首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamics of plasma cortisol, blood glucose, plasma chloride and liver glycogen were investigated in matrinxã (Brycon cephalus) submitted to capture and various periods of crowding. A total of 400 fish (700±22 g weight) were distributed in four ponds divided into four 50‐m2 squares (25 fish/square, 350 g L?1), where they were acclimated for 30 days. On the sampling day, after 24 h without food, all fish from three squares were transferred to the fourth square. Six fish were sampled before the procedure (control group, zero time) and 1, 3, 6 and 24 h after the capture and crowding. Each sampling was performed in a different pond to prevent additional stress. Fish were anaesthetized and blood and liver collected for biochemical analysis. Water temperature, pH, dissolved oxygen, alkalinity, ammonia and nitrite levels were within acceptable levels for matrinxã rearing. Slight but not significant increases were verified in plasma cortisol and blood glucose levels, as were decreases in plasma chloride and liver glycogen levels. The results suggest that matrinxã is highly tolerant to the procedures of capture and short‐term crowding.  相似文献   

2.
Nitrite is usually found in aquatic environments where nitrification process occurs. This ion can cause several injuries to aquatic species, particularly fish. Nitrite reacts with haemoglobin yielding the non‐functional methaemoglobin, which leads to many physiological consequences such as functional anaemia and supposed hypoxia. Metabolism of the freshwater teleost matrinxã, Brycon amazonicus, exposed to environmental 0.6 mg L?1 of nitrite N‐NO2? for 96 h was studied, and the fermentative/oxidative preference was gauged. Concentrations of glycogen, glucose, lactate, pyruvate and ammonia, plus the activities of lactate, glutamate and malate dehydrogenase were assayed. The exposure resulted in a metabolic profile that allowed inferring the continuity of oxidative metabolism. Catabolism of amino acids prevailed or was apparently exacerbated by inferred branchial injury and consequent impairment of nitrogen excretion. Moreover, the studied enzymes glutamate dehydrogenase, lactate dehydrogenase and malate dehydrogenase from brain and heart were little affected by nitrite. The expected fermentative metabolism due to the high methaemoglobin formation was not observed.  相似文献   

3.
The present study evaluated the physiological responses of matrinxã, Brycon cephalus (Günther) submitted to transport stress under the influence of sodium chloride. Different salt concentrations (0.0%, 0.1%, 0.3% and 0.6%) were added to four 200-L plastic tanks. Each tank was stocked with 30 fish (mean weight 1.0 ± 0.2 kg) and transported for 4 h. Blood was sampled prior to transport and immediately after and 24 and 96 h after transport. Plasma cortisol and glucose and serum sodium and potassium, plasma chloride and ammonia were analysed. Changes in plasma cortisol were observed immediately after transportation, except in fish transported in 0.3% and 0.6% salt. Twenty-four hours later, this hormone had returned to its initial level in all fish. Blood glucose was not changed in fish treated with 0.6% salt immediately after transport, and returned to the initial level within 96 h after the other treatments. All treatments resulted in lower levels of plasma chloride after transport, except for fish treated with 0.6% salt, with fish treated with 0.0% and 0.3% salt recovering 24 h later. Serum sodium decreased immediately after transport only in the control fish, returning to the initial level 24 h later. The results indicate that treatment with 0.6% NaCl reduces most of the physiological responses of matrinxã to the stress of transport.  相似文献   

4.
The effects of handling on haematocrit, haemoglobin, plasma glucose, lactate and total amino acids, liver glycogen and hepatic activity of fructose 1,6‐bisphosphatase (FBPase) and alanine aminotransferase (AAT) were investigated in common dentex (Dentex dentex Linnaeus, 1758). A total of 42 fish (50‐g weight) were subjected to handling (netting and shaking in the air for 45 s). Six fish were sampled at 0, 0.5, 1, 2, 4, 8 and 12 h after handling. Six unstressed fish were also sacrificed at each time and used as controls. Handling resulted in a rise in plasma glucose and lactate levels, as well as in enhanced hepatic FBPase and AAT activities. In most cases values returned to control levels 8 h after handling. There were no significant changes in haematocrit, haemoglobin, plasma total amino acids and liver glycogen levels as a consequence of handling. The results suggest that dentex is rather tolerant to handling; apparently, sensitivity to handling is not the main factor responsible for the low survival exhibited by this species in aquaculture.  相似文献   

5.
为研究水体盐度和饲料脂肪含量对尼罗罗非鱼生长、营养组成和肉质的影响,本实验设置0、8和16共3个盐度梯度,每个梯度分别投喂中脂(6%)和高脂(12%)饲料,投喂初始体质量为(5.0±0.2) g的尼罗罗非鱼8周,并测定生长性能、血清生化指标、肌肉营养成分和肉质相关指标。结果显示,在中脂饲料投喂下,与对照组(盐度为0)和高盐组(盐度为16)相比,中盐组(盐度为8)的尼罗罗非鱼具有最大终末体质量、躯壳比、脂体比、肌肉蛋白质含量、肌肉氨基酸和乳酸含量和总产肉率,但其饲料系数、脏体比、肝体比和肌肉p H值显著降低;而中脂高盐组的尼罗罗非鱼其饲料系数、肥满度、脏体比、肝体比、全鱼总脂、肝脏甘油三酯、血糖、血清乳酸和血清甘油三酯含量、血清谷草转氨酶活性较高,但全鱼和肌肉水分、全鱼灰分、产肉率和肌肉离心失水率降低。在高脂饲料投喂下,随着盐度的上升,其终末体质量、成活率和脂体比降低,但饲料系数、脏体比、肝体比和肥满度增大。其中,高脂中盐组尼罗罗非鱼的肌肉蛋白以及氨基酸含量显著降低,而高脂高盐组的全鱼灰分、肝脏甘油三酯、血糖、谷草转氨酶活性、肌肉总脂、肌肉甘油三酯和磷脂含量显著提高,但全鱼总脂、肝糖原、产肉率、肌肉离心失水率和pH值显著降低。而不论在淡水还是盐水养殖情况下,与中脂饲料组相比,高脂饲料组尼罗罗非鱼均显示出更高的脂肪积累量和肌肉乳酸含量,以及更低的成活率和产肉率。尤其在高盐度水体中,高脂饲料对尼罗罗非鱼肌肉脂肪和乳酸积累的促进作用和对成活率、饲料系数和产肉率的负面作用尤为明显。研究表明,在中脂饲料投喂下,适宜的盐度(盐度8)可以促进尼罗罗非鱼的生长并提高肌肉品质,然而,在高盐度水体中使用高脂饲料对尼罗罗非鱼的生长与肉质则有较大的负面影响。  相似文献   

6.
An 8-week feeding experiment was conducted to evaluate the dietary leucine requirement of fingerling Indian major carp, Labeo rohita (3.50±0.04 cm; 0.40±0.02 g) using amino acid test diets (40% crude protein; 17.90 kJ g−1 gross energy) containing casein and gelatin as intact protein sources and l -crystalline amino acids. Growth performance and biochemical parameters were assessed by feeding six amino acid test diets supplemented with graded concentrations of leucine (0.75, 1.0, 1.25, 1.50, 1.75 and 2.0 g per 100 g) to triplicate groups of fingerlings to apparent satiation divided over two feedings at 07:00 and 17:30 hours. Performance of the fish was evaluated on the basis of live weight gain, feed conversion ratio (FCR), protein efficiency ratio (PER) and body protein deposition (BPD) data. Maximum live weight gain (315%), best FCR (1.35), highest PER (1.86) and BPD (33.9) were recorded at 1.50 g per 100 g dietary leucine. Statistical analysis of live weight gain, FCR, PER and BPD data reflected significant differences (P<0.05) among treatments. Live weight gain, FCR, PER and BPD data were also analysed using second-degree polynomial regression analysis to obtain more accurate leucine requirement estimate which was found to be at 1.57, 1.55, 1.52 and 1.50 g per 100 g of dry diet, corresponding to 3.92, 3.87, 3.80 and 3.75 g per 100 g of dietary protein respectively. Based on the quadratic regression analysis of the live weight gain, FCR, PER and BPD data, the optimum requirement of fingerling L. rohita for leucine is estimated to be in the range of 1.50–1.57 g per 100 g of the dry diet, corresponding to 3.75–3.92 g per 100 g of dietary protein.  相似文献   

7.
Juvenile rainbow trout were fed a plant‐based diet supplemented with inorganic Mn added at 0, 0.5, 1, 2, 4, 8, 16, or 32 mg/kg diet for 12 wk. Whole‐body Mn concentrations increased with increasing dietary levels. Rainbow trout fed 2–8 mg Mn/kg diet exhibited weight gain that was significantly higher than fish fed 0, 0.5, 1, 16, and 32 mg Mn/kg diet. Feed conversion ratio (FCR) showed a similar trend, where FCR values decreased with increasing dietary Mn until concentrations reached 8 mg Mn/kg, after which they increased. A rational nonlinear model (R2 = 0.84) fit to weight‐gain data showed that the optimal predicted supplementation level for Mn was 4.8 mg/kg diet. The optimal predicted supplementation level for Mn was similar for FCR (5 mg Mn/kg diet). The predicted 5 mg/kg diet of supplemental Mn required for the plant‐based diet formulation examined in this study is lower than the National Research Council–recommended supplementation level of 12 mg/kg. However, due to potential differences in bioavailability or retention of Mn among plant‐protein sources, the level of dietary supplementation for optimal growth could be slightly higher or lower depending on the dietary formulation.  相似文献   

8.
An eight-week experiment was carried out to evaluate the effects of different protein sources (fish and haemoglobin meal, soybean meal and torula yeast), in practical diets, on growth, body composition and gut morphology of fingerling grey mullet (Mugil cephalus). Weight gain (%), SGR, FCR, N retention, PER, PGR, FDR and carcass composition of fish were not significantly affected by the dietary protein source. Fish fed the torula yeast based diet showed reduction in growth performance. Histological examinations performed on the alimentary tract of the fish showed a normal structural pattern in the experimental groups, as fundamental histological and histochemical aspects were similar if compared to the control group. The lower growth performance observed in fish fed a torula yeast based diet may be tentatively correlated with the presence of some detrimental morpho-functional aspects in the gut of these fish if compared to fish fed the other diets. Further studies are necessary to confirm this hypothesis.  相似文献   

9.
A 10‐week feeding experiment was conducted to determine the optimum dietary protein requirement of juvenile obscure puffer (Takifugu obscurus). Six isoenergetic (20 MJ kg?1 gross energy) diets were formulated to contain graded levels of 34%, 38%, 42%, 46%, 50% or 54% crude protein (as dry matter basis). The results showed final body weight, weight gain and specific growth rate (SGR) increased significantly with increasing protein levels up to 42% and then decreased thereafer. Second‐order polynomial regression analysis (y = ?0.0024x2 + 0.1788x ? 1.3196, R2 = 0.9032) indicated a maximum SGR at protein level of 37%. Feed conversion ratio (FCR) decreased with increasing levels of dietary protein up to 42% and increased thereafter. Second‐order polynomial regression analysis (y = 0.0054x2 ? 0.4351x + 10.391, R2 = 0.753) indicated a minimum FCR at protein level of 40%. Protein efficiency ratio (PER) of fish fed the 34%, 38% and 42% diets was significantly higher than that of fish fed the 46%, 50% and 54% diets, and broken‐line analysis indicated PER tended to decrease when dietary protein level was higher than 40%. Generally, whole body lipid content, total cholesterol, low‐density lipoprotein cholesterol and triacylglycerol decreased with increasing levels of dietary protein. Fish fed the 42% protein diet showed the highest essential amino acids (histidine, isoleucine, leucine, lysine and threonine) and non‐essential amino acids (aspartic acid and glutamic acid) in muscle. Based on the second‐degree polynomial regression analysis of SGR and FCR and broken‐line analysis of PER, the optimal dietary protein level of obscure puffer is estimated to be between 37% and 40% (% as dry matter basis).  相似文献   

10.
An 8‐week feeding experiment was conducted in a water flow‐through system (26–28 °C) to determine the dietary threonine requirement of fingerling Labeo rohita (3.90±0.03 cm; 0.58±0.02 g). Growth, feed utilization and body composition of fish fed test diets (40% crude protein; 17.9 kJ g?1 gross energy) with graded levels of l ‐threonine (0.75%, 1.0%, 1.25%, 1.50%, 1.75% and 2.0% dry diet) to apparent satiation were response variables used to assess threonine adequacy. Diets were made isonitrogenous and isoenergetic by adjusting the levels of glycine and dextrin. The amino acid profiles of the test diets were formulated to that of 40% whole chicken egg protein except for threonine. The performance of fish fed experimental diets was evaluated using calculated values for weight gain (g fish?1), feed conversion ratio (FCR), protein efficiency ratio (PER) and protein productive value (PPV) data. Maximum weight gain (g fish?1) (1.79), lowest FCR (1.39), highest PER (1.76) and PPV (0.33) were recorded at 1.50 g per 100 g dietary threonine. Statistical analysis of weight gain, FCR, PER and PPV data reflected significant differences (P<0.05) among treatments. Except for reduced growth performance in fish fed threonine‐deficient diets, no deficiency signs were noted. Weight gain, FCR, PER and PPV data were also analysed using second‐degree polynomial regression analysis to obtain a more accurate threonine requirement estimate, which was found, using each response variable, to be at 1.70, 1.63, 1.65 and 1.51 g per 100 g of dry diet, corresponding to 4.2, 4.07, 4.12 and 3.77 g per 100 g of dietary protein respectively. Based on the second‐degree polynomial regression analysis of the live weight gain, FCR, PER and PPV data, the optimum dietary level of threonine for fingerling L. rohita was found to be in the range of 1.51–1.70 g per 100 g of the dry diet, corresponding to 3.77–4.2 g per 100 g of dietary protein.  相似文献   

11.
镁对草鱼生长、形体、肝功能和糖代谢的影响   总被引:1,自引:0,他引:1  
在以酪蛋白和明胶为蛋白源的纯化日粮(镁含量76.9 mg/kg)中添加不同水平的镁(0、150、300、600、1200和2400 mg/kg),研究镁对体重为(10.68±0.14)g的草鱼(Ctenopharyngodon idella)生长、形体、肝功能和糖代谢的影响,时间为10周.结果显示:日粮中适当添加镁显著...  相似文献   

12.
A study was conducted to evaluate low‐protein traditional or alternative diets for pond‐raised hybrid catfish, Ictalurus punctatus × Ictalurus furcatus. Three 24% protein diets containing decreasing levels of soybean meal (30, 20, and 15%) and increasing levels of cottonseed meal and corn germ meal were compared with a 28% protein control diet. Hybrid catfish fingerlings (mean initial weight = 71 g/fish) were stocked into 20 earthen ponds (0.04 ha) at a density of 14,826 fish/ha with five ponds per dietary treatment. Fish were fed once daily to apparent satiation for a 191‐d growing season. There were no significant differences in total diet fed, net yield, weight gain, feed conversion ratio (FCR), survival, or fillet proximate nutrient composition among dietary treatments (P ≥ 0.10). However, regression analysis showed for fish fed 24% protein diets there was a linear increase in FCR as soybean meal levels decreased (P = 0.06). Compared with fish fed the 28% protein control diet, fish fed 24% protein diets had lower carcass and fillet yield. Results demonstrate a 24% protein alternative diet containing 20% soybean meal may be substituted for 28% protein diets for hybrid catfish during food fish production.  相似文献   

13.
Juvenile gilthead sea bream were fed to visual satiety with isonitrogenous diets based on fish meal and different plant ingredients (33–35% replacement) supplemented with free amino acids to meet the desired indispensable amino acid (IAA) profile and dispensable amino acid (DAA) content. In diets M and WB, IAA profile and DAA content resemble that of the muscle or whole body, respectively. In diets MGlu and WBGlu, DAA content was increased by adding -glutamic acid (Glu) and thus the IAA/DAA ratio varied from 1.13 (diet M) to 0.80 (diet WBGlu). Growth rates were not significantly different among experimental groups, but feed conversion ratio and nitrogen retention were impaired by the decrease of dietary IAA/DAA ratio. Postprandial ammonia excretion increased with the increase of dietary DAA content irrespective of IAA profile. Conversely, hepatic activity of glutamate dehydrogenase (GDH) was lower in fish fed diet WBGlu than in fish fed diet M. Hepatic growth hormone (GH) binding was not significantly affected by the dietary treatment, but circulating levels of insulin-like growth factor-I (IGF-I) and GH were, respectively, down- and up-regulated in fish fed diet WBGlu, which suggests some defect in the transmission of GH receptor signal. Fat retention and hepatic activities of lipogenic enzymes (glucose-6-phosphate dehydrogenase, G6PD; malic enzyme, ME) were decreased in fish fed diet MGlu. Key metabolic enzymes of hepatic glycolysis (glucokinase, GK) and gluconeogenesis (phosphoenolpyruvate carboxykinase, PEPCK) were also altered in this group of fish. Since soybean meal concentration was highest in diet MGlu, results on lipid and carbohydrate metabolism can be primarily attributed to this component of the diet. In contrast, data on growth performance, ammonia excretion and GH axis mainly reflect changes in the dietary amino acid profile, which reveals that a muscle IAA profile and a high IAA/DAA ratio are important in feeds for gilthead sea bream.  相似文献   

14.
A ten‐week feeding trail was conducted to investigate the effects of increasing DL‐methionine (Met) supplementation on the success of fish meal (FM) replacement with plant proteins in practical diets for juvenile gibel carp, Carassius auratus gibelio. Twelve isoenergetic diets were formulated including two 150 g kg?1 FM diets (Diet 1—positive control 1 reflecting a commercial diet and Diet 2—positive control 2 reflecting a commercial diet but with balanced essential amino acid (EAA) profile) and ten 50 g kg?1 FM diets (negative controls) supplemented with graded levels (0–3.0 g kg?1) of DL‐Met (Diets 3–12). Each diet was fed to triplicate groups of gibel carp, near satiation four times daily for 10 weeks. Diet 2 with balanced EAA profile produced better final weight, specific growth rate (SGR) and feed conversion ratio (FCR) than the negative control diet containing no supplemental Met (Diet 3), but did not significantly differ from Diet 1. However, DL‐Met supplementation (0.5–3.0 g kg?1) in the negative control diets (Diets 4–12) produced growth performances similar to those fed the positive control diets (Diets 1 and 2). Based on quadratic regression analysis, the optimal dietary Met level with 5.2 g kg?1 of dietary cysteine (Cys) was found to be 7.1 g kg?1 dry diet for SGR and FCR. The corresponding total sulphur amino acid requirements (Met + Cys) of this species were calculated to be 12.3 g kg?1 dry diet for SGR and FCR. DL‐Met supplementation in 50 g kg?1 FM diets showed a decreasing trend in plasma cholesterol contents (< .05). No significant differences were observed in whole‐body composition, plasma protein, triglyceride and free EAA contents among dietary treatments, while plasma aspartate transaminase, albumin and ammonia contents were significantly influenced by dietary Met levels. Juvenile gibel carp grew equally well on 150 g kg?1 FM diet or 50 g kg?1 FM diets balanced for EAA profile with supplemental amino acids. The results of this study overall indicate that balancing dietary amino acid levels with DL‐Met supplementation is a key strategy in successfully reducing FM levels in the diets of gibel carp.  相似文献   

15.
A 10‐week feeding trial was conducted to evaluate the effects of dietary zinc (Zn) contents on the growth, tissue trace element contents and serum Zn levels in soft‐shelled turtles, Pelodiscus sinensis. Juvenile soft‐shelled turtles approximately 4.8 g in body weight were fed casein‐based diets containing seven levels of Zn (14, 23, 32, 43, 58, 87 and 100 mg kg?1) for 10 weeks. There were no significant differences (P > 0.05) in weight gain (WG), feed conversion ratio (FCR) or protein efficiency ratio (PER) among the dietary treatments. However, Zn concentrations in the liver, serum and carapace of turtles fed the basal diet containing 14 mg Zn kg?1 were the lowest among all groups. Zn contents in the liver, serum and carapace increased when dietary Zn increased up to a dietary Zn level of approximately 43 mg kg?1. Beyond this dietary level, tissue Zn contents were relatively constant. Carapace iron (Fe), selenium (Se) in hard tissues and haemoglobin concentrations decreased when dietary Zn increased. Dietary Zn requirements of juvenile soft‐shelled turtles derived from regression modelling using the liver, serum, carapace and bone Zn contents as indicators were 42, 39, 35 and 46 mg Zn kg?1, respectively.  相似文献   

16.
Studies investigating improved protein:lipid ratios based on their effects on growth, nutrient utilization, digestive enzyme activities, blood metabolites and erythogram in tropical carnivorous fish are very scarce. This study evaluated the effect of different protein:lipid ratios on these parameters in the hybrid surubim Pseudoplatystoma corruscans × Leiarius marmoratus. Juvenile fish (8.90 ± 0.94 g initial weight) were fed 3% of total biomass for 60 days using four isoenergetic experimental diets with different protein:lipid ratios (9.00, 4.60, 3.54 and 1.78). Higher growth performance parameters were observed at higher protein:lipid ratios. The activities of intestine total alkaline protease, trypsin and lipase (U/mg protein) were not affected by dietary treatments. Chymotrypsin (U/mg protein) was higher in the 4.60 protein:lipid ratio group. Amylase (U/mg protein) was higher in intermediate groups. Blood glucose, total plasma protein, triglycerides, cholesterol and free amino acids decreased as the protein:lipid ratio decreased. Haematocrit was higher at the 9.00 and 4.60 protein:lipid ratios. Hybrid surubim showed metabolic adaptation to the different protein:lipid ratios tested. These results suggest that the 4.60 protein:lipid ratio showed the best protein‐sparing effect of lipids.  相似文献   

17.
A trial of 218 days of duration was carried out to assess the use of pea protein concentrate (PPC) as a substitute for fish meal in diets for juvenile gilthead sea bream (52 g average initial weight), using four diets (0, 16, 32 and 48) with PPC inclusion levels of 0, 162, 325 and 487 g kg?1, respectively. At the end of the trial, the fish reached weights of 397, 385, 383 and 355 g for 0, 16, 32 and 48 diets, respectively; diet 48 gave the lowest specific growth rate (SGR, 0.88% per day) but 0%, 16% and 32% PPC did not present statistical differences. Feed conversion ratio (FCR), protein efficiency ratio (PER) and body composition were not affected by the diets. Digestible protein retention was significantly higher with the 0% diet, but no energy retention differences were observed. Retention rates of ingested and digestible amino acids were very similar; in general, the retention of essential amino acids decreased as dietary PPC increased, and lysine retention was the highest and phenylalanine retention was the lowest. From the results of this experiment, it may be concluded that fish meal can be replaced up to 32% by PPC in sea bream without negative effects on fish weight gain, FCR and PER.  相似文献   

18.
We evaluated whether body fat content affects the energetic metabolism and growth in pacu submitted to daily feeding, fasting and refeeding. For 15 days, fish were fed different diets to obtain lean and fat conditions, and then subjected, for 20 days to: (1) continuously feeding (control), or (2) fasting for 15 days and refeeding for 5 days. Blood (glucose, triglycerides, cholesterol, non‐esterified fatty acids and total protein) and tissue (liver lipid and glycogen, muscle lipid and mesenteric fat) metabolic indicators, and growth performance parameters (weight gain, specific growth rate, daily feed intake and feed conversion ratio) were measured. Fasting led both lean and fat pacu to make notable use of their energy reserves, through glycogenolysis and lipolysis, reflected in reduced blood glucose and triglycerides, liver glycogen and muscle lipid levels. Lipolysis was confirmed by the high levels of non‐esterified fatty acids, especially in fat pacu. Refeeding led to higher plasma glucose and liver lipid in lean fish. Muscle fat increased in fat fish but was not restored in lean fish, while mesenteric fat index (MFI) remained the same in fat fish and increased in lean fish. Although refeeding occurred only for 5 days, lean fish grew more and were more efficient at utilizing food (higher weight gain and better feed conversion ratio). In conclusion, our results suggest that fat pacu have higher glycogenic and lipogenic abilities, and the higher deposition of lipids in fish does not mean higher availability of energy for growth when compensatory growth is stimulated by refeeding after fasting.  相似文献   

19.
This study evaluated the effect of dietary supplementation with l-tryptophan (L-TRP), a serotonin precursor, on the aggressiveness of juvenile matrinxã Brycon amazonicus. Fish were kept in individual aquaria for 7 days receiving the diets: D1 (control: 0.47% of TRP), D2 (0.94% of TRP), D3 (1.88% of TRP), and D4 (3.76% of TRP). After this, they were grouped with an intruder fish to establish a resident–intruder relationship during periods of 20 min. Blood cortisol, glucose, chloride, sodium and calcium; hemoglobin, hematocrit, red blood cell count and volume; liver glycogen and lipids were measured. Territoriality had significant effect on the aggressiveness of matrinxã (the residents were more aggressive than intruders, P < 0.001) and tryptophan significantly affected their behavior. Fish fed with the D2 diet presented a longer latency until the first attack (P = 0.0069) and bit the intruder fewer times (P = 0.0136) during the period of observation, compared to the control group. The frequency of bites and chases after the first attack was not affected by the dietary supplementation of TRP. Physiological variables were not significantly affected by the diet, except for a moderate increase in cortisol level in fish fed with D2 diet after the fight, indicating slight activation of the hypothalamus–pituitary–interrenal axis. The results show that juvenile matrinxã have aggressive and territorial behavior and that a diet containing 9.4 g TRP kg?1 alter their aggressiveness, without affecting the stress-related physiological parameters.  相似文献   

20.
Pre‐slaughter handling involves fasting fish and catching them, which can affect fish welfare and flesh quality, but few studies have considered their combined effects. In this study, adult rainbow trout (320 ± 10 g average weight) were fasted for 7 days (135.6 degree days) and subjected to a long catch duration (20 min), compared with controls (no fasting or short catch duration). Condition factor, organ weight indexes and carcass yield decreased with fasting but not catch duration. Plasma concentrations of cortisol, glucose and lactate increased after a long catch, while plasma triglycerides decreased with fasting. Liver glycogen concentration was lower in fasted fish, and liver luminosity and chroma were higher after fasting with a long catch. Regarding flesh quality, rigor mortis resolved more slowly and final muscle pH at 48 hr post‐mortem was higher for fasted fish with a long catch time. Muscle glycogen concentration was higher in fasted fish, where chroma was also lower. Fasted fish had lower lipid oxidation, but there were no differences in fat content in muscle. Fasted fish with a long catch duration also had less monounsaturated and more saturated fatty acids. In conclusion, a long catch triggered a stress response that had negative effects on flesh quality, independently of fasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号