首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study aimed at identifying changes in natural pastures during the grazing season and investigating the effects of these changes on pasture feeding potential for high yielding dairy goats. During the study, 12 dairy goats were grazed on a 1.5 ha natural pasture for three months from April to June in 2003, 2004 and 2005. The goats were fed 0.5 kg/day of concentrate as a supplement during the grazing season. Botanical composition, herbage production and intake, crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of the pasture were determined. Live weight, milk yield, milk dry matter (DM) and fat content of the goats were monitored. The data were analyzed using a linear model, which evaluated the effects of grazing seasons in each year. Based on the three-year average, 87% of pasture was herbaceous plants and the remaining was shrubs in DM basis with Cistus creticus , Quercus ithaburensis , Pistacia atlantica and Asparagus acutifolius being the major shrub species. The herbage yield in June was significantly lower than in other months in all years ( P  = 0.001). In all experimental years, the CP content of the pasture decreased but the structural carbohydrates increased as the grazing season proceeded. While live weight was not affected by grazing periods except for 2004 ( P  = 0.001), milk yield significantly decreased with advancing grazing period ( P  = 0.001). The results of the present study indicate that natural pasture has a supportive effect in April and May on the milk yield of lactating goats which are in mid-lactation, and suggested that supplementary feeding is required in consecutive grazing periods.  相似文献   

2.
The objective was to evaluate the provision of oat silage (Avena sativa) to supplement grazing dairy cows on pastures of perennial ryegrass (Lolium perenne), festulolium (Lolium multiflorum × Festuca pratense) and white clover (Trifolium repens) during the dry season when pasture growth is limited. The experimental design was a 3 × 3 Latin square replicated three times, with nine milking Holstein cows (mean live weight 496.2 ± 33.6 kg and daily milk yield 14.8 ± 2.8 kg cow?1) under on-farm participatory rural research. Experimental periods were 14 d. Simulated grazing samples of pasture herbage were analysed for chemical composition, sward height recorded and net herbage accumulation determined from exclusion cages. Treatments were the inclusion of oat silage at T0 = 0 kg DM cow?1 d?1 of oat silage, T3 = 3 kg DM cow?1 d?1 of oat silage, and T6 = 6 kg DM cow?1 d?1 of oat silage, plus 5.0 kg fresh weight commercial concentrate and 9 h of continuous grazing. Animal variables were milk yield and composition, live weight and body condition score. Feeding costs were calculated. Mean milk yield was 18.9 ± 0.27 kg cow?1 d?1 with no differences in animal variables (p > 0.05), but feeding costs per kilogram milk increased 25% for T3 and 50% for T6. Oat silage supplementation is only viable under difficult grazing conditions.  相似文献   

3.
4.
The objective was to determine the effect of including silages of annual ryegrass (Lolium multiflorum) intercropped with winter vetch (Vicia villosa) (ARG-VV) or with common vetch (Vicia sativa) (ARG-VS) compared with maize silage (MS) on milk yield and milk composition of dairy cows grazing cultivated perennial ryegrass–white clover pastures with supplemented concentrate during the dry season. Six Holstein dairy cows with a mean yield of 19.0 kg/cow/day at the beginning of the experiment were randomly assigned to a 3 × 3 repeated Latin square. Treatments were: 8 h/day intensive grazing, 3.6 kg of dry matter (DM) per cow per day of concentrate plus MS, and ARG-VV or ARG-VS ad libitum at a stocking rate of 3.0 cows/ha for three experimental periods of 3 weeks each. Milk yield (MY) and milk composition, live weight and body condition score as well as silage and concentrate intakes were recorded during the third week of each experimental period, and pasture intake was estimated indirectly from utilised metabolisable energy. Economic analysis was obtained by preparing partial budgets. There were no statistical differences (P > 0.10) in MY, milk fat or protein content nor for live weight, but there was significant difference (P < 0.10) in body condition score. There were non-statistical differences in silage DM intake (P < 0.11); however, significant differences (P < 0.10) were obtained for estimated grazed herbage intake whilst no differences for total DM intake. Slightly higher economic returns (10%) were obtained with ARG-VS over MS, and this was 7% higher than ARG-VV. It is concluded that ARG-VS could be an option for complementing grazing for small-scale dairy production systems in the dry season as it is comparable to MS in animal performance and slightly better in economic terms.  相似文献   

5.
The objective of this study was to assess the effects of restricting access time to pasture and time of grazing allocation on grazing behaviour, daily dry matter intake (DMI), rumen fermentation, milk production and composition in dairy cows. Twenty-one autumn-calving Holstein cows were assigned to one of the following 3 treatments: providing access to a daily strip of pasture for either 8 h between 07:00 and 15:00 h (T7–15), 4 h between 07:00 and 11:00 h (T7–11), or 4 h between 11:00 and 15:00 h (T11–15). The experimental period consisted of 3 weeks of adaptation and 6 weeks of measurements. Cows were offered a daily herbage allowance of 18 kg DM/cow to ground level, 6.1 kg DM/day of a ground sorghum grain-based supplement and 5.2 kg DM/day of maize silage. Milk yield was greater for cows with 8 h access time to the pasture (25.4 vs. 24.1 for 8 and 4 h access time, respectively). Milk yield was not different between cows that access early (T7–11) or late (T11–15) to the grazing session. Milk protein yield was greater for cows with 8 h access time (0.75 kg/d) vs. 4 h access time treatments (0.72 kg/d). Cows with late access time to grazing in the morning produce more protein (0.74 kg/d) than cows with early access to the pasture (0.70 kg/d). Duration of access had a significant effect on herbage DMI (8.3 vs. 6.6 kg/d, for 8 and 4 h access, respectively), but there was no significant effect of time of grazing allocation. Intakes of concentrate and maize silage DM did not differ between treatments.  相似文献   

6.
The effects of supplementary corn silage (CS) of either 2 or 4 kg of dry matter (DM; S + 2 and S + 4, respectively) above the energy requirement for milk production and maintenance for grazing dairy cows (S) were determined. Time‐restricted grazing was used to compare the feed intake, milk production, and nitrogen and energy use of lactating cows. The experiment was carried out on two different pastures using a 3 × 3 Latin square design for each pasture. Cows were grazed for 5 h on a rotational grazing system and were fed concentrate (1 kg per 5 kg of milk yield). Herbage intake was measured using a weighing technique. To calculate the energy and nitrogen use, whole feces and urine were collected. There was no statistical effect of the pastures. Herbage intake decreased by the addition of CS (P = 0.02). The reduction of herbage DM intake per unit consumption of supplementary CS towards the S group were 0.80 and 0.45 kg for the S + 2 and S + 4 groups, respectively. The total DM intake for the S + 4 group was higher than that for the S and S + 2 groups (P = 0.02). Milk yield did not differ among treatments, even though the total DM intake for the S + 4 group was higher than that of the S and S + 2 groups. Nitrogen and energy use did not differ with the addition of CS.  相似文献   

7.
Forty-eight Friesian or Friesian-X factory supply dairy cows were divided into two groups. Group 1 received a supplement of sodiumtripolyphosphate (TPP, 25g P, 25g Na/cow/day), and group 2 a supplement of sodium chloride (25g Na/cow/day). Supplementation began at peak lactation, when the mean serum inorganic phosphorus (Pi) of all cows was 1.13 mmol/l. After four weeks, group 2 changed from NaCl to dicalcium phosphate supplementation (25g P/cow/day). Serum Pi and yields of milk, butterfat and protein were measured before, during and after supplementation. Pasture availability was assessed and P and Ca contents in pasture and the Pi content in milk were also determined. Supplementation raised serum Pi from 1.30 mmol/l (NaCI) to 1.42 mmol/l (TPP, P<0.05) but when dicalcium phosphate replaced NaCl the difference between groups disappeared (P>0.05). P supplementation had no effect on any milk parameter. Pre-grazing pasture mass above estimated grazing height averaged 2260 kg DM and contained >or=0.39 per cent P. It is concluded that a herd mean serum Pi concentration of around 1.2-1.3 mmol/l imposes no limitation to dairy production around the period of peak lactation of grazing dairy cattle.  相似文献   

8.
Small-scale dairying is an option for campesinos in Mexico. The costs of feeding are high and strategies based on quality forages are a priority. The performance, agronomic variables and feeding costs were evaluated for dairy cows continuously grazing perennial ryegrass–white clover for 9 h/day (PRG) or fed cut herbage from annual ryegrass for 8 weeks followed by 9 h/day for 6 weeks on a tethered rotational grazing pattern (ARG). All cows received 3 kg/day of an 18% crude protein (CP) concentrate. A 14-week split-plot on-farm experiment was designed with 10 cows from two participating farmers, and 1.5 ha per strategy. Milk yield was recorded weekly and milk composition, live weight and body condition score were recorded every 14 days. Net herbage accumulation was greater for ARG (8222 kg organic matter (OM)/ha) than for PRG (5915 kg OM/ha) (p < 0.05), with higher CP in PRG (p < 0.05). Milk yield was 19 kg/cow per day for PRG and 15.9 kg/cow per day for ARG (p > 0.05). Over 14 weeks, PRG produced 1422 kg more milk. There were no differences for live weight or condition score (p > 0.05), but linear regression shows a live weight gain of 0.200 kg/cow per day for PRG. Protein and fat content showed no differences (p > 0.05), but milk fat content in PRG was below standard. ARG had 60% higher costs, and margins were 38% higher in PRG. ARG has a place in rain-fed fields. The results provide viable options for improving these systems that may be suitable in their socio-economic context and their social and personal objectives.  相似文献   

9.
This study was carried out to evaluate the impact of including Acacia mearnsii tannin extract (TA) as a feed additive on nutrition and productive performance of dairy cows grazing a high‐quality temperate pasture and receiving supplementation with a concentrate feedstuff. Fourteen multiparous Holstein cows were assigned to either of the following treatments: concentrate without or with 20 g TA/kg dry matter (DM). Concentrate intake accounted for 32% of the total DM intake. Tannin addition increased the herbage DM intake by 22% (p < .05). There was no effect of TA inclusion on milk yield, milk composition, milk nitrogen (N) excretion, milk and plasma urea‐N concentration, urinary excretion of total N, urea‐N, and purine derivatives. However, TA inclusion increased the N intake and retention, total N excretion in manure, fecal N to urine N ratio, and decreased the dietary N efficiency for milk production and the percentage of ingested N excreted in urine (p < .05). In conclusion, supplementing dairy cows grazing a high‐quality temperate pasture with a concentrate containing 20 g TA/kg DM showed the potential of decreasing the proportion of ingested N excreted in urine without affecting the productive performance.  相似文献   

10.
Abstract

Forty-eight Friesian or Friesian-X factory supply dairy cows were divided into two groups. Group 1 received a supplement of sodiumtripolyphosphate (TPP, 25g P, 25g Na/cow/day), and group 2 a supplement of sodium chloride (25g Na/cow/day). Supplementation began at peak lactation, when the mean serum inorganic phosphorus (Pi) of all cows was 1.13 mmol/l. After four weeks, group 2 changed from NaCl to dicalcium phosphate supplementation (25g P/cow/day). Serum Pi and yields of milk, butterfat and protein were measured before, during and after supplementation. Pasture availability was assessed and P and Ca contents in pasture and the Pi content in milk were also determined. Supplementation raised serum Pi from 1.30 mmol/l (NaCI) to 1.42 mmol/l (TPP, P<0.05) but when dicalcium phosphate replaced NaCl the difference between groups disappeared (P>0.05). P supplementation had no effect on any milk parameter. Pre-grazing pasture mass above estimated grazing height averaged 2260 kg DM and contained ?0.39 per cent P. It is concluded that a herd mean serum Pi concentration of around 1.2–1.3 mmol/l imposes no limitation to dairy production around the period of peak lactation of grazing dairy cattle.  相似文献   

11.
N utilization at cow and field level was examined over two grazing periods of 30 days with 64 Holstein dairy cows. At cow and field level the effect of sward type (diploid vs. tetraploid perennial ryegrass, both mixed with white clover) and compressed sward height (6 vs. 10 cm) was examined. At dairy cow level the effect of urea supplementation (0 vs. 145 g/day) and energy supplementation strategy (soy hulls(am)/barley(pm) vs. barley(am)/soy hulls(pm)) was also examined. Cows grazed grass/clover swards for 7.5 h/day and were restrictively fed in the barn (3.2 kg dry matter (DM) in maize silage, 3.6 kg ground barley, 3.6 kg soy hulls per day). In none of the two periods were yield of milk (Period 1: 30.9 kg, Period 2: 25.4 kg), fat, protein and lactose significantly affected by sward type, sward height, urea supplementation or energy supplementation strategy. Urea supplementation increased the urea concentration in milk. Also low sward height and feeding soy hulls(am)/barley(pm) increased the urea concentration, probably due to a higher protein content in the sward and a higher grass intake, respectively. N utilization at cow level was highest with high sward height and no urea supplementation. Feeding soy hulls(am)/barley(pm) increased milk yield numerically but was counterbalanced by an equivalent increase in estimated grass intake, and supplementation strategy seemed therefore not to affect N utilization. At field level the N surplus was higher on diploid than on tetraploid swards (50 and 21 kg N/ha) due to a higher clover content in the diploid swards, whereas the difference in N surplus between sward heights was minimal (32 and 38 kg N/ha). Estimated N removal from the pasture in the grazing periods (intake minus excretion) increased by 5.2 kg N/ha when feeding soy hulls(am)/barley(pm), whereas with no urea supplementation the net N removal increased by only 2.5 kg N/ha. It was concluded that N utilization in dairy cows can be improved by decreasing N intake from both herbage and supplementary concentrate without compromising milk yield, and that N balance at field level could be improved by strategic barn feeding.  相似文献   

12.
A study was carried out to evaluate the influence of vitamin and trace mineral supplementation on milk production and composition in grazing dairy ewes during the dry season. Ewes (n = 50) were assigned at weaning to blocks and treatments. Ewes were daily conducted (8 h/day) on a pasture based on Italian ryegrass (Lolium multiflorum). At fold, ewes received a basal diet composed by ad libitum oat hay and a definite amount of a pelleted concentrate. Dietary treatments included: (1) the control concentrate containing background of vitamin and trace mineral only, and (2) the experimental concentrate containing the premix supplement (10 g/kg of dry matter). Vitamin and trace mineral supplementation did not affect ewes’ body weight. Milk, fat- and protein-corrected milk, fat percentage, and clotting properties were improved in ewes fed supplemented concentrate. There was a week × treatment interaction (P < 0.05) for yield of milk and corrected milk that was greatest at peak production in ewes fed the premix. Our findings indicate that in grazing dairy ewe, the dietary vitamin and trace mineral supplementation during dry season led to an increase of milk production and quality, with positive improvement in milk clotting aptitude.  相似文献   

13.
The aim of this study was to evaluate the animal performance of late lactating grazing dairy cows in response to fresh chopped maize (FCM) supplementation under a small farming system. Twenty-four multiparous Holstein dairy cows were used in a rotational grazing on a mixed alfalfa–orchard grass sward. Three treatments were evaluated: 0, 4, and 8 kg dry matter (DM) of FCM cow−1 day−1. The experimental design was a crossover, with three periods lasting 19 days each. There were no differences on individual milk production nor on milk composition. Herbage DM intake decreased (P < 0.0001) from 8.4 to 5.2 and 3.1 kg DM when increasing FCM from 0 to 4 and 8 kg DM, respectively. Total DM intake increased (P < 0.0001) with 8 kg DM of FCM, averaging 14.8 kg. Substitution rate was 0.75 and 0.67 kg of pasture per kilogram of FCM with 4 and 8 kg DM of FCM, respectively. Consequently, stocking rate (STR) increased (P < 0.0001) from 3.8 to 6.2 and 8.8 cows ha−1, and milk production per hectare increased (P < 0.0001) from 39.3 to 64.5 and 95.5 kg of milk, with 0, 4, and 8 kg DM of FCM, respectively. This means that STR increases 0.63 cows ha−1, and 0.75 kg of milk ha−1 when FCM is increased in 1 kg of DM. In conclusion, offering FCM as supplement to grazing dairy cows in their final lactation stage had no benefits in individual milk production or milk composition, but had benefits on milk production per hectare.  相似文献   

14.
The present study was conducted to investigate feed intake, milk yield, milk composition, blood metabolites and fertility in early lactation dairy cows grazing a timothy pasture. Fourteen multiparous Holstein cows that calved between 20 May and 19 July were used over a 3‐year period. The stocking rate was 3.6–4.3 cow/ha. Concentrates were fed separately at 9.5–11.5 kg/day per cow (dry matter basis) from 1 to 13 weeks postparturition. Herbage intake was estimated using chromium oxide as an indigestible marker. The mean contents of crude protein, total digestible nutrients and neutral detergent fiber of pasture during the 3‐year study period were 22.3%, 71.8% and 51.7%, and those of total diet were 18.9%, 77.3% and 40.3%, respectively. The mean herbage dry matter intake was 13.0 kg/day from 2 to 13 weeks postparturition during the study, total dry matter intake was 23.7 kg/day, the total digestible nutrients sufficiency rate was 105%, milk yield was 39.7 kg/day, and milk fat percentage was 3.30%. The decrease in bodyweight postparturition was slight. Urea nitrogen concentrations in serum were below 18.3 mg/dL. The mean days to first estrus and days open were 36 and 104 days, respectively. These results indicate that energy deficiency, decrease in bodyweight and fertility in early lactation barely occur when high producing dairy cows are fed enough grazing grass and suitable concentrates.  相似文献   

15.
The study assessed the effect of Acacia mearnsii tannin extract supplementation grazing dairy cows on dry matter (DM) intake, enteric methane (CH4) emission, and performance. Twelve Holstein cows were divided into two groups and subjected to two treatments that consisted of millet pasture (Pennisetum glaucum L.) plus supplementation with 6 kg of concentrate (750-g/kg ground corn and 250-g/kg soybean meal) including or excluding 120-g tannin extract. The trial design was a double reversal using three periods of 28 days each, with 21 days for the adaption period, and 7 days for sample collection. Herbage intake was measured using the n-alkane technique, and daily CH4 emission was measured with the sulfur hexafluoride tracer gas technique. Individual total DM intake (mean = 17.1 kg/day), herbage DM intake (mean = 11.8 kg/day), and milk production (mean = 19.2 kg/day) were similar between treatments. CH4 emission significantly decreased (32%, P < 0.05) in the animals supplemented with tannin extract, compared to non-supplemented animals. On the other hand, as proportion of DM intake or milk production, methane emission tended to decrease in tannin-supplemented animals. Supplementing dairy cows grazing a millet pasture with 120-g tannin extract reduced daily CH4 emission without affecting animal performance.  相似文献   

16.
This study compared productivity of dairy cows with different body weight (BW), but a constant ratio of maintenance to production requirements in their first lactation, in a pasture-based production system with spring calving. Two herds, Herd L (13 and 14 large cows in 2003 and 2004 respectively; average BW after calving, 721 kg) and Herd S (16 small cows in both years; 606 kg) [Correction added after online publication 14 January 2011: 16 small cows in both years; 621 kg was changed to 16 small cows in both years; 606 kg], all in their second or following lactations, were each allocated 6 ha of pasture and rotationally grazed on 10 parallel paddocks with equal herbage offer and nutritional values. Winter hay, harvested from the same pastures, was offered ad libitum in the indoor periods in a tied stall barn. Each herd received, per lactation and year, approximately 2000 kg dry matter (DM) of concentrates and of fodder beets, equally distributed to every individual. Indoors, the L-cows ingested more DM than the S-cows (18.7 vs. 16.3 kg DM/cow per day; p < 0.01), but DM intake per 100 kg of metabolic BW was similar (13.0 vs. 13.1 kg DM/cow per day). Estimates based on the n-alkane technique gave similar results on pasture (17.9 vs. 15.5 kg DM/cow per day; p < 0.001). Roughage intakes per 100 kg of metabolic BW, at 13.5 kg DM/cow per day, were similar. Mean annual yield of energy-corrected milk (ECM)/ha was slightly higher for the S-herd than the L-herd (13,026 vs. 12,284 kg) but was associated with a higher stocking rate (on average +20%) for the S-herd. Feed conversion efficiency (1.2 vs. 1.3 kg ECM/kg DM intake) and overall milk production efficiency (45.3 vs. 47.3 kg ECM/kg metabolic BW) were similar in L- and S-cows. Thus, both dairy cow types were equally efficient in utilising pasture-based forage.  相似文献   

17.
A survey was conducted on 176 smallholder dairy farms in Butere/Mumias and Kakamega districts of Western Kenya to establish the dairy production practices and constraints in the industry. There was low milk production (16.6 kg of milk per capita), which was attributed to the low number of dairy animals. The average land size was 2.4 ha with only 30.3% being allocated to pasture or fodder crops. Farmers with large farms (>2 ha) set aside bigger pieces (1.2 vs 0.4 ha) for pasture/fodder crop cultivation (p < 0.001), owned more (5.25 vs 3.18) dairy animals (p < 0.01) and produced more (9.2 vs 7.5 kg/cow per day) milk (p < 0.05) compared to those on smaller farms of less than 2 ha. The average herd size was 4.2 animals, of which only 45.0% were in milk, producing 8.0 kg/animal per day. Every kilogram of dairy meal fed increased milk production by 0.68 kg (p < 0.001). Over 90% of milk produced was consumed locally. The public institutions provided 74% of total extension services to farmers. About 49.5% of total dairy animals were bought from other districts owing to scarcity.  相似文献   

18.
A replicated randomized block trial was conducted to determine the response of Holstein cows rotationally grazing annual ryegrass-Crimson clover pasture to supplemental concentrate. Within each of 2 yr, 16 Holstein cows were assigned to one of four blocks by energy-corrected milk yield, days in milk, and parity. Treatments included one of four levels of concentrate based on the following grain to milk ratios: 0 kg concentrate or 1 kg for each 7, 5, or 3 kg of energy-corrected milk. Average chemical composition (DM basis) of pasture during each grazing season was 22.5% DM, 18.5% CP, and 21.5% ADF in 1996 and 23.5% DM, 14.6% CP, and 25.2% ADF in 1997. Concentrate DMI averaged 0, 4.4, 6.2, and 8.3 kg/d for 0, 1:7, 1:5, and 1:3 treatments in 1996, respectively. Yield of milk and components increased linearly as the amount of concentrate fed increased. A quadratic response was observed for yield of milk fat and protein as yield of these components increased up to 1:5 and then reached a plateau. Concentrate DMI in 1997 averaged 0, 4.4, 6.1, and 10.5 kg/d for 0, 1:7, 1:5, and 1:3 treatments, respectively. Yields of milk and milk protein, lactose, and solids-not-fat increased linearly as the amount of concentrate fed increased. Regression analysis predicted that pasture alone would support milk yields of 20.4 kg and that the increase in milk yield diminished with each increase in amount of concentrate fed. These data indicate that the amount of concentrate fed when high quality annual ryegrass-crimson clover pasture is readily available can be limited to 1 kg for each 4.5 kg of energy-corrected milk to optimize income over concentrate cost.  相似文献   

19.
Productivity in most Brazilian dairy herds is low and depends exclusively on pasture. To study the productive potential of pastures and to devise strategies to further improve pasture and animal productivity in this production system, studies were carried out to obtain basic on-farm information. The constraints which affect productivity and reproductive performance of dairy cows, the effects of restrictions in suckling time of calves, and strategic supplementation during the dry season upon animal production were the evaluated parameters. From March 1992 through February 1997, studies were carried out on four private farms in the northern region of the State of S?o Paulo. Between March 1992 and February 1994 (Study 1--survey phase), 142 cows (parity = 1-6) grazed pasture which consisted of signal grass (Brachiaria decumbens and Brachiaria brizanta). Once-a-month data were collected on body weight, body condition, and milk production. Reproduction parameters were assessed by milk progesterone profiles. From March 1996 to February 1997 (Study 2--intervention phase), 45 lactating dairy cows from two farms were hand-milked once a day and the calf suckling was restricted to two hours after milking. Data were collected on milk production and cow body weight. In Study 1, cows were grouped by calving date for the analysis of the reproductive and production data. Concentrations of blood metabolites, hemoglobin, and hematocrit were compared among randomly selected cows (n = 69) from all farms. Estimated pasture available per hectare (ha) at any time, crude protein (CP), and dry matter digestibility (DMD) of pasture available for grazing differed (p < 0.05) between seasons [pasture available = 1.2, 1.4, 1.8 and 2.2 t/ha (SE = 0.70); CP = 42, 60, 48 and 57 g/kg (DM) (SE = 10.1); DMD = 399, 468, 401 and 457 g/kg (DM) (SE = 21), respectively, for dry season 1992 (D92), wet season 1992 (W92), dry season 1993 (D93), and wet season 1993 (W93)]. The proportion of animals showing ovarian activity at 90 days postpartum (DPP) was higher for cows which calved in the wet season than cows which calved in the dry season. In Study 2, milk production tended to the higher (7.3 and 6.5 kg/day, respectively, for the intervention and survey studies; p = 0.08). The data suggest that milk production is being limited by pasture availability, the quality of pasture, and the lack of supplementation. We suggest that, although supplementing cows in the dry period may have an economic advantage, better pasture management needs to be introduced. Stocking rate must be adapted to pasture productivity and pasture quality throughout the year.  相似文献   

20.
The objective of this study was to evaluate the effect of vitamin E on the fat content and fatty acid profile of grazing dairy cows supplemented with microencapsulated conjugated linoleic acid. Eight New Zealand Holstein cows in a rotational grazing system were used, in a crossover design, randomly assigned to four treatments: control (base diet with microencapsulated conjugated linoleic acid) and three levels of vitamin E (control with 4,000; 8,000; and 12,000 IU/cow per day). All the cows received a supplement apportioning 5 g of cis-9, trans-11, and 5 g of trans-10, cis-12 of conjugated linoleic acid. Moreover, they each received 4-kg dry matter (DM) concentrate and 3.2-kg DM corn silage every day. There were no differences in dry matter intake, milk production, milk composition (fat, protein, and lactose), or fatty acid profile as an effect of vitamin E, and fat content remained under 3 % in all treatments. Therefore, under the conditions that this experiment was carried out, high concentrations of vitamin E in the diet of grazing dairy cows do not inhibit milk fat depression associated with conjugated linoleic acid. It also has no effect on the fatty acid profile of the milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号