首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to examine the effects of soil moisture, irrigation pattern, and temperature on gaseous and leaching losses of carbon (C) and nitrogen (N) from soils amended with biogas slurry (BS). Undisturbed soil cores were amended with BS (33 kg N ha−1) and incubated at 13.5°C and 23.5°C under continuous irrigation (2 mm day−1) or cycles of strong irrigation and partial drying (every 6 weeks, 1 week with 12 mm day−1). During the 6 weeks after BS application, on average, 30% and 3.8% of the C and N applied with BS were emitted as carbon dioxide (CO2) and nitrous oxide (N2O), respectively. Across all treatments, a temperature increase of 10°C increased N2O and CO2 emissions by a factor of 3.7 and 1.7, respectively. The irrigation pattern strongly affected the temporal production of CO2 and N2O but had no significant effect on the cumulative production. Nitrogen was predominantly lost in the form of nitrate (NO3). On average, 16% of the N applied was lost as NO3. Nitrate leaching was significantly increased at the higher temperature (P < 0.01), while the irrigation pattern had no effect (P = 0.63). Our results show that the C and N turnovers were strongly affected by BS application and soil temperature whereas irrigation pattern had only minor effects. A considerable proportion of the C and N in BS were readily available for soil microorganisms.  相似文献   

2.
During the intensive flood in May–June 2010, the floodplains in Little Poland Vistula Gap, used mostly for agriculture, were waterlogged for a period of over 1 month. The aim of the study was to assess the effect of the flood on the level of contamination of the soils in this region. The analysis included basic physicochemical soil properties, contents of ten metals, and concentrations of 16 polycyclic aromatic hydrocarbons (PAHs). The studies cover two territories on opposite sites of the river Vistula (Wilkow and Janowiec) differing in their areas (70 and 4.6 km2) and time of water logging (30 and 10 days). Forty soil samples were collected from both areas immediately after the flood event from the upper (0–30 cm) soil layer together with four samples from the 30–60-cm depth layer. This was supplemented by eight samples from the flood-deposited sediment layer (thickness, 2 cm). The concentrations of identified metals (As, Ba, Cr, Sn, Zn, Cd, Co, Cu, Ni, Pb) at all the sampling points were below the Polish legal limits for the upper layer of soils for agriculture use. The same regarded the median contents of nine PAHs compounds specified in the Polish regulations. In both areas, the median contents of Σ16 PAHs (0.21–0.35 mg kg−1), Zn (10.3–10.6 mg kg−1), Pb (9.2–10.7 mg kg−1), and Cd (0.03 mg kg−1) were much below the mean concentrations of those contaminants in arable soils on the national and European levels. The results show that this severe flooding episode in “clean” agricultural area had no immediate negative impact on the soils as regards the basic physicochemical properties (organic matter content, acidity, nitrogen content) and did not result in excessive soil contamination.  相似文献   

3.
Secondary salinity effects on soil microbial biomass   总被引:2,自引:0,他引:2  
Secondary soil salinilization is a big problem in irrigated agriculture. We have studied the effects of irrigation-induced salinity on microbial biomass of soil under traditional cotton (Gossypium hirsutum L.) monoculture in Sayhunobod district of the Syr-Darya province of northwest Uzbekistan. Composite samples were randomly collected at 0–30 cm depth from weakly saline (2.3 ± 0.3 dS m−1), moderately saline (5.6 ± 0.6 dS m−1), and strongly saline (7.1 ± 0.6 dS m−1) replicated fields, 2-mm sieved, and analyzed for pH, electrical conductivity, total C, organic C (COrg), and extractable C, total N and P, and exchangeable ions (Ca2+, Mg2+, K+, Na+, Cl, and CO32−), microbial biomass (Cmic). The Na+ and Cl concentrations were 36-80% higher in strongly saline compared to weakly saline soil. The COrg concentration was decreased by 10% and CExt by 40% by increasing soil salinity, whereas decrease in Cmic ranged from 18-42% and the percentage of COrg present as Cmic from 8% to 26%. We conclude that irrigation-induced secondary salinity significantly affects soil chemical properties and the size of soil microflora.  相似文献   

4.
We compared, from 2004 through 2006, rates of soil–atmosphere CH4 exchange at permanently established sampling sites in a temperate forest exposed to ambient (control plots; ∼380 μL L−1) or elevated (ambient + 200 μL L−1) CO2 since August 1996. A total of 880 observations showed net atmospheric CH4 consumption (flux from the atmosphere to the soil) from all static chambers most of the time at rates varying from 0.02 mg m−2 day−1 to 4.5 mg m−2 day−1. However, we infrequently found net CH4 production (flux from the soil to the atmosphere) at lower rates, 0.01 mg m−2 day−1 to 0.08 mg m−2 day−1. For the entire study, the mean (±SEM) rate of net CH4 consumption in control plots was higher than the mean for CO2-enriched plots, 0.55 (0.03) versus 0.51 (0.03) mg m−2 day−1. Annual rates of 184, 196, and 197 mg m−2 for net CH4 consumption at control plots during the three calendar years of this study were 19, 10, and 8% higher than comparable values for CO2 enriched plots. Differences between treatments were significant in 2004 and 2005 and nearly significant in 2006. Volumetric soil water content was consistently higher at CO2-enriched sites and a mixed-effects model identified a significant soil moisture x CO2 interaction on net atmospheric CH4 consumption. Increased soil moisture at CO2-enriched sites likely increases diffusional resistance of surface soils and the frequency of anaerobic microsites supporting methanogenesis, resulting in reduced rates of net atmospheric CH4 consumption. Our study extends our observations of reduced net atmospheric CH4 consumption at CO2-enriched plots to nearly five continuous years, suggesting that this is likely a sustained negative feedback to increasing atmospheric CO2 at this site.  相似文献   

5.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

6.
In this study, the effects of 1 h aeration, nitrogen gas N2(g) sparging (15 and 30 min) and increasing ferric ions (Fe+3) as FeSO4 (10, 20 and 50 mg L−1) and Fe3O4 nanoparticles (1, 2 and 4 g L−1) concentrations on three less hydrophobic and three more hydrophobic polycyclic aromatic hydrocarbons (PAHs) and toxicity removals from a petrochemical industry in Izmir (Turkey) were investigated in a sonicator with a power of 650 W and an ultrasound frequency of 35 kHz; 1 h aeration increased the yields in benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene PAHs (less hydrophobic) from 62% to 67% to around 95–97% after 150 min sonication at 60°C. However, 1 h aeration did not contribute to the yields of more hydrophobic PAHs (indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene). The maximum yields were obtained at acidic and alkaline pH for more and less hydrophobic PAHs, respectively, after 60 and 120 min sonication at 30°C; 30 min N2(g) sparging, 50 mg L−1 Fe+3 increased the yields of less hydropobic PAHs after 150 min sonication at 60°C. Two milligrams per liter of Fe3O4 nanoparticles increased both less (87–88%) and more (96–98%) hydrophobic PAH yields. The Daphnia magna acute toxicity test showed that the toxicity decreased significantly with an hour aeration, 30 min N2(g) sparging, 50 mg L−1 Fe+3 and 2 g L−1 Fe3O4 nanoparticles at 60°C after 120 and 150 min sonications. Vibrio fischeri was found to be more resistant to the sonicated samples than D. magna. Significant correlations were found between the physicochemical properties of sonicated PAHs and acute toxicities both organisms.  相似文献   

7.
《Soil biology & biochemistry》2001,33(7-8):1077-1093
We studied soil moisture dynamics and nitrous oxide (N2O) fluxes from agricultural soils in the humid tropics of Costa Rica. Using a split-plot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter content, water retention capacity, and hydraulic conductivity. The top 2–3 cm of the soils consists of distinct small aggregates (dia. <0.5 cm). We measured a strong gradient of bulk density and moisture within the top 7 cm of the clay soil. Using automated sampling and analysis systems we measured N2O emissions at 4.6 h intervals, meteorological variables, soil moisture, and temperature at 0.5 h intervals. Mean daily soil moisture content at 5 cm depth ranged from 46% water filled pore space (WFPS) on clay in April 1995 to near saturation on loam during a wet period in February 1996. On both soils the aggregated surface layer always remained unsaturated. Soils emitted N2O throughout the year. Mean N2O fluxes were 1.04±0.72 ng N2O-N cm−2 h−1 (mean±standard deviation) from unfertilized loam under annual crops compared to 3.54±4.31 ng N2O-N cm−2 h−1 from the fertilized plot (351 days measurement). Fertilization dominated the temporal variation of N2O emissions. Generally fluxes peaked shortly after fertilization and were increased for up to 6 weeks (‘post fertilization flux’). Emissions continued at a lower rate (‘background flux’) after fertilization effects faded. Mean post-fertilization fluxes were 6.3±6.5 ng N2O-N cm−2 h−1 while the background flux rate was 2.2±1.8 ng N2O-N cm−2 h−1. Soil moisture dynamics affected N2O emissions. Post fertilization fluxes were highest from wet soils; fluxes from relatively dry soils increased only after rain events. N2O emissions were weakly affected by soil moisture during phases of low N availability. Statistical modeling confirmed N availability and soil moisture as the major controls on N2O flux. Our data suggest that small-scale differences in soil structure and moisture content cause very different biogeochemical environments within the top 7 cm of soils, which is important for net N2O fluxes from soils.  相似文献   

8.
Red lead (Pb3O4) has been used extensively in the past as an anti-corrosion paint for the protection of steel constructions. Prominent examples being some of the 200,000 high-voltage pylons in Germany which have been treated with red lead anti-corrosion paints until about 1970. Through weathering and maintenance work, paint compounds and particles are deposited on the soils beneath these constructions. In the present study, six such “pylon soils” were investigated in order to characterize the plant availability and plant uptake of Pb, Cd, and Zn. For comparison, three urban soils with similar levels of heavy metal contamination were included. One phase extractions with 1 M NH4NO3, sequential extractions (seven steps), and extractions at different soil pH were used to evaluate the heavy metal binding forms in the soil and availability to plants. Greenhouse experiments were conducted to determine heavy metal uptake by Lolium multiflorum and Lactuca sativa var. crispa in untreated and limed red lead paint contaminated soils. Concentrations of Pb and Zn in the pylon soils were elevated with maximum values of 783 mg Pb kg−1 and 635 Zn mg kg−1 while the soil Cd content was similar to nearby reference soils. The pylon soils were characterized by exceptionally high proportions of NH4NO3-extractable Pb reaching up to 17% of total Pb. Even if the relatively low pH of the soils is considered (pH 4.3–4.9), this appears to be a specific feature of the red lead contamination since similarly contaminated urban soils have to be acidified to pH 2.5 to achieve a similarly high Pb extractability. The Pb content in L. multiflorum shoots reached maximum values of 73 mg kg−1 after a cultivation time of 4 weeks in pylon soil. Lime amendment reduced the plant uptake of Pb and Zn significantly by up to 91%. But L. sativa var. crispa cultivated on soils limed to neutral pH still contained critical Pb concentrations (up to 0.6 mg kg−1 fresh weight). Possible mechanisms for the exceptionally high plant availability of soil Pb derived from red lead paint are discussed.  相似文献   

9.
Purpose

The purpose of this study is to study the major sources, concentrations, and distributions of polycyclic aromatic hydrocarbons (PAHs) in three different types of green space in Shanghai. In addition, we will quantitatively assess the burden of PAHs in the soil, as well as the potential carcinogenic risk of PAHs in humans. These results will provide valuable information for soil remediation and human health risk management.

Materials and methods

A total of 166 surface soil samples were collected in parks, greenbelts, and woodlands. Soils were extracted using accelerated solvent extraction (ASE). PAHs were analyzed by gas chromatography-mass spectrometry (GC-MS). The positive matrix factorization (PMF) model was used to identify major PAH emission sources and quantitatively assess their contributions to PAHs. The incremental lifetime cancer risk (ILCR) was used to quantify the potential health risk of PAHs.

Results and discussion

The average concentrations of ∑15 PAHs are 227?±?95 ng g?1, 1632?±?251 ng g?1, and 1888?±?552 ng g?1 in the woodland, park, and greenbelt soils, respectively. The PMF results show that biomass (33%), coal (21%), vehicles (17%), natural gas (14%), oil (9%), and coke (7%) are the dominant sources of PAHs in the park soils. Diesel (40%), tire debris (30%), biomass (15%), gasoline (9%), and oil (5%) are the main sources in the greenbelt soils. Biomass (48%), vehicles (37%), and coal (15%) are the main sources in the woodland soils. The ILCRs of adults and children who are exposed to PAHs in soils range from 9.53?×?10?8~1.42?×?10?5.

Conclusion

In three types of green space in Shanghai, the dominant PAHs are high–molecular weight (HMW) compounds (≥?4 rings). This may be due to the proximity of the sampling site to emission sources. In addition, low–molecular weight (LMW) PAHs (with 2–3 rings) are relatively unstable, and these compounds are prone to volatilization and degradation. Source identification indicates that biomass combustion is the most dominant PAH source in the park and woodland soils, while vehicles are the dominant PAH source in the greenbelt soils. The ILCRs of adults and children indicate potential health risks, and children have a greater health risk than adults.

  相似文献   

10.
Water quantity and quality were monitored for 3 years in a 360-m-long wetland with riparian fences and plants in a pastoral dairy farming catchment. Concentrations of total nitrogen (TN), total phosphorus (TP) and Escherichia coli were 210–75,200 g N m−3, 12–58,200 g P m−3 and 2–20,000 most probable number (MPN)/100 ml, respectively. Average retentions (±standard error) for the wetland over 3 years were 5 ± 1%, 93 ± 13% and 65 ± 9% for TN, TP and E. coli, respectively. Retentions for nitrate–N, ammonium–N, filterable reactive P and particulate C were respectively −29 ± 5%, 32 ± 10%, −53 ± 24% and 96 ± 19%. Aerobic conditions within the wetland supported nitrification but not denitrification and it is likely that there was a high conversion rate from dissolved inputs of N and P in groundwater, to particulate N and P and refractory dissolved forms in the wetland. The wetland was notable for its capacity to promote the formation of particulate forms and retain them or to provide conditions suitable for retention (e.g. binding of phosphate to cations). Nitrogen retention was generally low because about 60% was in dissolved forms (DON and NOX–N) that were not readily trapped or removed. Specific yields for N, P and E. coli were c. 10–11 kg N ha−1 year−1, 0.2 kg P ha−1 year−1 and ≤109 MPN ha−1 year−1, respectively, and generally much less than ranges for typical dairy pasture catchments in New Zealand. Further mitigation of catchment runoff losses might be achieved if the upland wetland was coupled with a downslope wetland in which anoxic conditions would promote denitrification.  相似文献   

11.
The following six pig slurries obtained after acidification and/or solid/liquid separation were used in the research: original (S) and acidified (AS) pig slurry, nonacidified (LF) and acidified (ALF) pig slurry liquid fraction, and nonacidified (SF) and acidified (ASF) pig slurry solid fraction. Laboratory incubations were performed to assess the effect of the application of these slurries on N mineralization and CO2 and N2O emissions from a sandy soil. Acidification maintained higher NH4 +-N contents in soil particularly in the ALF-treated soil where NH4 +-N contents were two times higher than in LF-treated soil during the 55–171-day interval. At the end of the incubation (171 days), 32.9 and 24.2 mg N kg−1 dry soil were mineralized in the ASF- and SF-treated soils, respectively, but no mineralization occurred in LF- and S-treated soils, although acidification decreased N immobilization in ALF- (−25.3 mg N kg−1 soil) and AS- (−12.7 mg N kg−1 soil) compared to LF- (−34.4 mg N kg−1 soil) and S-treated (−18.6 mg N kg−1 soil) soils, respectively. Most of the dissolved CO2 was lost during the acidification process. More than 90% of the applied C in the LF-treated soil was lost during the incubation, indicating a high availability of the added organic compounds. Nitrous oxide emissions occurred only after day 12 and at a lower rate in soils treated with acidified than nonacidified slurries. However, during the first 61 days of incubation, 1,157 μg N kg−1 soil was lost as N2O in the AS-treated soil and only 937 in the S-treated soil.  相似文献   

12.
The effect of reduced tillage (RT) on nitrous oxide (N2O) emissions of soils from fields with root crops under a temperate climate was studied. Three silt loam fields under RT agriculture were compared with their respective conventional tillage (CT) field with comparable crop rotation and manure application. Undisturbed soil samples taken in September 2005 and February 2006 were incubated under laboratory conditions for 10 days. The N2O emission of soils taken in September 2005 varied from 50 to 1,095 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in September 2005 were statistically (P < 0.05) higher or comparable than the N2O emissions from their respective CT soil. The N2O emission of soils taken in February 2006 varied from 0 to 233 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in February 2006 tended to be higher than the N2O emissions from their respective CT soil. A positive and significant Pearson correlation of the N2O–N emissions with nitrate nitrogen (NO3 –N) content in the soil was found (P < 0.01). Leaving the straw on the field, a typical feature of RT, decreased NO3 –N content of the soil and reduced N2O emissions from RT soils.  相似文献   

13.
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect, C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days. The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally in both NH4+–N and NO3–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period.  相似文献   

14.
Cattle feedyards can impact local environments through emission of ammonia and dust deposited on nearby land. Impacts range from beneficial fertilization of cropland to detrimental effects on sensitive ecosystems. Shortgrass prairie downwind from an adjacent feedyard on the southern High Plains of Texas, USA changed from perennial grasses to annual weeds. It was hypothesized that N enrichment from the feedyard initiated the cascade of negative ecological change. Objectives were to determine the distribution of soil nitrogen and estimate N loading to the pasture. Soil samples were collected from 119 locations across the pasture and soil total N (TN), nitrate-N and ammonium-N (AN) determined in the top 30 cm. Soil TN concentration decreased with distance downwind from the feedyard from 1.6 ± 0.2 g kg−1 at 75 m to 1.2 ± 0.05 g kg−1 at 582 m. Nitrate-N concentration decreased within 200 m of the feedyard and changed little at greater distances. Ammonium-N concentration decreased linearly (P < 0.001) with increasing distance from the feedyard from 7.9 ± 1.7 mg kg−1 within 75 m from the feedyard to 5.8 ± 1.5 mg kg−1 at more than 550 m from the feedyard; however, distance only explained 12% of the variability in AN concentration. Maximum nitrogen loading, from 75 to 106 m from the feedyard, was 49 kg ha−1 year−1 over 34 years and decreased with distance from the feedyard. An estimate of net dry deposition of ammonia indicated that it contributed negligibly to N loading to the pasture. Nitrogen enrichment that potentially shifted vegetation from perennial grasses to annual weeds affected soil N up to 500 m from the feedyard; however, measured organic and inorganic N beyond that returned to typical and expected levels for undisturbed shortgrass prairie.
Richard W. ToddEmail:
  相似文献   

15.
The organophosphorus insecticide, chlorpyrifos, has been widely applied in agriculture; in veterinary, against household pests; and in subterranean termite control. Due to its slow rate of degradation in soil, it can persist for extended periods in soil with a significant threat to environment and public health. The mixed and pure fungi were isolated from three soils by enrichment technique. The enriched mixed fungal cultures were capable of biodegrading chlorpyrifos (300 mg L−1) when cultivated in Czapek Dox medium. The identified pure fungal strain, Acremonium sp., utilized chlorpyrifos as a source of carbon and nitrogen. The highest chlorpyrifos degradation (83.9%) by Acremonium sp. strain GFRC-1 was found when cultivated in the nutrient medium with full nutrients. Desdiethyl chlorpyrifos was detected as a major biodegradation product of chlorpyrifos. The isolated fungal strain will be used for developing bioremediation strategy for chlorpyrifos-polluted soils.  相似文献   

16.
Little information is available about the effects of cover crops on soil labile organic carbon (C), especially in Australia. In this study, two cover crop species, i.e., wheat and Saia oat, were broadcast-seeded in May 2009 and then crop biomass was crimp-rolled onto the soil surface at anthesis in October 2009 in southeastern Australia. Soil and crop residue samples were taken in December 2009 to investigate the short-term effects of cover crops on soil pH, moisture, NH4+–N, NO3–N, soluble organic C and nitrogen (N), total organic C and N, and C mineralization in comparison with a nil-crop control (CK). The soil is a Chromic Luvisol according to the FAO classification with 48.4 ± 2.2% sand, 19.5 ± 2.1% silt, and 32.1 ± 2.1% clay. An exponential model fitting was employed to assess soil potentially labile organic C (C 0) and easily decomposable organic C for all treatments based on 46-day incubations. The results showed that crop residue biomass significantly decreased over the course of 2-month decomposition. The cover crop treatments had significantly higher soil pH, soluble organic C and N, cumulative CO2–C, C 0, and easily decomposable organic C, but significantly lower NO3–N than the CK. However, no significant differences were found in soil moisture, NH4+–N, and total organic C and N contents among the treatments. Our results indicated that the short-term cover crops increased soil labile organic C pools, which might have implications for local agricultural ecosystem managements in this region.  相似文献   

17.

Background, aim, and scope  

In the soil environment, polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are of great environmental and human health concerns due to their widespread occurrence, persistence, and carcinogenic properties. Bioremediation of contaminated soil is a cost-effective, environmentally friendly, and publicly acceptable approach to address the removal of environmental contaminants. However, bioremediation of contaminants depends on plant–microbe interactions in the rhizosphere. The microorganisms that can mineralize various PAHs have PAH dioxygenase genes like nahAc, phnAc, and pdo1. To understand the fate of pyrene in rhizospheric and non-rhizospheric soils in the presence or absence of Pb, pyrene biodegradation, bacterial community structure, and dioxygenase genes were investigated in a pot experiment.  相似文献   

18.
Long-term effects of mineral fertilization on microbial biomass C (MBC), basal respiration (R B), substrate-induced respiration (R S), β-glucosidase activity, and the rK-growth strategy of soil microflora were investigated using a field trial on grassland established in 1969. The experimental plots were fertilized at three rates of mineral N (0, 80, and 160 kg ha−1 year−1) with 32 kg P ha−1 year−1 and 100 kg K ha−1 year−1. No fertilizer was applied on the control plots (C). The application of a mineral fertilizer led to lower values of the MBC and R B, probably as a result of fast mineralization of available substrate after an input of the mineral fertilizer. The application of mineral N decreased the content of C extracted by 0.5 M K2SO4 (C ex). A positive correlation was found between pH and the proportion of active microflora (R S/MBC). The specific growth rate (μ) of soil heterotrophs was higher in the fertilized than in unfertilized soils, suggesting the stimulation of r-strategists, probably as the result of the presence of available P and rhizodepositions. The cessation of fertilization with 320 kg N ha−1 year−1 (NF) in 1989 also stimulated r-strategists compared to C soil, probably as the result of the higher content of available P in the NF soil than in the C soil.  相似文献   

19.
Carbon flux represents carbon uptake from or release to the atmosphere in desert ecosystems, yet the changing pattern of carbon flux in desert ecosystems and its dependence on soil cover type and rainfall amount are poorly understood. We measured net carbon fluxes (NCF) in soil with four cover types (moss crusted soil, cyanobacteria/lichen crusted soil, bareland and semishrub Ephedra distachya-inhabited site) from April to October of 2010 and 2011, and NCF and dark respiration (DR) after four rainfall amounts (0, 2, 5, and 15 mm) in cyanobacteria/lichen crusted soil, bareland and the E. distachya-inhabited site. NCF in the E. distachya-inhabited site differed significantly from those of the other three soil cover types, while no difference was observed between the moss and cyanobacteria/lichen crusted soils or between the two crusted soils and bareland on most measurement occasions. NCF ranged from −0.28 ± 0.14 to 1.2 ± 0.07 μmol m−2 s−1 in the biologically crusted soils, and from −2.2 ± 0.27 to 0.46 ± 0.03 μmol m−2 s−1 at the E. distachya-inhabited site. Daily NCF in the biologically crusted soils and bareland showed carbon release at most times and total carbon production ranged from 48.8 ± 5.4 gC m−2 yr−1 to 50.9 ± 3.8 gC m−2 yr−1, while the E. distachya-inhabited site showed a total carbon uptake of −57.0 ± 9.9 gC m−2 yr−1. Daily variances in NCF were well-explained by variances in surface soil temperature, and seasonal NCF showed a significant linear relationship with soil moisture in the two biologically crusted soils and bareland when soil volumetric water content was less than 3%. Rainfall elicited intense carbon release in cyanobacteria/lichen crusted soil, bareland and at the E. distachya-inhabited site, and both NCF and DR were positive in the first two days after rainfall treatments. Mean NCF and DR were not different between rainfall amounts of 2, 5 and 15 mm in cyanobacteria/lichen crusted soil and bareland, while they were significantly higher after 15 mm rainfall treatment compared with 2 mm and 5 mm treatments at the E. distachya-inhabited site. Mean NCF and DR in the first two days increased logistically with rainfall amount. Based on our findings, we suggest that E. distachya-inhabited sites contribute to carbon uptake in the Gurbantunggute Desert, while biologically crusted soils exhibit carbon release for most of the year. Even though photosynthesis immediately following rainfall can be stimulated, carbon uptake effect in biologically crusted soil is likely intermittent and confined to periods when moisture is available.  相似文献   

20.
Pot experiments were carried out over two growing periods to assay the biocontrol efficacy and rhizosphere colonization of Trichoderma harzianum SQR-T037 (SQR-T037) applied as SQR-T037 conidia suspension (TCS), SQR-T037 conidia suspension blended with organic fertilizer (TBF), or SQR-T037 fermented organic fertilizer (TFF). Each formulation had three T. harzianum numbers. In two experiments, Percent Disease Indexes (PDIs) decreased with the increase of SQR-T037 number added to soils. The TFF treatment consistently exhibited the lowest PDIs at same amendment rate of SQR-T037 and 0–8.9%, 25.6–78.9%, and 4.4–50.0% of PDIs were found in TFF, TCS, and TBF treatment, respectively. Soils treated with TFF showed the highest SQR-T037 population in rhizosphere and bulk soil. Decrease of Fusarium oxysporum population in both bulk and rhizosphere soils occurred in the treatment SQR-T037 at 105 and 106 cfug−1 soil rate. The TFF treatment at the SQR-T037 rate of 103 cfug−1 soil significantly (p < 0.05) increased SQR-T037 population within the rhizoplane but had no effect on F. oxysporum population when compared to TCS and TBF. Generally, TFF treatments were superior to TCS and TBF treatments on disease control by sustaining colonization of SQR-T037 and decreasing F. oxysporum abundance in the rhizosphere soil. We propose that TFF treatment at SQR-T037 rate of 107 cfug−1 (i.e., 105 cfug−1 soil after applied to soil) was the best formulation for controlling Fusarium wilt of cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号