首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
DDT inhibits the ATPase activity of the intact eel electroplaque. At a concentration of 10?5M, DDT inhibited 46% of the total ATPase activity, and 10?4M DDT inhibited 62% of the total ATPase activity and 62% of the ouabain-sensitive ATPase activity. The latter concentration of DDT reduced the rate of Na efflux from intact electroplaques and slowed the rate of recovery of the membrane potential following a large depolarization produced by carbamylcholine application. Repetitive direct stimulation of the innervated membrane at 10 Hz during the application of 10?4M DDT produced a significant irreversible depolarization. Ouabain, 10?4M, produced similar effects. The possible role of the inhibition of active NaK transport in producing the symptoms of DDT poisoning is discussed.  相似文献   

2.
Effects of DDT (1,1,1-trichloro-2,2-bis-(p-chlorophenyl) ethane) on various ATP utilizing enzymes in the lobster peripheral nerve were studied. On the basis of inhibition by ouabain and DDT, four classes of ATPase enzymes were recognized. They are: (1) ATPase activity that is sensitive to both ouabain and DDT inhibition, or Type A, (2) ATPase activity that is sensitive to DDT inhibition only, or Type B, (3) ATPase activity that is sensitive to ouabain only, and (4) ATPase activity that is not sensitive to either ouabain or DDT. The Type A ATPase is considered to be a part of the total (Na+K+) ATPase enzyme associated with the electrogenic pump. The Type B ATPase consisted of an uncharacterized Na+, K+, and Mg2+ stimulated ATPase and includes also a small portion of Mg2+ stimulated ATPase. Ca2+ stimulated ATPase activity was also detected but was not significantly affected by DDT. Proteins with actomyosin-like properties were also recognized to be present, though this superprecipitation process was only slightly affected by DDT.Other systems studied include the transfer of (γ-32P) ATP to endogenous proteins and added histone in the presence and absence of c-AMP. DDT generally stimulated the process of 32P incorporation, while it inhibited a portion of the specific c-AMP dependent protein kinase activity.It was concluded from these studies that DDT has a potential to inhibit or otherwise interfere with a variety of enzymatic reactions that utilize ATP as a substrate. Of these systems, the Type B ATPase bore overall resemblance to the possible target for DDT.  相似文献   

3.
Oligomycin-sensitive (O-S) Mg2+ ATPase from American cockroach muscle was more sensitive to DDT, TDE, methoxychlor, and DDE at cool temperatures than at warm temperature, thus showing a negative temperature effect. In contrast, inhibition by acaricides dicofol, chlorfenethol, and Plictran shows a positive temperature effect. Oxidative phosphorylation in a mitochondrial preparation from cockroach coxal muscle was reduced by DDT, but the reduction was greater at a higher temperature (32°C) than at a cooler temperature (22°C). In addition, Na+K+ ATPase from cockroach nerve cord showed a positive temperature effect with DDT. The inhibition by DDT was much less on Na+K+ ATPase than on O-S Mg2+ ATPase. The negative temperature effect by DDT and analogs on O-S Mg2+ ATPase parallels toxicity effects on insects and fish as reported by numerous researchers. The results provide further evidence for this energy-regulating enzyme being a critical component in the biological action of DDT.  相似文献   

4.
A Ca-ATPase highly sensitive to DDT has been found in peripheral nerves of lobster, Homarus americanus. The observed I50 for this Ca-ATPase toward DDT is on the order of 10?9M and has a low temperature quotien. The ATPase seems to work over a wide range of ATP concentrations. It is stimulated by Ca2+ (optimum 0.1 mM) and shows sensitivity to Na+ (optimum 20 mM) and K+ (optimum 20 mM) ions. The fact that it is highly sensitive to ruthenium red (I50 = 10 μM) suggests that the enzyme is a Ca-ATPase and not a Mg-ATPase. Furthermore the enzyme is not a CaMg-ATPase, since the presence of Mg2+ along with Ca2+ ion is not required for its activity. DDT is found to inhibit the process of Ca2+ binding in the axonic membrane only in the presence of ATP. The evidence suggests the important role of the Ca-ATPase in regulating Ca2+ concentrations in the membrane. The possible significance of DDT inhibition of the ATPase is discussed.  相似文献   

5.
A continuous steady-state assay procedure was used to investigate the effects of DDT and several analogs on the in vitro Mg2+-stimulated adenosinetriphosphatase of a trout brain mitochondrial fraction. Pharmacological dissection of the enzyme with oligomycin, dicyclohexyl-carbodiimide, and azide failed to yield a fraction specifically sensitive to the organochlorines. At 25°C, low doses of DDT (≤1.35 μmol/mg of protein) stimulated enzyme activity, while methoxychlor was stimulatory at all doses. Higher doses of DDT and of several analogs caused only 45.5% or less inhibition at 25°C, but inhibition increased at lower temperatures. The physiological significance of these effects is discussed.  相似文献   

6.
7.
The ability of o,p′DDT to bind to the 8S moiety in the uterine cytosol or to interfere with the binding of 3H-estradiol-17β (3H-E2) to that binding component was investigated utilizing a 10–30% sucrose gradient sedimentation analysis. Attempts to demonstrate the binding of radiolabeled o,p′DDT to the 8S receptor in the mouse and rabbit were not successful, presumably due to the relatively low specific activity of the radiolabeled o,p′DDT, however, binding to the “nonspecific” 4S site(s) was detected. On the other hand, the addition of nonlabeled o,p′DDT inhibited the binding of 3H-E2 to the 8S receptor. Thus, o,p′DDT (2 μM) suppressed by 58% the binding of 3H-E2 (2 nM) in the 8S region in ovariectomized adult mice. Similarly, in immature rats three concentrations of o,p′DDT (16, 32, and 96 μM) inhibited by 39.5, 52.9, and 59.7% respectively, the binding of 3H-E2 (2.8 nM). Similar results were obtained with uterine preparations from mature rats. However, the suppression of binding of 3H-E2 in the 8S region resulted in an increased binding in the 3–4S region.A Scatchard plot analysis of the binding of 3H-E2 in the presence of o,p′DDT revealed the same number of binding sites as in the absence of o,p′DDT, indicating that o,p′DDT did not “destroy” the binding capacity. Also, this analysis revealed that o,p′DDT merely caused a decrease in the ratio of the bound to free E2, indicating that o,p′DDT binds to the receptor and thus interferes with E2 binding.In addition, our observations that the administration of o,p′DDT to immature female rats causes a marked increase in the levels of the uterine nuclear binding sites (nuclear estogren receptor) is a further indication that o,p′DDT acts as a typical estrogenic compound. However, whether o,p′DDT has antiestrogenic activity as well has not been established.  相似文献   

8.
Analogues of DDT (ethoxymethyl and methoxymethio derivatives) compared with DDT for their inhibitory action on the ATPase system from tissues of the cockroach, Periplaneta americana show similar, but less inhibitory effects. The mitochondrial (oligomycin-sensitive) Mg2+ ATPase activity from coxal muscle preparations was more sensitive to DDT than the two analogues; whereas, the muscle and nerve cord homogenates showed about equal sensitivity to the biodegradable analogues. The mitochondrial Mg2+ ATPase from nerve cord preparation was more sensitive to the three compounds than the Na+K+ ATPase activity. The significance of these results in relation to recent reports on the effect of DDT on Na+K+ ATPase is discussed.  相似文献   

9.
The mode of action of DDT and pyrethroids was investigated in the house fly, Musca domestica L, using drug:receptor binding techniques. Both in vivo and in vitro binding studies demonstrated the existence of membrane receptors which bind specifically to [14C]DDT and [14C]cis-permethrin. The receptors show properties to be expected of a critical target site of these insecticides. These include negative temperature correlation with binding, relatively nonsensitivity to DDE, and sensitivity to Ca2+. The receptor sites are readily saturated at 45–90 nM [14C]DDT and have an apparent disassociation constant (Kd) of 12.2 nM. The maximum number of binding sites was estimated to be 17 pmol DDT/mg membrane protein (0.34 pmol/house fly head). Competition studies showed DDT, cis-permethrin, and cypermethrin bind to the same receptor but not at precisely the same site. The addition of Ca2+ to the incubation buffer significantly inhibited the binding of both [14C]DDT and [14C]cis-permethrin, suggesting the receptor binding is Ca2+ sensitive and may have a role in ion conductance.  相似文献   

10.
Wheat (Triticum aestivum L. cv Holley) seedlings were exposed to [N-14CH3]norflurazon in nutrient solution studies. The 14CH3 group was incorporated into a compound eluting on GLC at a relative retention temperature Rf equivalent to n-C21 H36 and mass spectrometry validated a 295 MW. The concentration of [N-14CH3]norflurazon and/or Rl[14C]norflurazon which resulted in carotenogenesis inhibition was 0.07 μM in the water contained in the leaves. The concentration of norflurazon required for phytoene accumulation as a mode-of-action was ca. 140 × the concentration of norflurazon required for geranylgeraniol accumulation. Geranylgeraniol accumulated at 1 ppbw (3.2 nM) norflurazon and phytofluene accumulated throughout the norflurazon concentration series (1 to 1000 ppbw). Carotene content was increased by 1 to 16 ppbw norflurazon but was decreased by 64 ppbw norflurazon. Thus, two modes-of-activity for norflurazon are documented that depend upon concentration of the toxicant in the tissue. Norflurazon demethylation in prephytoenepyrophosphate synthesis resulted in a C21 conjugate and increased concentrations of GGPP and phytoene in the tissue. At approximately 31 ppbw norflurazon, an inhibition of phytoene dehydrogenation occurred and phytoene accumulated. At 62 ppbw norflurazon, phytofluene hydrogenation inhibition occurred and phytofluene accumulated while β-carotene synthesis was inhibited. These inhibitions may possibly be reversible when substrate concentrations are in excess.  相似文献   

11.
Microsome fractions were prepared from liver homogenates of control rats and rats treated with DDT. The increased incorporation of [14C]phenylalanyl-tRNA into peptide when microsomes or ribosomes derived from DDT-treated rats were incubated with supernatant was due to factors in addition to increased endogenous mRNA. These factors were not related to the decreased activity of ribonuclease and increased activity of ribonuclease inhibitor, nor to the GTP and thiol sensitive inhibitor. The factors were partly removed from microsomes and completely removed from ribosomes by procedures using a 0.5 M KCl wash. Treatment of rats with polychlorinated biphenyls gave results similar to DDT. The 0.5 M KCl wash fraction from the control preparations contained factors inhibitory to protein synthesis in contrast to the wash fraction from the DDT preparations.  相似文献   

12.
The effect of DDT analogs and estradiol-17β on uterine ornithine decarboxylase activity in the immature intact and ovariectomized rat was studied. Pretreatment with various doses of o,p′DDT [1-(o-chlorophenyl)-1-(p-chlorophenyl)-2,2,2-trichloroethane] or estradiol-17β caused a marked increase in the specific activity of ornithine decarboxylase in the 20,000g supernatant fraction of uterine homogenates but not in liver homogenates. Doses as low as 0.5 mg of o,p′DDT or 0.002 μg of estradiol-17β stimulated uterine ornithine decarboxylase activity in the ovariectomized rat. The peaks of activity after treatment with o,p′ DDT and estradiol-17β occurred at 6 and 5 hr, respectively. The level of ornithine decarboxylase activity in untreated groups was consistently lower in ovariectomized rats than in intact immature animals. Treatment with o,p′ DDT (10 mg/100 g body weight) of ovariectomized and intact immature rats demonstrated at 131-fold and an about 20-fold increase in uterine ornithine decarboxylase activity, respectively. Treatment of ovariectomized rats with cycloheximide or actinomycin D effectively blocked the increase in ornithine decarboxylase caused by o,p′ DDT. Similar results were obtained with cycloheximide in the intact immature rat. Animals subjected to both adrenalectomy and ovariectomy demonstrated an increase in ornithine decarboxylase activity when treated with either estradiol-17β or o,p′ DDT. Dose-response curves obtained for estradiol-17β and o,p′ DDT suggest a similar mechanism of action for the two compounds. Graphic analysis of the dose-response curves for estradiol-17β and o,p′ DDT demonstrated an ED50 of 0.038 μg/100 g body weight and 1.8 mg/100 g body weight, respectively. The examination of various DDT analogs in intact and ovariectomized animals showed that o,p′ DDT was the most potent inducer of ornithine decarboxylase. The order of decreasing potency of DDT analogs was o,p′ DDT, o,p′ DDD. p,p′ DDT, p,p′ DDD, and p,p′ DDE.  相似文献   

13.
The action of insecticides on the spontaneous electrical activity of neurohemal tissue in the stick insect, Carausius morosus, has been studied using extracellular electrodes. The pyrethroid, permethrin, causes a massive increase in the frequency of the spontaneously generated action potentials at concentrations between 5 × 10?5 and 5 × 10?8M. Concentrations as low as 5 × 10?11M are still effective in producing bursting activity.DDT, at concentrations between 5 × 10?5M and 5 × 10?6M, produces an overall increase in activity although the bursting activity is less violent than that shown with permethrin. DDT, 5 × 10?7M, is ineffective at altering the resting pattern.Carbaryl and coroxon cause a transitory increase in electrical activity at 1 × 10?4M, but are ineffective at 1 × 10?5M.It is concluded that insecticides could have a direct effect upon the neurohormonal balance in insects.  相似文献   

14.
l-[U-14C]sucrose accumulation by phloem sieve tube members (PSTM) of wheat (Triticum aestivum L. ‘Holley’) and sorghum (Sorghum bicolor L. ‘G522 DR’) was inhibited by the nonpermeant sulfhydryl inhibitor p-chloromercuribenzenesulfonic acid (PCMBS), and this inhibition was reversed by the permeant sulfhydryl protectants dithiothreitol (DTT) and dithioerythritol (DTE). S-Ethyl dipropylthiocarbamate (EPTC) (≤0.1 mM) did not inhibit [14C]sucrose accumulation by wheat or sorghum PSTM. N-N-Diallyl-2-chloroacetamide (CDAA) (1 mM) inhibited [14C]sucrose accumulation by sorghum but not by wheat PSTM. The inhibition of [14C]sucrose accumulation in sorghum PSTM by the membrane permeant CDAA was reversed by DTT. Sorghum growth was inhibited by <1 μM CDAA. Membrane permeant 2-chloroallyl diethyldithiocarbamate (CDEC) (0.1 mM) inhibited [14C]sucrose accumulation by PSTM of sorghum but not wheat. The inhibition of sucrose accumulation in sorghum PSTM by 0.1 mM CDEC was reversed by DDT.  相似文献   

15.
The effects of DDT, allethrin, dieldrin and aldrin-transdiol were studied in two different sense organs of Xenopus laevis; the lateral-line organ and the cutaneous touch receptors. DDT and allethrin produced pronounced repetitive firing in both preparations. Dieldrin and aldrin-transdiol, on the other hand, failed to induce any sign of repetitive activity. Aldrin-transdiol, however, caused a marked increase in the rate of spontaneous firing of the lateral-line organ, later followed by a blockade. The repetitive activity in the cutaneous touch receptors, whether induced by DDT or allethrin, was not distinguishable from repetitive firing of the afferent nerve fibers and showed no marked dependence on temperature. This contrasts sharply with the know negative temperature coefficient of the DDT- or allethrin-induced repetitive activity in the lateral-line organ.  相似文献   

16.
The effect of DDT (2,2-bis-(p-chlorophenyl)-1,1,1-trichloroethane) on carbon assimilation of a green alga, Selanastrum capricormutum was studied. DDT at concentrations between 3.6 and 36 ppb was inhibitory to the photosynthetic CO2 fixation (ethanol-soluble and/or ethanol-insoluble) and the longer the exposure to DDT, the greater the inhibition. Kinetic studies of photosynthetic CO2 fixation indicated that DDT stimulated the incorporation of carbon-14 into glycolic acid, a major compound of photorespiration and caused the concomittant suppression of flow of carbon-14 into aspartic acid, a major component of the C4-dicarboxylic acid pathway. The shift from an efficient pathway into a nonefficient pathway by DDT was interpreted to be through interruption of cyclic photophosphorylation.  相似文献   

17.
Earlier communications from this laboratory have shown that DDT inhibited oligomycin-sensitive Mg2+-ATPase (EC 3.6.1.3) but that its active component, F1, was not affected. In the present investigation evidence has been obtained to determine the nature of the requirements for DDT sensitivity. The results showed that DDT sensitivity was conferred to F1 from pig heart mitochondrial preparations when it was bound to F0 from the same preparation. The F1 from house fly (Musca domestica L) thorax was able to bind to F0 from pig heart. This combination showed similar sensitivity to that of the original F1-F0 combination from pig heart mitochondria. However, when F1 from pig heart mitochondria was incorporated into F0 depleted in oligomycin sensitivity-conferring protein (OSCP) from the same source, the resulting ATPase activity was insensitive to DDT. Addition of crude (50–200 μg) or purified (5–20 μg) OSCP in the above preparation restored DDT sensitivity. Presence of dioleyl or dipalmitoyl phosphatidyl choline or Triton X-100 in the reaction medium antagonized the DDT inhibitions. Depletion of phospholipids from submitochondrial membrane preparations (SMP) decreased ATPase activity. Addition of dioleyl or soybean phosphatidyl choline to this lipid-depleted preparation restored DDT sensitivity. Evidence presented suggests that DDT acted on F1 in association with one or more membrane components and that OSCP and phospholipid were essential for DDT sensitivity.  相似文献   

18.
The neuroexciting activity of DDT and its analogs to produce repetitive responses on the nerve cord of Periplaneta americana was determined using the extracellular electrode method. The convulsive activity on P. americana and the insecticidal effect on Callosobruchus chinensis were also examined. It was found that the convulsive and insecticidal activities increase almost proportionally with increase in the neuroexciting activity within a set of p,p′-substituted DDT analogs. The intimate connections among these biological effects suggest that symptoms such as convulsion and death caused by DDT analogs are closely related with their neuroexcitory effect and there is a common mode of action in spite of differences in insect species.  相似文献   

19.
A water-soluble Mg2+-dependent ATPase (coupling factor F1) was isolated from the mitochondria of housefly thorax. It comprised about 14% of the proteins from a crude preparation. The F1 preparation was nearly homogeneous as assessed by gel electrophoresis, isoelectric focusing, and electron microscopy. It was composed of five subunits with the following apparent molecular weights: α, 68,000; β, 61,000; γ, 38,000; δ, 27,000; and ?, 17,500. The isoelectric pH (pI) of this protein was 7.3. F1 had a pH optimum of 8.2 and a temperature optimum between 37 and 45°C. The enzyme was fairly stable at 25°C. Nearly complete loss of activity was noticed at 0°C, while at 0 or 25°C, glycerol (20%) partially stabilized the enzyme activity against such inactivation. The Km value of the enzyme with respect to ATP was 0.4 mM. The activity was stimulated by low concentrations of 2,4-dinitrophenol. The enzyme was inhibited by azide, p-hydroxymercuribenzoate, and guanidine hydrochloride. Oligomycin and the pesticides pyrethrin, cyhexatin, and DDT have no effect on the enzyme activity. However, all of these chemicals inhibited intact Mg2+- ATPase. The results are discussed in the light of differential responses of soluble and intact ATPase to these pesticides.  相似文献   

20.
Resistance to many insecticides demonstrated by the beet armyworm,Spodoptera exigua (Hübner), can be caused by the action of carboxylamidases. A colorimetric method, based on the hydrolysis of 4-nitroacetanilide to 4-nitroaniline by carboxylamidases, was used for evaluating biochemical properties of these detoxifying enzymes in beet armyworm. The optimum pH and temperature were 7.5 and 38°C, respectively. Km (Michaelis constant) and Vmax (maximal velocity) at 28°C were 2.3 X 10-4 M and 2.06 nmol min-1 mg protein-1, respectively. The enzyme activity was evaluated in several body parts and located mostly (66.2%) in the midgut. The soluble fraction (supernatant of 105,000g) contained the highest enzyme activity relative to the total (69.3%), and exhibited the highest specific activity. Carboxylamidase activity was totally inhibitedin vitro at a concentration of 10-6 M methomyl. The analysis of thein vitro inhibition kinetics indicated the ability of methomyl and diflubenzuron to inhibit carboxylamidases noncompetitively. Over 95% inhibitionin vivo was obtained when the larvae were fed with castor bean leaves dipped in 250 mgl -1 of methomyl. Thein vivo enzyme activity could be reduced to half with a pretreatment of 15 mgl -1 diflubenzuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号