide (4,5,6,7-tetrachlorophthalide) than penetration by wildtype strain 4091-5-8 and black mutant strain BL-3 of Pyricularia grisea. Cerulenin completely blocked appressorial penetration by P. oryzae strain P-2 or P. grisea strain BL-3, but penetration capacity of these appressoria could be largely restored with 0.1 mM scytalone. Fthalide and tricyclazole inhibited the conversion of 1,3,6,8-tetrahydroxynaphthalene (1,3,6,8-THN) to 1,3,8-trihydroxynaphthalene (1,3,8-THN) and 1,8-dihydroxynaphthalene (1,8-DHN) as well as the conversion of scytalone to 1,8-DHN by cell-free extracts of P. oryzae or P. grisea. These inhibitors blocked the NADPH-dependent reductase reactions involved in the conversion of 1,3,6,8-THN to scytalone and the conversion of 1,3,8-THN to vermelone in the melanin biosynthetic pathway to 1,8-DHN. The two reductase reactions in extracts from P. oryzae P-2 were about 10 times as sensitive to fthalide or tricyclazole as those in extracts of P. grisea. Reductase activity with either 1,3,6,8-THN or 1,3,8-THN as substrates was present in only trace amounts in cell-free extracts of the buff mutant, P. oryzae P-2 m-1.  相似文献   

5.
Melanin biosynthesis by appressoria was studied in relation to their penetrating ability using tricyclazole [5-methyl-1,2,4-triazolo(3,4-b)benzothiazole], pp 389 [4,5-dihydro-4-methyltetra-zolo(1,5-a)quinazolin-5-one], and pyroquilon [1,2,5,6-tetrahydropyrrolo(3,2,1-i,j)quinolin-4-one], and color mutants of Colletotrichum lagenarium. Tricyclazole at 100 μM inhibited melanin biosynthesis by appressoria of C. lagenairum 104-T, and caused accumulation of 3,4-dihydro-4,8-dihydroxy-1(2H)naphthalenone (DDN) in the culture medium. By contrast, DDN was not detected in culture media of tricyclazole-treated mutant 8015, which is defective in the enzyme involved in the conversion of scytalone to 1,3,8-trihydroxynaphthalene (1,3,8-THN). Vermelone restored melanization of appressoria of albino mutant 79215 and of the parent strain 104-T treated with tricyclazole, pp 389, and pyroquilon; however, scytalone restored melanization only in appressoria of albino mutant 79215. These results indicate that tricyclazole, pp 389, and pyroquilon inhibit the conversion of 1,3,8-THN to vermelone in the melanin biosynthetic pathway of appressoria of C. lagenarium. Colorless appressoria formed in the presence of the three melanin-inhibiting chemicals germinated laterally on nitrocellulose membranes and rarely penetrated the membranes. On the other hand, when pigmented appressoria were restored by application of vermelone in the presence of the three chemicals, lateral germination of the appressoria was largely suppressed, and the membranes were effectively penetrated. From these results, it is concluded that the major effect of tricyclazole, pp 389, and pyroquilon on appressoria of C. lagenarium, causing failure of penetration, is the inhibition of melanization. Effects of the chemicals on other metabolic functions can be precluded as significant factors affecting the penetration process.  相似文献   

6.
Abstract

Two systemic fungicides, benomyl (methyl 1‐((butylamino)‐carbonyl)‐1H‐benzimidazol‐2‐yl carbamate) (Benlate 50WP, E.I. du Pont de Nemours & Co.) and tricyclazole (5‐methyl‐1,2,4‐triazole (3,4‐b) benzothiazole) (Beam 75 WP, Eli Lilly & Co.), were sprayed on Faro 29, a popular shallow swamp rice, at full tillering stage for the control of natural infection of rice blast caused by Pyricularia oryzae Cav. in the rainforest zone of eastern Nigeria. The rates evaluated for each fungicide were a split application of 150 + 150, 300, and 400ga.i./ha of each fungicide. Both fungicides suppressed foliar and neck blast development, but tricyclazole was superior to benomyl. One application of tricyclazole at 400g a.i./ha at full tillering stage of rice successfully suppressed blast development and resulted in a significantly (P = 005) higher grain yield than the untreated control plants by an average of 42.17% during the 2 years of this study. Similarly, benomyl at 400g a.i./ha produced 18.94% more rice grain than the control. A fungicide such as tricyclazole may therefore be recommended for control of blast in areas where resistant varieties are not available or where popular resistant varieties become susceptible to one or the other phases of the disease.  相似文献   

7.
分析了三环唑和多菌灵对水稻稻瘟病毒力及对品种抗病性的影响,结果表明三环唑和多菌灵对水稻品种与稻瘟病菌互作有重要影响。当喷雾0.2μg/mL三环唑于13个日本已知抗性基因品种时,原对ZE3和ZG1混合菌株表现抗性的爱知旭表现感病,当喷雾2μg/mL三环唑时,爱知旭则表现抗病,而在0、0.2μg/mL三环唑时均表现抗病的露明则在2μg/mL三环唑时表现感病;喷雾0.2μg/mL多菌灵于13个日本已知抗性基因品种时,ZB1、ZE3、ZG1混合菌株在0μg/mL多菌灵时表现抗性的爱知旭则表现感病,当多菌灵浓度为2μg/mL时,露明又表现为抗病,而在0、0.2μg/mL多菌灵时,对ZG1表现为抗病的草笛则表现感病;13个已知抗性基因品种中其他品种在使用了三环唑和多菌灵后抗性也发生了变化,这说明稻瘟病菌的分布和组成与这类杀菌剂的长期使用可能有一定关系。  相似文献   

8.
BACKGROUND: Rice blast, caused by Magnaporthe oryzae B. Couch sp. nov., is one of the most destructive rice diseases worldwide, causing substantial yield losses every year. In Italy, its management is based mainly on the use of two fungicides, azoxystrobin and tricyclazole, that restrain the disease progress. The aim of this study was to investigate and compare the inhibitory effects of the two fungicides on the growth, sporulation and secondary infection of M. oryzae. RESULTS: Magnaporthe oryzae mycelium growth was inhibited at low concentrations of azoxystrobin and relatively high concentrations of tricyclazole, while sporulation was more sensitive to both fungicides and was affected at similarly low doses. Furthermore, infection efficiency of conidia obtained from mycelia exposed to tricyclazole was affected to a higher extent than for conidia produced on azoxystrobin‐amended media, even though germination of such conidia was reduced after azoxystrobin treatment. CONCLUSIONS: This study presents for the first time detailed azoxystrobin and tricyclazole growth–response curves for M. oryzae mycelium growth and sporulation. Furthermore, high efficacy of tricyclazole towards inhibition of sporulation and secondary infection indicates an additional possible mode of action of this fungicide that is different from inhibition of melanin biosynthesis. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
Colony growth and germ tube emergence of sporangia and encysted zoospores of Phytophthora infestans were highly sensitive to cymoxanil (ED50 0.5–1.5 μg/ml), whereas differentiation of sporangia and zoospore release were insensitive at concentrations up to 100 μg/ml. Treated sporangia did not show distorted germ tubes. Oxygen consumption for glucose oxidation by germinating sporangia and zoospore motility were not inhibited at concentrations up to 100 μg/ml. Cymoxanil hardly affected the uptake of radiolabeled precursors of DNA, RNA, and protein at concentrations up to 100 μg/ml. Incorporation of [14C]phenylalanine into protein was completely insensitive. RNA synthesis as measured by [3H]uridine incorporation was differentially inhibited in the various developmental stages of the fungus. Inhibition did not occur at differentiation of sporangia, whereas at cyst and sporangial germination and mycelial growth this process was inhibited 20–45% at a concentration of 100 μg cymoxanil/ml. Endogenous RNA polymerase activity of isolated nuclei was not inhibited by cymoxanil. DNA synthesis as measured by [methyl-3H]thymidine incorporation was inhibited 20–80% at the various stages of development at cymoxanil concentrations higher than 10 μg/ml. Metalaxyl, a specific inhibitor of ribosomal RNA synthesis, inhibited [3H]uridine incorporation 40–60% at all developmental stages. The data suggest that although DNA synthesis is affected more than RNA synthesis, inhibition of both biosynthetic processes is a secondary effect. The primary mode of action of cymoxanil thus remains unknown.  相似文献   

10.
The antifungal activities of hyoscyamine and scopolamine, major alkaloids extracted from the desert plant Hyoscyamus muticus, against two rice pathogens, Magnaporthe oryzae and Rhizoctonia solani, were studied. The minimum inhibitory concentration of hyoscyamine that resulted in distinctive inhibition (MIC50) was 1 μg/ml for both fungi. Exposure to hyoscyamine caused the leakage of electrolytes from the mycelia of both fungi. Hyoscyamine (>1 μg/ml) irreversibly delayed or inhibited conidial germination and appressorium formation in M. oryzae grown on polystyrene plates. Hyoscyamine effectively inhibited the attachment of conidia to the surface of rice (Oryza sativa) leaves and inhibited appressorium formation on the leaves. A high concentration of scopolamine (1000 μg/ml) also delayed or inhibited conidial germination in M. oryzae, but conidial germination was restored after washing the conidia with water. Antifungal activity of hyoscyamine was reduced by scopolamine. Magnaporthe oryzae infection was significantly suppressed (by >95%) in leaves of intact rice plants treated with hyoscyamine (10 μg/ml). Moreover, 10 μg hyoscyamine/ml significantly reduced the disease severity index for sheath blight to ≤0.2, when compared with the disease index of control plants (>7.0). Hyoscyamine (>20 μg/ml) completely inhibited sclerotial germination and development of R. solani by delaying the initiation, maturation, and melanization of the sclerotia. These results suggest that tropane alkaloids may be useful for controlling blast and sheath blight diseases of rice and for studying the mechanisms that regulate conidial germination in M. oryzae and sclerotial germination and development in R. solani.  相似文献   

11.
喷施外源激素对棉株棉花黄萎病发病程度的影响   总被引:3,自引:0,他引:3  
通过温室人工接菌 ,研究了喷施 4种外源激素 3-吲哚乙酸、赤霉素、脱落酸和反 -玉米素对棉苗棉花黄萎病发病程度的影响。结果表明赤霉素在5.0~80.0μg/ml浓度范围内 ,提高了棉苗抗病性 ,但棉苗表现徒长、叶片畸形 ;反 -玉米素25.0~80.0μg/ml明显促进了病情发展 ;3-吲哚乙酸10μg/ml,脱落酸0.5μg/ml,反 -玉米素10 μg/ml的处理对降低棉苗的发病率和发病程度作用较明显。  相似文献   

12.
The effects of two pesticides, dieldrin and captan, upon the growth and macromolecular syntheses of the vegetative cells of Dictyostelium discoideum strain Ax-2 were investigated. Dieldrin at a concentration of 5 μg/ml inhibited growth as well as the synthesis of RNA, DNA, and protein, while as little as 1 μg/ml of captan produced the same effects. After a 1-hr exposure to either pesticide, all macromolecular syntheses ceased. Within a period of 5 to 10 hr the amoebae began to shrink, and eventually some lysis occurred. Lysis was most pronounced in cells incubated with captan. When the amoebae were grown in the presence of 5 μg/ml of either pesticide and then washed and resuspended in fresh medium, the effects on growth were annulled. No growth inhibition was observed when 0.05 M cysteine was added prior to the addition of 5 μg/ml of captan. Further experimentation to study possible degradation effects of these two synthetic pesticides upon RNA and protein molecules showed that breakdown of these macromolecules into TCA-soluble units did not occur. Preliminary studies have also shown that [2-14C]uracil and [14C]amino acids are taken up in their respective pools in the presence of captan or dieldrin.  相似文献   

13.
3-Phenylindole is an antimicrobial compound active towards many fungi and gram-positive bacteria. At 5 μg/ml it inhibits growth of Aspergillus niger. Higher concentrations (50 μg/ml) also suppress spore germination; they do not kill the fungus. Dry weight of the fungus still increases for 1 or 2 days after fungicide treatment. The toxicant has no effect on O2 uptake even at higher concentrations (100 μg/ml). The compound markedly affects composition of the lipid fraction of A. niger inducing a decrease in phospholipid concentration with a coincident increase in free fatty acids. Sterol pattern and sterol concentration were not affected. Antifungal activity was reversed by phospholipids added to the medium. 3-Phenylindole induced a slight leakage of 32P-labeled compounds from the treated cells under growth conditions but not under nongrowth conditions. A strain of A. niger resistant to 3-phenylindole had the same phospholipid and sterol pattern as the wild type, but the level of both components was higher (40–60%). The 3-phenylindole-resistant strain showed resistance to triarimol and pimaricin. The wild type and the resistant strain both took up 3-phenylindole quite rapidly and accumulated it in the mycelium. 3-Phenylindole possibly interferes with phospholipid function in cell membranes, although the specific site of action has not yet been elucidated.  相似文献   

14.
Rapidly growing mycelia of Aspergillus fumigatus treated with 10 μg/ml triforine (N,N′-bis-(1-formamido-2,2,2-trichloroethyl)-piperazine) showed little or no inhibition in dry weight increase prior to 2 h. By 2.5–3 h, triforine inhibited dry weight increase by 85%. The effects of triforine on protein, DNA, and RNA syntheses corresponded to the effect on dry weight increase both in time of onset and magnitude. Neither glucose nor acetate oxidation were inhibited by triforine.Ergosterol synthesis was almost completely inhibited by triforine even in the first hour after treatment. Inhibition of ergosterol synthesis was accompanied by an accumulation of the ergosterol precursors 24-methylenedihydrolanosterol, obtusifoliol, and 14α-methyl-Δ8, 24 (28)-ergostadienol. Mycelia treated with 5 μg/ml of triarimol (α-(2,4-dichlorophenyl)-α-phenyl-5-pyrimidinemethanol) also accumulated the same sterols as well as a fourth sterol believed to be Δ5, 7-ergostadienol.Identification of 4,4-dimethyl-Δ8, 24 (28)-ergostadienol in untreated mycelia indicates that the C-14 methyl group is the first methyl group removed in the biosynthesis of ergosterol by A. fumigatus. The lack of detectable quantities of 4,4-dimethyl-Δ8, 24 (28)-ergostadienol in triforine or triarimol-treated mycelia and the accumulation of C-14 methylated sterols in treated mycelia suggests that both fungicides inhibit sterol C-14 demethylation. The accumulation of Δ5, 7-ergostadienol in triarimol-treated mycelia further implies that triarimol also inhibits the introduction of the sterol C-22(23) double bond.Two strains of Cladosporium cucumerinum tolerant to triforine and triarimol were also tolerant to the fungicide S-1358 (N-3-pyridyl-S-n-butyl-S′-p-t-butylbenzyl imidodithiocarbonate).  相似文献   

15.
The oral toxicity of 5-benzyl-3-furylmethyl-(1R, cis)-chrysanthemate (cismethrin) to female rats decreased as their environmental temperature was raised. Acute oral LD50 values increased from 157 mg/kg at 4°C to 197 mg/kg at 20°C and to > 1000 mg/kg at 30°C. Cismethrin was much more toxic given intravenously when the LD50 was 4.5 mg/kg. This value did not change at different environmental temperatures. Irrespective of the environmental temperature, or route of adminstration, following the respective LD50's cismethrin caused tremors in rats when brain levels of 0.5–1.0 μg/g were reached and, at death, brain concentrations were 3.9–5.1 μg/g. These results suggested that the accumulation of cismethrin by the brain could be used as a model for the nervous system as a whole. The isomeric 5-benzyl-3-furylmethyl-(1R, trans)-chrysanthemate (bioresmethrin) was about 50 times less toxic to rats than cismethrin. After an intravenous LD50, tremors started when brain concentrations were 4–5 μg/g. At death, brain levels were 25–35 μg/g. Plasma esterases were about equally active in hydrolysing cismethrin and bioresmethrin, whereas liver microsomal esterases hydrolyzed bioresmethrin over 10 times more rapidly than cismethrin. It is suggested that the lower toxicity of bioresmethrin is not only due to its faster metabolism but to an intrinsically lower toxicity at the critical site of action in the nervous system.  相似文献   

16.
The uptake and metabolism of DDT, fenitrothion and chlorpyrifos were studied in cultures of the ciliate protozoan Tetrahymena pyriformis. When cultures were treated with DDT in concentrations varying from 0.01 to 0.5 μg ml−1, concentrations found in T. pyriformis were 3.8 to 335 μg g−1 dry weight. The accumulation of fenitrothion ranged from 28.7 μg g−1 in cultures treated with 1 μg ml−1 to 2260 μg g−1 in cultures treated with 10 μg ml−1. Under similar experimental conditions chlorpyrifos was accumulated from 24.7 to 15400 μg g−1. The patterns of uptake were dependent on the growth cycle, the ability of the organism to metabolise insecticide and the type of the insecticide used. Maximum accumulation of DDT, fenitrothion and chlorpyrifos occurred in 2, 4 and 6 h respectively. Tetrahymena metabolised DDT to DDD and DDE but failed to metabolise fenitrothion and chlorpyrifos. The effects on growth and morphology of T. pyriformis were studied over a period of 5 days. Higher concentrations (10, 50 and 100 μg ml−1) of DDT inhibited only the growth of the organisms and did not change cell morphology. Fenitrothion was extremely toxic to the organisms and at 5 and 10 μg ml−1 cells became more or less spherical and died after 48 h. However, concentrations of 0.5, 1 and 2.5 μg ml−1 fenitrothion caused growth inhibition, but only at 2.5 μg ml−1 was this permanent. Chlorpyrifos inhibited the growth of the organisms at 1, 5 and 10 μg ml−1 but the morphology was affected only at 5 and 10 μg ml−1.  相似文献   

17.
The effects of IBP (S-benzyl O,O-diisopropyl phosphorothioate) on tips of single hyphae of Pyricularia oryzae were investigated by interference contrast microscopy. Labelling hyphae with calcofluor white followed by IBP treatment revealed that elongation of apices of almost all hyphae at the colony margin was inhibited after treatment for 4 h. Successive observations on single hyphae of an IBP-sensitive isolate indicated that apical cells stopped elongating approximately 10 min after the onset of treatment with 2 μg IBP ml?l. Small vacuoles appeared after 50 min; later they increased in number and size, and coalesced, finally producing a chain-like arrangement of vacuoles in the cytoplasm. When hyphae were treated with 10 μg IBP ml?1, cessation of elongation and vacuolation occurred earlier than when treated with 2 μg ml?1. Apical cells of hyphae of an IBP-tolerant isolate appeared unaltered even when treated with 10 μg ml?1. These results indicate that a major effect of IBP is to inhibit specifically the growth of apical cells of the IBP-sensitive isolate.  相似文献   

18.
Velvetleaf (Abutilon theophrasti L.) seedlings were germinated in the presence of 0, 5, 10 or 80 μg/ml 1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea (fluometuron). The development of chloroplasts in the mesophyll tissue of the cotyledons was examined with the electron microscope and correlated with the accumulation of chlorophyll and the attainment of photosynthetic competence in 2- to 7-day-old seedlings. The formation of prolamellar bodies and their subsequent transformations into primary thylakoids were not prevented by fluometuron. However, membrane fusion into normal grana was altered by treatments containing this herbicide. Increasing the concentration of fluometuron reduced the number and length of stroma lamellae and promoted more elongate grana with fewer compartments. In addition to these structural changes, the seedlings treated with 5 μg/ml fluometuron accumulated only 50% of the chlorophyll that was present in the controls but remained green until necrosis developed. At 10 μg/ml, the seedlings exhibited a 75% reduction in chlorophyll content and became photobleached by the seventh day and treatment with 80 μg/ml resulted in only a trace of chlorophyll in the cotyledons and the albinistic appearance of seedlings. Net photosynthesis was completely inhibited by all treatments containing fluometuron. These observations indicate that in addition to being a Hill reaction inhibitor, fluometuron treatment directly alters the normal development of internal chloroplast membranes.  相似文献   

19.
Blast is considered the most important fungal disease of rice due to its wide distribution and destructiveness under favorable conditions. Development of new effective and environmentally benign agents against the causal pathogen, Magnaporthe oryzae, is of great interest. In the course of a search for natural antifungal compounds in medicinal plants, we found that the methanol extract of Angelica gigas roots showed a potent control efficacy against rice blast caused by M. oryzae. We isolated antifungal coumarins from the extract, and they were identified as decursin and decursinol angelate. Antifungal activities of these compounds, along with kasugamycin, were tested on M. oryzae in vivo and in vitro. In an in vivo assay, the three compounds effectively suppressed the development of rice blast at concentrations more than 100 μg/mL. Coumarins showed relatively weak inhibitory effect on fungal mycelial growth when compared to kasugamycin. However, they strongly inhibited M. oryzae spore germination, which was not observed in kasugamycin treatments. This is the first report demonstrating that decursinol angelate can provide control against rice blast and that the two coumarins inhibit M. oryzae spore germination. In addition, the wettable powder formulation of the crude extract of A. gigas prohibited the development of blast symptoms on rice plants more effectively than liquid concentrate formulation of kasugamin, a commercial fungicide. Based on our study, we propose that coumarin compounds as well as the A. gigas root crude extract can be used as natural, benign fungicides for controlling rice blast.  相似文献   

20.
Monilinia laxa, the incitant of blossom blight in stone fruits in Israel, is sensitive to 5μg/ml of the dicarboximide fungicides vinclozolin and iprodione in the growth medium. When a large number of spores, from an isolate never exposed to these fungicides, was seeded on a medium containing 15 μg/ml iprodione, spontaneous resistant mutants appeared at 10-5 frequency. These mutants showed cross resistance to the dicarboximide fungicides vinclozolin, procymidone, l-(3,5-dichloro-phenyl)-3-propen(2)-pyrrolidin-2,5-dion (Co 4462), l-(3,5-dichlorophenyl)-3-methoxymethyl-pyrrolidin-2,5-dion (Co 6054), and to dicloran. Growth rate on fungicide-free medium was similar to that of the parental sensitive strain but sporulation was much reduced. Growth rate on media supplemented with dicarboximide fungicides decreased gradually with increasing fungicide concentrations. The resistance has been stable for more than one year in the absence of fungicides. Artificial inoculation of cherry, apricot and plum fruits previously treated with 500 μg/ml vinclozolin, iprodione, procymidone or Co 6054, with a resistant strain, resulted in brown rot; similar treatments provided full protection of the fruits against the sensitive strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号