首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cereal Chemistry》2017,94(2):298-309
Ethanol production in 2015 was over 15 million gallons in the United States, and it is projected to increase in the next few years to meet market demands. With the continued growth in the ethanol industry, there has been enormous expansion in distillers grains production. Because the local market for distillers dried grains with solubles (DDGS) is often saturated, it is essential to transport DDGS long distances, across the United States and to international markets. Caking and agglomeration of DDGS particles in hoppers and other storage structures are typical during transportation. The current study deals with DDGS prepared by combining condensed distillers solubles (CDS) with distillers wet grains and then drying at varying temperatures. DDGS was stored in conical hoppers under varying ambient temperature, consolidation pressure, and time conditions. We investigated the effects of CDS (10, 15, and 20% wb), drying temperature (100, 200, and 300°C), drying time (20, 40, and 60 min), cooling temperature (0, 25, and 50°C), consolidation pressure (0, 1.72, and 3.43 kPa), and consolidation time (0, 3, and 6 days) levels on various flow parameters. To examine these factors, Taguchi's experimental design with an L 18 orthogonal array was implemented. Response surface modeling yielded mass flow rate = f (Hausner ratio, angle of repose) with R 2 = 0.99, and it predicted moisture content for good, fair, and poor flow. Results showed that drying temperature, drying time, and cooling type were the main factors in predicting mass flow rate. The Johansson model for predicted mass flow rate was calibrated with experimental data, and a new parameter, compressibility factor, with a value of 0.96 g2/(min cm3), was determined to quantify the divergence of compressible and cohesive materials (such as DDGS) for free‐flowing bulk solids. Thus, the predicted models may be beneficial for quantitative understanding of DDGS flow.  相似文献   

2.
Distillers dried grains with solubles (DDGS) is a bulk material that has been widely used as a protein source for ruminants and nonruminants for more than two decades. DDGS is the nonfermentable processing residue (i.e., protein, fiber, fat, and ash) from fuel ethanol manufacturing. With the exponential growth of the fuel ethanol industry in the past several years, significant quantities (≈13.0 million tons in 2007) of distillers grains are now being produced. To effectively utilize these coproduct streams in the domestic market, DDGS must be transported greater distances and must be stored until final use. DDGS flow is often problematic as it can become restricted by caking and bridging that occur during shipping and storage. This flowability problem can present itself during dynamic and static flow conditions. This issue most likely results from physical or chemical interactions between particles (including particle size and shape), storage moisture, temperature, and relative humidity variations, as well as storage time. The objective of this study was to examine the effect of five moisture content levels (10, 15, 20, 25, and 30% db) on the resulting physical and chemical properties of DDGS with four soluble levels (10, 15, 20, and 25% db). To produce these materials, condensed distillers solubles (CDS) were combined with DDG, and appropriate quantities of water were added to adjust moisture contents. Carr indices were used to quantify the flowability of the DDGS samples. The results showed that both soluble level and moisture content had noticeable effects on physical and flow properties (e.g., aerated bulk density, packed bulk density, and compressibility). According to dispersibility, flowability index, and floodability index, flowability generally declined significantly (P < 0.05) with an increase in moisture content for most of the soluble levels under consideration. The color values and protein content of the DDGS were significantly affected (P < 0.05) as soluble level increased as well.  相似文献   

3.
Distillers dried grains with solubles (DDGS) is a widely used animal feed. But transportation of DDGS is often troublesome because of its stickiness. DDGS is formed by combining condensed distillers solubles (CDS) with distillers wet grains (DWG) and then drying. As a first step toward understanding drying behavior, this study's objective was to investigate batch‐drying kinetic behavior of DWG with three CDS addition levels (10, 15, and 20% wb) and three drying‐temperature levels (100, 200, and 300°C). Multiple nonlinear mathematical models were used to fit experimental drying data for moisture content versus drying rate. A new comprehensive model was developed (R2 = 0.89, SEM = 18.60) from a modified Chen and Douglas model to incorporate CDS and drying‐temperature terms. Drying temperature affected drying rate more significantly than did changes in CDS level; thus, drying temperature was the main effect and CDS was a subeffect. Increasing the drying temperature increased the drying rate significantly for all levels of CDS addition. This model can be used for predicting DWG drying behavior under broad operating conditions; it can be used to help the industry produce better DDGS, which may thus result in better DDGS handling and transport characteristics.  相似文献   

4.
Neural network (NN) modeling techniques were used to predict flowability behavior of distillers dried grains with solubles (DDGS) prepared with varying levels of condensed distillers solubles (10, 15, and 20%, wb), drying temperatures (100, 200, and 300°C), cooling temperatures (–12, 25, and 35°C), and storage times (0 and 1 month). Response variables were selected based on our previous research results and included aerated bulk density, Hausner ratio, angle of repose, total flowability index, and Jenike flow index. Various NN models were developed using multiple input variables in order to predict single‐response and multiple‐response variables simultaneously. The NN models were compared based on R2, mean square error, and coefficient of variation obtained. In order to achieve results with higher R2 and lower error, the number of neurons in each hidden layer, the step size, the momentum learning rate, and the number of hidden layers were varied. Results indicate that for all the response variables, R2 > 0.83 was obtained from NN modeling. Compared with our previous studies, NN modeling provided better results than either partial least squares modeling or regression modeling, indicating greater robustness in the NN models. Surface plots based on the predicted values from the NN models yielded process and storage conditions for favorable versus cohesive flow behavior for DDGS. Modeling of DDGS flowability using NN has not been done before, so this work will be a step toward the application of intelligent modeling procedures to this industrial challenge.  相似文献   

5.
Distillers dried grains with solubles (DDGS) is the main coproduct of the U.S. fuel ethanol industry and has significantly impacted the livestock feed markets in recent years. Particle agglomeration and subsequent flowability problems during storage and transport are often a hindrance, a nuisance, and expensive. This paper aims at characterizing the glass transition (Tg) and sticky point (Ts) temperatures of DDGS samples prepared with varying condensed distillers solubles (CDS) levels (10, 15, and 20%, wb), drying temperatures (100, 200, and 300°C), and moisture contents (0, 10, and 20%, db), and it discusses implications on DDGS flowability behavior. Distillers wet grains were combined with specified levels of CDS and dried in a convection‐style laboratory oven to produce DDGS. Subsequently, predetermined amounts of water were added to the DDGS to achieve desired moisture content levels. To determine Tg (°C), a differential scanning calorimeter was used, whereas Ts (°C) was determined through a novel technique with a rheometer. Results indicated high correlations between observed Ts and observed Tg (R2 = 0.87) data for DDGS samples. Also, the empirical model for predicted Tg = f (drying temperature, CDS level, and moisture content) based on the Gordon–Taylor model showed favorable R2 (0.74). Stickiness of DDGS increased with an increase in moisture content, indicating flow problems resulting from moisture. It was found that drying temperatures and CDS levels each had significant effects on Tg and Ts as well.  相似文献   

6.
Fuel ethanol production from grains is mainly based on dry‐grind processing, during which phytate is concentrated about threefold in distillers dried grains with solubles (DDGS), a major coproduct. To reduce phytate in DDGS, Natuphos and Ronozyme industrial phytase preparations were used to treat commercially made thin stillage (TS). Changes in phosphorous (P) profile were monitored, and effects of reaction temperature, time, and enzyme concentration were investigated. Results showed that at a temperature ≤60°C for Natuphos phytase (≤70°C for Ronozyme phytase) and a concentration ≤4.8 FTU/mL of TS for Natuphos phytase (≤48 FYT/mL for Ronozyme phytase), a complete phytate hydrolysis (phytate P decreased to 0) could be achieved within 5–60 min of enzymatic treatment. Reduction in phytate P was generally accompanied by increase in inorganic P, whereas total P remained relatively unchanged. When condensed distillers solubles (CDS), the concentrated form of TS, was used as the substrate, phytate hydrolysis by each of the two enzyme preparations was as effective as on TS. Because a previous study from the author's laboratory showed that all types of P are mostly concentrated in TS and CDS but much less in distillers wet grains, phytase treatments of TS and CDS described in the present study can be an effective means in producing low‐phytate DDGS.  相似文献   

7.
Two experiments were conducted to measure the reactive Lys concentration in corn distillers dried grains with solubles (DDGS). In expt 1, reactive Lys was measured in 33 sources of DDGS using two procedures: the homoarginine procedure and the furosine procedure. The concentration of reactive Lys in DDGS was then correlated with the concentration of standardized ileal digestible (SID) Lys in DDGS fed to growing pigs. In expt 2, a factorial experiment was conducted using four ratios of condensed distillers solubles (CDS) and wet distillers grain (WDG). The ratios (wt/wt) of CDS to WDG were 0:100, 20:80, 40:60, and 100:0, and four subsamples from each combination were freeze-dried or oven-dried at 50, 75, or 100 degrees C. The dried samples were designated DDG, DDGS 20, DDGS 40, and CDS, respectively. All subsamples were analyzed for total Lys and for reactive Lys using the homoarginine procedure. Results of expt 1 showed that only 74.1% of total Lys was reactive if measured by the homoarginine procedure and 83.5% was reactive if measured by the furosine procedure. The concentration of SID Lys in DDGS was correlated with the concentration of reactive Lys measured by the homoarginine procedure ( r (2) = 0.70, P < 0.05) and by the furosine procedure ( r (2) = 0.66, P < 0.05). In expt 2, the concentrations of total Lys and reactive Lys were reduced ( P < 0.05) when addition of CDS or drying temperature of the samples was increased, but the reduction was greater ( P < 0.05) when both CDS addition and drying temperature were increased at the same time. After oven-drying at 100 degrees C, 75.7% of total Lys was reactive in DDG, but only 27.6 and 10.2% were reactive in DDGS 20 and DDGS 40, respectively. In conclusion, reactive Lys is correlated with the concentration of SID Lys in DDGS, and addition of CDS exacerbates the negative effects of heating on the concentration of total Lys and reactive Lys in DDGS.  相似文献   

8.
《Cereal Chemistry》2017,94(6):934-941
Distillers dried grains with solubles (DDGS) are widely used as feed for cattle, dairy, and swine because of their protein, fiber, amino acids, fat, and other vital nutrients. Corn ethanol plants in the United States recently have started extracting oil from DDGS to gain additional profit, thus producing low‐oil DDGS. So far, there has been no comprehensive study reported with bulk handling and flowability properties of low‐oil DDGS. We measured the air resistance, moisture diffusivity, and air permeability properties for low‐oil DDGS at different temperature and relative humidity conditions, along with some important physical and chemical properties. Physical property comparisons between regular and low‐oil DDGS showed differences in key properties such as particle size, color, density, porosity, and angle of repose. The modified Henderson model predicted the equilibrium moisture content (EMC)–equilibrium relative humidity (ERH) relationship of low‐oil DDGS with a low standard error of regression value (0.008); it showed no pattern in the residuals and was judged the most appropriate model tested for EMC‐ERH predictions. Results of EMC‐ERH nonlinear modeling were used to define conditions for moisture diffusivity. Moisture diffusivities of low‐oil DDGS at varying drying temperatures ranged from 0.74 × 10−11 to 1.77 ×10−11m2/s. The properties are important for understanding and modeling heat and moisture transport through and flow properties of low‐oil DDGS.  相似文献   

9.
With the U.S. fuel ethanol industry projected to grow during the next several years, supplies of distillers dried grains with solubles (DDGS) are anticipated to continue to grow as well. DDGS is used primarily as livestock feed. Much of the DDGS must be shipped, often over large distances, outside the Corn Belt (which is where most of the corn‐based ethanol plants are currently located). Stickiness and caking among particles is a common issue for DDGS, and it often leads to flowability problems. To address this, the objective of this study was to understand the cross‐sectional and surface natures of DDGS particles from five ethanol plants, and how they interact with DDGS properties. This study examined the distribution patterns of chemical components within cross‐sections, within section edges (i.e., surface layers), and on surfaces using standard staining techniques; chemical composition was determined using standard protocols; and physical and flowability properties were also determined. Crude protein in the samples was 28.33–30.65% db, crude fat was 9.40–10.98% db, and neutral detergent fiber (NDF) was 31.84–39.90% db. Moisture contents were 4.61–8.08% db, and geometric mean diameters were 0.37–0.52 mm. Cross‐sectional staining showed protein levels of 19.57–40.39%, and carbohydrate levels of 22.17–43.06%, depending on the particle size examined and the production plant from which the DDGS was sampled. Staining of DDGS particles indicated a higher amount of surface layer protein compared with carbohydrate thickness in DDGS particles that had a lower flow function index (which indicated potential flow issues). Additionally, surface fat staining suggested that higher surface fat also occurred in samples with worse flow problems. This study represents another step toward understanding why DDGS particles stick together during storage and transport, and will hopefully help to improve DDGS material handling strategies.  相似文献   

10.
One of the fastest growing industries in the United States is the fuel ethanol industry. In terms of ethanol production capability, the industry has grown by more than 600% since the year 2000. The major coproducts from corn‐based ethanol include distillers dried grains with solubles (DDGS) and carbon dioxide. DDGS is used as a livestock feed because it contains high quantities of protein, fiber, amino acids, and other nutrients. The goal of this study was to quantify various chemical and physical properties of DDGS, distillers wet grains (DWG), and distillers dried grain (DDG) from several plants in South Dakota. Chemical properties of the DDGS included crude ash (5.0–21.93%), neutral detergent fiber (NDF) (26.32–43.50%), acid detergent fiber (ADF) (10.82–20.05%), crude fiber (CF) (8.14–12.82%), crude protein (27.4–31.7%), crude fat (7.4–11.6%), and total starch (9.19–14.04%). Physical properties of the DDGS included moisture content (3.54–8.21%), Aw (0.42–0.53), bulk density (467.7–509.38 kg/m3), thermal conductivity (0.05–0.07 W/m·°C), thermal diffusivity (0.1–0.17 mm2/sec), color L* (36.56–50.17), a* (5.2–10.79), b* (12.53–23.36), and angle of repose (25.7–47.04°). These properties were also determined for DWG and DDG. We also conducted image analysis and size determination of the DDGS particles. Carbon group characterization in the DDGS and DDG samples were determined using NMR spectroscopy; O‐alkyl comprised >50% of all DDGS samples. Results from this study showed several possibilities for using DDGS in applications other than animal feed. Possibilities include harvesting residual sugars, producing additional ethanol, producing value‐added compounds, using as food‐grade additives, or even using as inert fillers for biocomposites.  相似文献   

11.
In recent years, increasing demand for ethanol as a fuel additive and decreasing dependency on fossil fuels have resulted in a dramatic increase in the amount of grains used for ethanol production. Dry-grind is the major process, resulting in distillers dried grains with solubles (DDGS) as a major coproduct. Like fuel ethanol, DDGS has quickly become a global commodity. However, high compositional variation has been the main problem hindering its use as a feed ingredient. This review provides updated information on the chemical composition of distillers grains in terms of nutrient levels, changes during dry-grind processing, and causes for large variation. The occurrence in grain feedstock and the fate of mycotoxins during processing are also covered. During processing, starch is converted to glucose and then to ethanol and carbon dioxide. Most other components are relatively unchanged but concentrated in DDGS about 3-fold over the original feedstock. Mycotoxins, if present in the original feedstock, are also concentrated. Higher fold of increases in S, Na, and Ca are mostly due to exogenous addition during processing, whereas unusual changes in inorganic phosphorus (P) and phytate P indicate phytate hydrolysis by yeast phytase. Fermentation causes major changes, but other processing steps are also responsible. The causes for varying DDGS composition are multiple, including differences in feedstock species and composition, process methods and parameters, the amount of condensed solubles added to distiller wet grains, the effect of fermentation yeast, and analytical methodology. Most of them can be attributed to the complexity of the dry-grind process itself. It is hoped that information provided in this review will improve the understanding of the dry-grind process and aid in the development of strategies to control the compositional variation in DDGS.  相似文献   

12.
Distillers dried grains with solubles (DDGS), the major coproduct from the corn‐based fuel ethanol industry, is primarily used as livestock feed. Due to high protein, fiber, and energy contents, there is a high demand for DDGS. Flowability of DDGS is often hindered due the phenomenon of caking. Shipping and handling of DDGS has thus become a major issue due to bridge formation between the DDGS particles. The objective of this investigation was to measure flowability characteristics of DDGS samples from five ethanol plants in the north central region of the United States. Carr and Jenike tests were performed and the resulting data were mathematically compared with a previously developed empirical model. The largest particles had an average geometric mean diameter (GMD) of 1.19 mm, while the lowest particle size had an average GMD of 0.5 mm. Soluble solid levels were ≈10.5–14.8% (db). The effective angle of friction (δ) was 43.00–57.00°. Additionally, a few parameters exhibited fairly high linear correlations, including aerated and packed bulk densities (r = 0.97), geometric standard deviation and Carr compressibility (r = 0.71), geometric standard deviation and Hausner ratio (r = –0.70). Overall flowability assessment indicated that the commercial DDGS samples did have the potential for flow problems, although no samples exhibited complete bridging. Quantifying DDGS flowability is a necessary step toward overcoming this logistical challenge facing the fuel ethanol industry.  相似文献   

13.
Three different modified dry‐grind corn processes, quick germ (QG), quick germ and quick fiber (QGQF), and enzymatic milling (E‐Mill) were compared with the conventional dry‐grind corn process for fermentation characteristics and distillers dried grains with solubles (DDGS) composition. Significant effects were observed on fermentation characteristics and DDGS composition with these modified dry‐grind processes. The QG, QGQF, and E‐Mill processes increased ethanol concentration by 8–27% relative to the conventional dry‐grind process. These process modifications reduced the fiber content of DDGS from 11 to 2% and increased the protein content of DDGS from 28 to 58%.  相似文献   

14.
With increasing production of distillers dried grains with solubles (DDGS), both fuel ethanol and animal feed industries are demanding standardized protocols for characterizing quality. AOCS Approved Procedure (Am 5‐04) was used for measuring crude oil content in milled corn and resulting DDGS. Selected factors, including sample type (milled corn, DDGS), sample origin (ethanol plant 1, 2, 3), sample particle size (original matrix, <0.71 mm, <0.50 mm mesh opening; the last two materials were obtained by grinding and sieving), solvent type (petroleum ether, hexane), extraction time (30, 60 min), and postextraction drying time (30, 60 min) were investigated by a complete factorial design. For milled corn, only sample origin and extraction time had significant effects (P < 0.05) on crude oil values measured, but for DDGS, besides those two factors, sample particle size, solvent type, and drying time also had significant effects. Among them, the particle size of DDGS had the most effect. On average, measured oil content in DDGS ranged from 11.11% (original matrix) to 12.12% (<0.71 mm) and to 12.55% (<0.50 mm). For measuring the crude oil content of DDGS, particle size reduction, 60 min of extraction, and 60 min of drying are recommended. Regardless of the underlining factors, the method was very repeatable (standard errors <0.05). The observed particle size effect on crude oil analysis of DDGS suggests the need for similar confirmations using other analytical methods.  相似文献   

15.
Wider exploration of ethanol coproduct uses is necessary as the ethanol industry continues to face challenges. Currently, process streams such as thin stillage and condensed distillers solubles (CDS) are processed into distillers dried grains with solubles and used as animal feeds, but other higher value opportunities may exist. The objective of this study was to identify chemical components and quantify physical properties of CDS and thin stillage. Protein, organic acid, and sugar profiles were determined. Zein protein was identified, and glycerol was determined to have a concentration of 18.8 g/L in thin stillage and 63.2 g/L in CDS. Physical properties including density, thermal conductivity, thermal diffusivity, and rheological behaviors were also examined. Thermal conductivity of thin stillage and CDS was approximately 0.54 and 0.45 W/m°C, respectively. Quantification of the physical properties and identification of the chemical constituents pave the way for exploration of new value‐added uses for thin stillage and CDS.  相似文献   

16.
We investigated whether nitrification inhibitor nitrapyrin can reduce nutrient leaching and increase nutrient uptake by corn (Zea mays L.) in cattle manure amended soil. Amendments included non-amended check (CK), urea (Urea), REG (manure from cattle fed barley grain), and DDGS (manure from cattle fed 60% dried distillers grains with solubles), co-applied with or without nitrapyrin and leached or unleached with water. Nitrapyrin reduced (P < 0.01) leaching of nitrate by 56, 32, and 24% from DDGS, REG, and Urea treatments, respectively, and also reduced (P < 0.05) leaching of phosphate (58%), potassium (39%), calcium (39%), and magnesium (39%) from DDGS treatment. While nitrapyrin reduces the rate of ammonium conversion to nitrate, higher magnesium and phosphate levels in DDGS-amended soil favor struvite formation and reduce their leaching. Corn biomass and nutrient uptake were higher (P < 0.01) in DDGS and Urea than CK and REG treatments, but remained unaffected by nitrapyrin. The benefits of nitrapyrin should be further investigated under field conditions.

Abbreviations: DCD, dicyandiamide; DDGS, dried distillers grains with solubles; NI, nitrification inhibitor; TP, total P; TN, total N.  相似文献   


17.
An acidic method of zein extraction from DDGS   总被引:3,自引:0,他引:3  
Zein with a higher intrinsic viscosity and phosphorus content, similar protein content, lower yellowness, and at potentially much lower cost than commercially available zein was obtained from distillers dried grains with solubles (DDGS). A novel extraction method using acidic conditions in the presence of a reducing agent has been used to obtain about 10% aqueous ethanol soluble zein from DDGS. The optimum pH, time, temperature, and amount of reducing agent that can produce zein with high quality and yield have been developed. In addition to the zein, about 17% oil based on the dry weight of DDGS has also been obtained during zein extraction. The zein obtained from this research is expected to be suitable for use as fibers, films, and binders and in paints.  相似文献   

18.
As the quantity of ethanol produced continues to increase, the amount of distillers dried grains with solubles (DDGS), the primary coproduct of ethanol manufacturing, has become more widely available. Currently, the main consumer of DDGS is the livestock industry, but new value‐added uses are garnering interest. With the increase in the availability of, and demand for DDGS, transportation has become an important issue because DDGS must be shipped increasingly long distances using railways. Rail transportation is expensive, especially considering the quantities of DDGS that can be loaded onto unit trains. DDGS often has low bulk density and poor flowability characteristics. This study examined compression effects on particle arrangements as quantified by bulk density and compressibility of the DDGS. Mean loose bulk density was 446.18 kg/m3. A linear relationship (R2 = 0.982 for 50 N applied force and R2 = 0.959 for 1 kN applied force) was observed between the applied stress (≈0.0–0.0065 and ≈0.0–0.13 MPa, respectively) and the resulting packed bulk density (≤470.21 and ≤555.03 kg/m3, respectively). Compressive stress increased curvilinearly (R2 = 0.994 for the 50 N load and R2 = 0.997 for the 1 kN load) as the applied strain increased (≈0.0–0.007% and 0.0–24.0%, respectively). As the loading increased, compressibility increased 5.11–19.22%. Bulk restitution after loading was removed was 0.53–0.61. Required storage volume is reduced when the bulk density is increased. But flowability characteristics should improve as the compressibility, and thus the bulk density, of the product is reduced.  相似文献   

19.
Recently, the Elusieve process, a combination of elutriation (air classification) and sieving (screening) was developed to separate fiber from distillers dried grains with solubles (DDGS) to increase DDGS utilization in nonruminant (poultry and swine) diets. Elusieve process produces three products: 1) Pan DDGS, with 5% higher protein content than conventional DDGS, which would be used at higher inclusion levels in broiler diets because of low fiber content; 2) Big DDGS, with nearly the same protein content as conventional DDGS, which would be used at same inclusion levels as conventional DDGS; and 3) Fiber product. The objective of this study was to determine and compare pellet‐mill throughput, power consumption, and pellet quality for broiler diets incorporating different levels (0, 10, and 20%) of conventional DDGS and DDGS products from Elusieve process. Poultry oil contents were lower (1.5–1.6%) in diets comprising Pan DDGS and diets without DDGS than in the other diets (2.2–3.1%). The feed throughput was not affected by inclusion levels or type of DDGS. Pellet quality (pellet durability index [PDI]) for diets comprising Pan DDGS (both 10 and 20% inclusion levels) was significantly better than PDI for diets comprising conventional DDGS, Big DDGS, and the diet without DDGS. Better pellet quality of diets comprising Pan DDGS could be due to lower quantity of poultry oil used as well as compositional characteristics such as low fiber and high protein. Diets with Big DDGS had similar pelleting characteristics to those with conventional DDGS. Pellet quality deteriorated at higher inclusion levels of conventional DDGS, Big DDGS, and Enhanced DDGS. Considering that Pan DDGS would be included at higher inclusion levels in broiler diets, superior pellet quality of diets comprising Pan DDGS is beneficial.  相似文献   

20.
Extractability and molecular modifications of gliadin and glutenin proteins withdrawn from different stages of a commercial ethanol fuel/distillers dried grains with solubles (DDGS) process using a wheat feedstock were investigated. Materials were taken postliquefaction (PL), postdistillation (whole stillage), and postdrying (DDGS) during the process and then fractionated to separate the gliadins and the soluble high‐ and low‐molecular‐weight glutenins following a modified Verbruggen extraction method. Each fraction was characterized based on the extraction efficiencies within various aqueous alcohols of propan‐1‐ol, electrophoretic patterns, intrinsic and extrinsic fluorescence, free and total sulfhydryl content, and total disulfide bond levels. Findings indicated significant changes to the composition of extracted proteins and modifications to the protein structure (i.e., surface properties and conformation) throughout the ethanol/DDGS process, beginning with the first step of production (PL, ≈83°C). Overall, processing resulted in a shift toward an unextractable gluten matrix, accompanied by increases in hydrophobicity, disulfide bridging, and excessive protein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号