首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of administering estradiol benzoate (EB) plus progesterone (P4) as part of a CIDR-based protocol during the growth or static phases of dominant follicle development on follicular wave emergence, follicular growth, synchrony of ovulation and pregnancy rate following CIDR withdrawal, treatment with PGF(2alpha) and GnRH, and fixed-time artificial insemination (TAI). Forty-one previously synchronized lactating Holstein dairy cows were randomly allocated to three treatment groups. The control group (n=14) received a CIDR on the third day after ovulation only (Day 0). The two treatment groups were administered CIDRs comprising 2 mg EB and 50 mg P4 either on the third (T1, n=14) or eighth day (T2, n=13) after ovulation (Day 0). All cows received PGF(2alpha) after CIDR removal on Day 7, GnRH on Day 9, and TAI 16 h after GnRH treatment. The proportion of cows with follicular wave emergence within 8 days of treatment differed (P<0.01) among the control (14.3%), T1 (85.7%), and T2 groups (92.9%). However, the mean intervals between treatment and wave emergence were not significantly different. There were significant differences in the diameters of the dominant follicles on Day 7 (P<0.01) and in preovulatory follicles on Day 9 (P<0.01), with the largest follicles observed in the control group and the smallest follicles observed in the T2 group. In contrast, the numbers of cows showing synchronous ovulation after GnRH treatment (92.9 to 100.0%) and pregnancy following TAI (46.2 to 50.0%) were similar between the treatment groups. The results showed that, irrespective of the phase (growth or static) of the dominant follicle, administration of 2 mg EB plus 50 mg P4 to CIDR-treated lactating dairy cows induced consistent follicular wave emergence and development, synchronous ovulation after GnRH administration, and similar pregnancy rates following TAI.  相似文献   

2.
Estrous synchronization using a Controlled Internal Drug Releasing device (CIDR) in combination with GnRH or estradiol benzoate (EB) treatment was investigated in Japanese black cows characterized with initial ovarian conditions. A total of 142 cows were allocated to one of four treatments: insertion of CIDR for eight days (Group A: n=34), CIDR with 100 microg of GnRH on d 0 (Group B: n=54, d 0=CIDR insertion), CIDR with GnRH on d 0 and 1 mg of EB on d 10 (Group C: n=20) or CIDR with 2 mg of EB on d 0 and 1 mg of EB on d 9 (Group D: n=34). All cows received 25 mg of PGF(2alpha) on d 7 and blood was collected for progesterone (P4) analysis on d 0, 8, and 21. AI was performed at estrus, but in Group D timed AI was set following a day of EB treatment. Estrus was induced in 141/142 cows, and the majority of which occurred on d 10 and 11 (98 cows, 34 cows). GnRH treatment induced more intermediate ovulation than EB treatment in cows with CL on d 0 (19.0% vs. 0%). Ovulation after CIDR removal was significantly higher in cows with CL on d 0 compared to those without CL (87.0% vs. 71.4%). Group B showed higher conception rates than those combined with Groups C and D where EB was injected after CIDR removal (51.1% vs. 38.9%). Conception had no correlation with either CL existence on d 0 or intermediate ovulation on d 8. P4 concentrations on d 8 were significantly lower compared to those on d 0 or d 21. On d 21 in cows without intermediate ovulation, Group A showed significantly lower P4 concentrations than the other 3 groups. The data suggests that CIDR insertion with PGF(2alpha) treatment is an effective method for estrous synchronization irrespective of initial ovarian conditions, and GnRH treatment at CIDR insertion induces intermediate ovulation and improves the conception rate in Japanese black cows.  相似文献   

3.
Crossbred cows (n = 1073) from five locations had oestrous cycles synchronized with 100 μg of GnRH IM and insertion of controlled internal drug release device (CIDR) on Day 0 followed by 25 mg of PGF IM and CIDR removal on Day 7. Kamar® patches were placed on all cows at CIDR removal. Cows were observed three times daily for oestrus after PGF administration. In the Ovsynch‐CIDR group, cows detected in oestrus (n = 193) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 80 received and 113 did not receive a second GnRH at 48 h after PGF. Cows (n = 345) not detected in oestrus received a second GnRH at 48 h after PGF on Day 9, and fixed‐time AI 16 h after the GnRH on Day 10. In the CO‐Synch‐CIDR group, cows detected in oestrus (n = 224) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 79 received and 145 did not receive a second GnRH at 64 h after PGF. Cows (n = 311) not detected in oestrus received a second GnRH on Day 10 at the time of AI, 64 h after PGF. The AI pregnancy rates were not different between the Ovsynch‐CIDR and CO‐Synch‐CIDR groups (p = 0.48). There were no differences in the AI pregnancy rates for cows inseminated at a fixed time (p = 0.26) or at detected oestrus (p = 0.79) between the treatment groups. Among cows inseminated in oestrus, there were no differences in the AI pregnancy rates between cows that received or did not receive the second GnRH (p = 0.47). In conclusion, acceptable AI pregnancy rates can be achieved with or without inclusion of oestrus detection in the Ovsynch‐CIDR and CO‐Synch‐CIDR protocols. Among cows detected in oestrus, cows that received a second GnRH yielded similar pregnancy rates when compared with cows that did not receive the second GnRH.  相似文献   

4.
Application of AI in extensive beef cattle production would be facilitated by protocols that effectively synchronize ovarian follicular development and ovulation to enable fixed-time AI (TAI). The objectives were to determine whether use of a controlled internal drug release (CIDR) device to administer progesterone in a GnRH-based estrous synchronization protocol would optimize blood progesterone concentrations, improve synchronization of follicular development and estrus, and increase pregnancy rates to TAI in beef cows. Beef cows (n = 1,240) in 6 locations within the US Meat Animal Research Center received 1 of 2 treatments: 1)?an injection of GnRH [100 μg intramuscularly (i.m.)] followed by PGF(2α) (PGF; 25 mg i.m.) 7 d later (CO-Synch), or 2) CO-Synch plus a CIDR during the 7 d between GnRH and PGF injections (CO-Synch + CIDR). Cows received TAI and GnRH (100 μg i.m.) at 60 h after PGF. Progesterone was measured by RIA in blood samples collected 2 wk before and at initiation of treatment (d 0) and at PGF injection (d 7). Estrous behavior was monitored by Estrotect Heat Detectors. Pregnancy was diagnosed by ultrasonography 72 to 77 d after TAI. Plasma progesterone concentrations did not differ (P > 0.10) between synchronization protocols at first GnRH injection (d 0), but progesterone was greater (P < 0.01) at PGF injection (d 7) in cows receiving CO-Synch + CIDR vs. CO-Synch as a result of fewer CIDR-treated cows having progesterone ≤1 ng/mL at PGF (10.7 vs. 29.6%, respectively). A greater (P < 0.01) proportion of CO-Synch + CIDR vs. CO-Synch cows were detected in estrus within 60 h after PGF (66.7 vs. 57.8 ± 2.6%, respectively) and a greater (P < 0.01) proportion were pregnant to TAI (54.6 vs. 44.3 ± 2.6%, respectively). For both synchronization protocols, cows expressing estrus within 60 h before TAI had a greater pregnancy rate than cows without estrus. For cows with plasma progesterone ≤1 ng/mL at PGF injection, CO-Synch + CIDR increased pregnancy rate (65.2 ± 5.9 vs. 30.8 ± 3.4% with vs. without CIDR), whereas pregnancy rates did not differ (P > 0.10) between protocols (52.1 ± 2.1 vs. 50.0 ± 2.4%, respectively) when progesterone was >1 ng/mL (treatment × progesterone; P < 0.01). Inclusion of a CIDR in the synchronization protocol increased plasma progesterone concentration, proportion of cows detected in estrus, and pregnancy rate; however, the increase in pregnancy rate from inclusion of the CIDR was primarily in cows with decreasing or low endogenous progesterone secretion during treatment.  相似文献   

5.
Reproductive performance of two types of timed artificial insemination (TAI) protocols with or without intravaginal progesterone insert (CIDR) was investigated in a commercial herd of Holstein heifers. A total of seventy-four heifers with 14.4 months of age were allocated to two groups; Ovsynch (n=44) and estradiol benzoate (EB) used Heatsynch (EB-Heatsynch, n=30), and each group was additionally divided into two subgroups with CIDR insertion from day 0 to 7 (n=36) and without CIDR group (n=38). Blood was collected for progesterone (P4) analysis and ovarian finding was monitored with ultrasonography. Heifers in CIDR-treated group resulted in higher pregnancy rate as compared to No-CIDR-treated group (63.9% vs 21.1%, P<0.01). Heifers with functional corpus luteum (CL) on day 0 resulted in significantly higher pregnancy rate in CIDR-treated group than No-CIDR-treated group (day 0: 67.9% vs 13.0%, P<0.01). CIDR insertion suppressed the intermediate ovulation during the first 7 days and the period from the second GnRH or EB administration to TAI as compared to No-CIDR-treated group (first 7 days: 33.3% vs. 52.6%; P<0.05, before TAI: 11.1% vs. 37.0%; P<0.05). In conclusion, the selected TAI protocols with CIDR provided acceptable pregnancy rate and contributed to the economical improvement by shortening the average age of first calving approximately for 2.5 months as compared to the previous management without TAI protocols.  相似文献   

6.
Two experiments were designed to investigate the administration of intravaginal progesterone in protocols for oestrus and ovulation synchronization in beef heifers. In Experiment 1, cyclic Black Angus heifers (n = 20) received an Ovsynch protocol and were randomly assigned to receive (CIDR‐Ovsynch) or not (Ovsynch) a progesterone device between Days 0 and 7. Treatment with a controlled internal drug release (CIDR) device significantly increased the size of the dominant follicle prior to ovulation (12.8 ± 0.4 CIDR‐Ovsynch vs 11.4 ± 0.4 Ovsynch) (p < 0.02). Plasma progesterone concentrations throughout the experiment were affected by the interaction between group and day effects (p < 0.004). In Experiment 2, cyclic Polled Hereford heifers (n = 382) were randomly assigned to one of the six treatment groups (3 × 2 factorial design) to receive a CIDR, a used bovine intravaginal device (DIB), or a medroxiprogesterone acetate (MAP) sponge and GnRH analogues (lecirelin or buserelin). All heifers received oestradiol benzoate plus one of the devices on Day 0 and PGF on Day 7 pm (device withdrawal). Heifers were detected in oestrus 36 h after PGF and inseminated 8–12 h later, while the remainder received GnRH 48 h after PGF and were inseminated on Day 10 (60 h). The number of heifers detected in oestrus on Day 8 and conception rate to AI on Day 9 were higher (p < 0.01) in the used‐DIB than in the CIDR or MAP groups, while the opposite occurred with the pregnancy rate to FTAI on Day 10 (p < 0.01). There was no effect of progesterone source, GnRH analogue or their interaction on overall pregnancy rates (64.9%). Progesterone treatment of heifers during an Ovsynch protocol resulted in a larger pre‐ovulatory follicle in beef heifers. Progesterone content of intravaginal devices in synchronization protocols is important for the timing of AI, as the use of low‐progesterone devices can shorten the interval to oestrus.  相似文献   

7.
The study was aimed to assess the influence that short‐term progesterone treatments have on follicular dynamics, oestrus and ovulation in sheep. The treatment was tested thereafter in a field trial to assess its fertility after AI with fresh semen. In a first experiment, 12 ewes without CL were grouped to receive a new (n = 6) or used CIDR (n = 6) for 7 days and blood samples were obtained to follow plasma progesterone profiles. In a second experiment, 39 cycling ewes were synchronized by a 7‐day P4+PGF2α protocol using a new (n = 20) or a 7‐day used CIDR (n = 19). Half of both groups received 400 IU eCG and half remained untreated as controls. Ultrasound ovarian examination and oestrous detection were used to compare follicular dynamics, oestrus and ovulation in both groups. In a third experiment, 288 ewes in 3 farms were synchronized by the short‐term P4+PGF2α+eCG protocol and ewes were AI with fresh semen 24 h after oestrous detection. Lambing performance was used to test the fertility of the treatment. In Experiment 1, ewes with new inserts presented higher P4 concentration than ewes with used inserts throughout the sampling period (p < 0.05) and exhibited a P4 peak at days 1‐2 of the treatment that was not observed in ewes with used inserts. In Experiment 2, ewes treated with new and used inserts show similar ovarian and behavioral traits (p > 0.10). However, ewes treated with eCG show shorter interval to oestrus (p = 0.004) and tend to have larger mature CL (p = 0.06). In Experiment 3, oestrous presentation and lambing performance after AI with fresh semen was considered normal compared to published results. Results suggest that the oestrous synchronization protocol based on P4+PGF2α allows little control of follicular dynamics without compromising fertility after AI with fresh semen provided that eCG is added at the end of the treatment.  相似文献   

8.
We compared synchronization and pregnancy rates, and the increase in blood progesterone concentrations during luteal development, between (1) Ovsynch plus an intravaginal controlled internal drug release (CIDR) device protocol followed by timed embryo transfer (timed ET), and (2) a conventional estrus synchronization method using PGF(2 alpha) and ET in suckled postpartum Japanese Black beef cows. Cows in the PGF group (n=18) received a PGF(2 alpha) analogue when a CL was first palpated per rectum at 10-d intervals after 1 to 2 month postpartum. Cows (n=11), which showed estrus (Day 0) within 5 d of the PGF(2 alpha), and had a CL on Day 7, received ET. Cows in the Ovsynch+CIDR group (n=19) underwent the Ovsynch protocol plus a CIDR for 7 d (GnRH analogue and CIDR on Day-9, PGF(2alpha) analogue with CIDR removal on Day-2, and GnRH analogue on Day 0), with ET on Day 7. The ovulation synchronization (100%) and embryo transfer (100%) rates in the Ovsynch+CIDR group were greater (P<0.01) than the estrus synchronization (66.7%) and the embryo transfer (61.1%) rates in the PGF group. The postpartum interval at ET in the Ovsynch+CIDR group (62.5 +/- 2.5 d) was shorter (P<0.01) than in the PGF group (74.9 +/- 3.9 d). The pregnancy rate in the Ovsynch+CIDR group (57.9%) did not differ significantly from that in the PGF group (50.0%). Plasma progesterone concentrations were not significantly different in the two groups on Days 0, 1, 2, 5, 7, 14 and 21. In summary, higher synchronization and transfer rates, and shorter postpartum interval to ET, can be achieved with timed ET following the Ovsynch plus CIDR protocol than after estrus with the single PGF(2 alpha) treatment followed by ET in suckled postpartum recipient beef cows. Pregnancy rates were similar. Also, the increase in blood progesterone concentrations during luteal development following ovulation synchronized by the Ovsynch plus CIDR protocol was similar to that after estrus induced by the PGF(2 alpha) treatment.  相似文献   

9.
AIM: To determine if the reproductive performance of dairy cows not previously detected in oestrus but with a detectable corpus luteum before the planned start of mating (PSM), could be improved by treatment with progesterone, oestradiol benzoate (ODB) and prostaglandin F2alpha (PGF). METHODS: Cows in 18 herds which had not been detected in oestrus, but which had a detectable corpus luteum present at veterinary examination 7 days prior to the PSM (Day -7), were allocated to 1 of 2 groups. Treated cows (n=232) received an injection of 2 mg ODB and an intravaginal progesterone releasing device (CIDR insert) on Day -7, and an injection of PGF on the day of insert removal 7 days later (Treated group). The Control group (n=243) remained untreated. Cows were mated to detected oestrus from Day 0, and conception dates confirmed by manual palpation or transrectal ultrasonography. RESULTS: During the first 7 days of mating, 37.4% of Control cows and 65.9% of Treated cows were inseminated on detection of oestrus (p<0.001). Pregnancy rates for this period were 20.4% and 36.3%, respectively (p=0.001). Conception rates to first insemination, pregnancy rates after 21 days of mating and at the end of the mating period were similar between groups (p>0.1). Median interval from the PSM to conception did not differ between treatment groups (24 and 23 days for Control and Treated, respectively, p>0.1). CONCLUSION: Treating postpartum dairy cows which had not previously been detected in oestrus but which had a detectable corpus luteum, with progesterone, ODB and PGF did not significantly improve their reproductive performance compared with no hormonal intervention. KEY WORDS: dairy cattle, postpartum, anoestrous, reproduction, progesterone treatment.  相似文献   

10.
The objectives of this study were to 1) compare cumulative pregnancy rates in a traditional management (TM) scheme with those using a synchronization of ovulation protocol (CO-Synch + CIDR) for timed AI (TAI) in Bos indicus-influenced cattle; 2) evaluate ovarian and hormonal events associated with CO-Synch + CIDR and CO-Synch without CIDR; and 3) determine estrual and ovulatory distributions in cattle synchronized with Select-Synch + CIDR. The CO-Synch + CIDR regimen included insertion of a controlled internal drug-releasing device (CIDR) and an injection of GnRH (GnRH-1) on d 0, removal of the CIDR and injection of PGF2alpha (PGF) on d 7, and injection of GnRH (GnRH-2) and TAI 48 h later. For Exp. 1, predominantly Brahman x Hereford (F1) and Brangus females (n = 335) were stratified by BCS, parity, and day postpartum (parous females) before random assignment to CO-Synch + CIDR or TM. To maximize the number of observations related to TAI conception rate (n = 266), an additional 96 females in which TM controls were not available for comparison also received CO-Synch + CIDR. Conception rates to TAI averaged 39 +/- 3% and were not affected by location, year, parity, AI sire, or AI technician. Cumulative pregnancy rates were greater (P < 0.05) at 30 and 60 d of the breeding season in CO-Synch + CIDR (74.1 and 95.9%) compared with TM (61.8 and 89.7%). In Exp. 2, postpartum Brahman x Hereford (F1) cows (n = 100) were stratified as in Exp. 1 and divided into 4 replicates of 25. Within each replicate, approximately one-half (12 to 13) received CO-Synch + CIDR, and the other half received CO-Synch only (no CIDR). No differences were observed between treatments, and the data were pooled. Percentages of cows ovulating to GnRH-1, developing a synchronized follicular wave, exhibiting luteal regression to PGF, and ovulating to GnRH-2 were 40 +/- 5, 60 +/- 5, 93 +/- 2, and 72 +/- 4%, respectively. In Exp. 3, primiparous Brahman x Hereford, (F1) heifers (n = 32) and pluriparous cows (n = 18) received the Select Synch + CIDR synchronization regimen (no GnRH-2 or TAI). Mean intervals from CIDR removal to estrus and ovulation, and from estrus to ovulation were 70 +/- 2.9, 99 +/- 2.8, and 29 +/- 2.2 h, respectively. These results indicate that the relatively low TAI conception rate observed with CO-Synch + CIDR in these studies was attributable primarily to failure of 40% of the cattle to develop a synchronized follicular wave after GnRH-1 and also to inappropriate timing of TAI/GnRH-2.  相似文献   

11.
The objectives of this observational study were to document ovarian and endocrine responses associated with the treatment of cystic ovarian follicles (COFs) in dairy cows, using gonadotropin releasing hormone (GnRH) and prostaglandin F2alpha (PGF) with or without exogenous progesterone. A secondary objective was to determine pregnancy establishment following synchronization of ovulation and timed insemination in cows diagnosed with COFs. In trial I, 18 Holstein cows diagnosed with COFs received 2 injections of 100 microg GnRH, 9 d apart, with 25 mg PGF given 7 d after the 1st GnRH. A new follicle developed in all 18 cows after the 1st GnRH, and 83% of cows ovulated following the 2nd GnRH. Cows were inseminated 16 h after the 2nd GnRH. Of the 17 cows available for pregnancy diagnosis, 7 were confirmed pregnant. In trial II, 8 cows with COFs received GnRH and an intravaginal progesterone device (CIDR) concurrently, then PGF 7 d later. The CIDR was removed 2 d after PGF administration. Plasma estradiol concentrations declined following CIDR insertion. In all cows, a new follicle developed following GnRH treatment; estradiol-surge and estrus occurred spontaneously after CIDR-removal. Seven of 8 cows ovulated the new follicle. In dairy cows diagnosed with COFs, treatment with GnRH followed by PGF 7 d later, with or without exogenous progesterone, resulted in the recruitment of a healthy new follicle; synchronization of ovulation and timed insemination resulted in a 41% pregnancy rate.  相似文献   

12.
The objectives of this study were to determine the effects of incorporating a progesterone intravaginal insert (CIDR) between the day of GnRH and PGF2alpha treatments of a timed AI protocol using estradiol cypionate (ECP) to synchronize ovulation on display of estrus, ovulation rate, pregnancy rate, and late embryonic loss in lactating cows. Holstein cows, 227 from Site 1 and 458 from Site 2, were presynchronized with two injections of PGF2alpha on study d 0 and 14, and subjected to a timed AI protocol (100 mixrog of GnRH on study d 28, 25 mg of PGF2alpha on study d 35, 1 mg of ECP on study d 36, and timed AI on study d 38) with or without a CIDR insert. Blood was collected on study d 14 and 28 for progesterone measurements to determine cyclicity. Ovaries were scanned on d 35, 37, and 42, and pregnancy diagnosed on d 65 and 79, which corresponded to 27 and 41 d after AI. Cows receiving a CIDR had similar rates of detected estrus (77.2 vs. 73.8%), ovulation (85.6 vs. 86.6%), and pregnancy at 27 (35.8 vs. 38.8%) and 41 d (29.3 vs. 32.3%) after AI, and late embryonic loss between 27 and 41 d after AI (18.3 vs. 16.8%) compared with control cows. The CIDR eliminated cows in estrus before the last PGF2alpha injection and decreased (P < 0.001) the proportion of cows bearing a corpus luteum (CL) at the last PGF2alpha injection because of less ovulation in response to the GnRH and greater spontaneous CL regression. Cyclic cows had greater (P = 0.03) pregnancy rates than anovulatory cows at 41 d after AI (33.8 vs. 20.4%) because of decreased (P = 0.06) late embryonic loss (16.0 vs. 30.3%). The ovulatory follicle was larger (P < 0.001) in cows in estrus, and a greater proportion of cows with follicles > or = 15 mm displayed estrus (P < 0.001) and ovulated (P = 0.05) compared with cows with follicles <15 mm. Pregnancy rates were greater (P < 0.001) for cows displaying estrus, which were related to the greater (P < 0.001) ovulation rate and decreased (P = 0.08) late embryonic loss for cows in estrus at AI. Cows that were cyclic and responded to the presynchronization protocol (high progesterone at GnRH and CL at PGF2alpha) had the highest pregnancy rates. Incorporation of a CIDR insert into a presynchronized timed AI protocol using ECP to induce estrus and ovulation did not improve pregnancy rates in lactating dairy cows. Improvements in pregnancy rates in cows treated with ECP to induce ovulation in a timed AI protocol are expected when more cows display estrus, thereby increasing ovulation rate.  相似文献   

13.
We determined the effects of hCG on ovarian response, concentration of progesterone, and fertility in a fixed-time AI (TAI) protocol. Four hundred forty-four crossbred beef heifers were synchronized with the CO-Synch + CIDR (controlled internal drug-releasing insert) protocol. In addition, heifers were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement of treatments with main factors being 1) pretreatment, no treatment (control), or treatment with 1,000 IU of hCG 14 d before the initiation of the CO-Synch + CIDR protocol and 2) treatment, administration of 1,000 IU of hCG or 100 μg of GnRH at CIDR insertion of the CO-Synch + CIDR protocol. Blood samples were collected from all heifers on d -21, -14, -7, 0, and 2 relative to PGF(2α) injection. Transrectal ultrasonography was used to examine ovaries in a subset of heifers (n = 362) on d -7 and 0 relative to PGF(2α), and to determine pregnancy status of all heifers on d 33 and 82 relative to AI. Pregnancy rates were similar for heifers pretreated with control (33.0%) or hCG (36.4%), whereas pregnancy rates were greater (P < 0.01) for heifers treated with GnRH (40.1%) compared with hCG (29.0%) at CIDR insertion. Heifers pretreated with hCG had more (P < 0.01) corpora lutea present on the day of CIDR insertion and the day of CIDR removal compared with untreated heifers. A greater proportion (P < 0.01) of heifers ovulated as a result of administration of hCG at the time of CIDR insertion (59.0%) compared with GnRH (38.7%). Heifers treated with hCG at CIDR insertion had greater (P < 0.01) concentrations of progesterone compared with those receiving GnRH at the time of CIDR removal (2.42 ± 0.13 vs. 1.74 ± 0.13 ng/mL; P < 0.01) and at fixed-time AI (0.52 ± 0.03 vs. 0.39 ± 0.03 ng/mL; P < 0.01). Therefore, hCG was more effective than GnRH in its ability to ovulate follicles and to increase concentrations of progesterone in beef heifers. Presynchronization with hCG 14 d before CIDR insertion did not alter pregnancy rates, whereas replacing GnRH with hCG at CIDR insertion decreased pregnancy rates.  相似文献   

14.
We investigated whether CIDR-based ovulation-synchronization protocols inhibit secretion of prostaglandin (PG) F2alpha from the uterus in the following luteal phase in non-cycling beef cows. Ten early (a month) postpartum non-cycling Japanese Black beef cows were treated with (1) Ovsynch (GnRH analogue on Day 0, PGF2alpha analogue on Day 7, and GnRH analogue on Day 9; n=3), (2) Ovsynch+CIDR (Ovsynch protocol plus a CIDR for 7 days from Day 0; n=4), or (3) estradiol benzoate (EB) Ovsynch+CIDR (EB on Day 0 in lieu of the first GnRH treatment followed by the Ovsynch+CIDR protocol; n=3). An oxytocin challenge was administered on Day 24 to examine uterine PGF2alpha secretion. Plasma concentrations of 13,14-dihydro-15-keto- PGF2alpha were lower at 30-120 min after oxytocin administration in the Ovsynch+CIDR group and 75 min after administration in the EB Ovsynch+CIDR group than in the Ovsynch group (P<0.05). Plasma progesterone concentrations were higher from Days 1 to 7 in the Ovsynch+CIDR group and from Days 1 to 5 in the EB Ovsynch+CIDR group than in the Ovsynch group (P<0.05). The progesterone concentrations were higher on Days 27 and 29 in both CIDR-treated groups than in the Ovsynch group (P<0.05). In conclusion, in non-cycling beef cows, CIDR-based ovulation-synchronization protocols inhibit uterine PGF2alpha secretion in the following luteal phase and prevent premature luteolysis as is seen with the Ovsynch protocol.  相似文献   

15.
Induction of ovulation for timed artificial insemination (TAI) with the Ovsynch protocol was evaluated in 49 anoestrous and lactating Bos taurus x Bos indicus cows. Palpation per rectum and transrectal ultrasonography were used on Days -30, -20, -10 and 0 (start of treatment) to confirm anoestrus but with the presence of follicles > or = 10 mm, and every other day during treatment to determine ovarian activity. Cows were randomly assigned to: (1) Ovsynch (n = 24; Day 0, 200 microg GnRH; Day 7, 150 microg PGF2alpha; Day 9, 200 microg GnRH + TAI 16 to 20 h later) and (2) control (n = 25; no treatment). Rates of ovulation for the first GnRH injection, detection of a corpus luteum (CL) at PGF2alpha injection, pregnancy and induction of cyclicity were greater (P < 0.05) with Ovsynch. There was no effect of body condition score (P > 0.05). In conclusion, the Ovsynch protocol was not effective in obtaining acceptable pregnancy rate for TAI, but it was effective for induction of cyclicity in anoestrous and lactating Bos taurus x Bos indicus cows under tropical conditions.  相似文献   

16.
We determined whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or estrous detection plus TAI, and whether adding a controlled internal device release (CIDR) to GnRH-based protocols would enhance fertility. Estrus was synchronized in 2,598 suckled beef cows at 14 locations, and AI was preceded by 1 of 5 treatments: 1) a CIDR for 7 d with 25 mg of PG F(2alpha) (PGF) at CIDR removal, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received 100 mug of GnRH and TAI at 84 h (control; n = 506); 2) GnRH administration, followed in 7 d with PGF, followed in 60 h by a second injection of GnRH and TAI (CO-Synch; n = 548); 3) CO-Synch plus a CIDR during the 7 d between the first injection of GnRH and PGF (CO-Synch + CIDR; n = 539); 4) GnRH administration, followed in 7 d with PGF, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received GnRH and TAI at 84 h (Select Synch & TAI; n = 507); and 5) Select Synch & TAI plus a CIDR during the 7 d between the first injection of GnRH and PGF (Select Synch + CIDR & TAI; n = 498). Blood samples were collected (d -17 and -7, relative to PGF) to determine estrous cycle status. For the control, Select Synch & TAI, and Select Synch + CIDR & TAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed using the AM/PM rule. Pregnancy was diagnosed by transrectal ultrasonography. Percentage of cows cycling at the initiation of treatments was 66%. Pregnancy rates (proportion of cows pregnant to AI of all cows synchronized during the synchronization period) among locations across treatments ranged from 37% to 67%. Pregnancy rates were greater (P < 0.05) for the Select Synch + CIDR & TAI (58%), CO-Synch + CIDR (54%), Select Synch & TAI (53%), or control (53%) treatments than the CO-Synch (44%) treatment. Among the 3 protocols in which estrus was detected, conception rates (proportion of cows that became pregnant to AI of those exhibiting estrus during the synchronization period) were greater (P < 0.05) for Select Synch & TAI (70%; 217 of 309) and Select Synch + CIDR & TAI (67%; 230 of 345) cows than for control cows (61%; 197 of 325). We conclude that the CO-Synch + CIDR protocol yielded similar pregnancy rates to estrous detection protocols and is a reliable TAI protocol that eliminates detection of estrus when inseminating beef cows.  相似文献   

17.
Two experiments were conducted to evaluate whether hCG administered 7 d before initiating the CO-Synch + controlled internal drug release (CIDR) ovulation synchronization protocol (Exp. 1 and 2), or replacing GnRH with hCG at the time of AI (Exp. 1), would improve fertility to a fixed-time AI (TAI) in suckled beef cows. In addition, the effects of hCG on follicle dynamics, corpus luteum development, and concentrations of progesterone (P4) were evaluated. In Exp. 1, cows were stratified by days postpartum, age, and parity and assigned randomly to a 2 × 2 factorial arrangement of 4 treatments: 1) cows received 100 μg of GnRH at CIDR insertion (d -7) and 25 mg of PGF(2α) at CIDR removal (d 0), followed in 64 to 68 h by a TAI plus a second injection of GnRH at TAI (CG; n = 29); 2) same as CG but the second injection of GnRH at the time of insemination was replaced by hCG (CH; n = 28); 3) same as CG, but cows received hCG 7 d (d -14) before CIDR insertion (HG; n = 28); and 4) same as HG, but cows received hCG 7 d (d -14) before CIDR insertion (HH; n = 29). Pregnancy rates were 52, 41, 59, and 38% for GG, GH, HG, and HH, respectively. Cows receiving hCG (39%) in place of GnRH at TAI tended (P = 0.06) to have poorer pregnancy rates than those receiving GnRH (56%). Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows with concentrations of P4 >1 ng/mL at d -7, increased (P < 0.02) concentration of P4 on d -7, and decreased (P < 0.001) the size of the dominant follicle on d 0 and 3, compared with cows not treated with hCG on d -14. In Exp. 2, cows were stratified based on days postpartum, BCS, breed type, and calf sex and then assigned to the CG (n = 102) or HG (n = 103) treatments. Overall pregnancy rates were 51%, but no differences in pregnancy rates were detected between treatments. Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows cycling on d -7 and increased (P < 0.05) concentrations of P4 on d -7 compared with pre-CO-Synch controls. Therefore, pretreatment induction of ovulation after hCG injection 7 d before initiation of CO-Synch + CIDR protocol failed to enhance pregnancy rates, but replacing GnRH with hCG at the time of AI may reduce pregnancy rates.  相似文献   

18.
This study evaluated the pregnancy rates following either a controlled internal drug release (CIDR)-based timed artificial insemination (TAI) or an embryo transfer (TET) protocol compared with that following a single PGF(2alpha) injection and AI after estrus (AIE) in lactating repeat breeder dairy cows. Fifty-three lactating dairy cows diagnosed as repeat breeders were used in this study and were randomly assigned to the following three treatments. (1) Cows, at random stages of the estrous cycle, received a CIDR device and 2 mg estradiol benzoate (EB; Day 0), a 25 mg PGF(2) (alpha) injection at the time of CIDR removal on Day 7 and a 1 mg EB injection on Day 8. The cows then received TAI 30 h (Day 9) after the second EB injection using dairy semen (TAI group, n=13). (2) Cows, at random stages of the estrous cycle, received the same hormonal treatments as in the TAI group. The cows then received TET on Day 16 using frozen-thawed blastocysts or morula embryos collected from Korean native cattle donors (TET group, n=13). (3) Cows, at the luteal phase, received a 25 mg injection of PGF(2alpha) and AIE using dairy semen (control group, n=27). The ovaries of the cows in the TET group were examined by transrectal ultrasonography to determine ovulation of the preovulatory follicles, and blood samples were collected for serum progesterone (P4) analysis. The pregnancy rate was significantly higher in the TET group (53.8%) than in the control (18.5%) or TAI (7.7%) groups (P<0.05). The ultrasonographic observations demonstrated that all the cows in the TET group ovulated the preovulatory follicles and concomitantly formed new corpora lutea. Accordingly, the mean serum P4 concentration remained constant between Day 0 and Day 7 of the luteal phase, decreased dramatically on Day 8 (P<0.01) and subsequently increased by Day 16 (P<0.01). These data suggest that the CIDR-based TET protocol can be used to effectively increase the pregnancy rate in lactating repeat breeder dairy cows.  相似文献   

19.
Previous research from our laboratory in beef cattle suggests that the pre-ovulatory follicle size, maturity and subsequent susceptibility to gonadotropin are influenced by the length of progestagen treatment in artificial insemination programme in beef cows. To test this hypothesis, two experiments were conducted. In experiment 1, 35 anoestrous beef cows received an intravaginal sponge containing 200 mg of medroxyprogesterone acetate. The treatment lasted for 7 (n = 12), 8 (n = 11) or 9 (n = 12) days. Half of the animals in each group were injected with 0.7 mg of oestradiol benzoate (EB) at device removal (0 h) and the other half 24 h later. In experiment 2, 38 cycling beef cows were treated with the same protocols as in experiment 1. Ultrasound examinations were performed to determine the follicular diameter at device removal (dominant follicle), interval to ovulation and ovulatory follicle diameter. The dominant follicle of anoestrous cows with progestagen for 7 days (8.4 ± 1.6 mm) resulted smaller (p < 0.05) than the cows treated for 8 (10.5 ± 1.6 mm) and 9 days (10.6 ± 1.2 mm). However, regardless of the length of the treatments, ovulation time after device removal was longer (p < 0.05) when EB was injected 24 h after withdrawal than at 0 h in anoestrous cows (EB0 = 52.7 ± 4.0 h; EB24 = 70.8 ± 6.2 h) and in cyclic cows (EB0 = 50.0 ± 21.0 h; EB24 = 73.0 ± 20.0 h). In anoestrous cows, the treatment with progestagen for 9 days and EB at 24 h increased the diameter of the ovarian follicle (p = 0.033) but did not affect the diameter of the ovulatory follicle in cyclic cows. In conclusion, increasing the length of progestagen treatment for 8 or 9 days compared to 7 days increased the diameter of the dominant follicle, in anoestrous and cyclic beef cows. Oestradiol benzoate administered at device removal resulted in a shorter interval from device removal to ovulation compared with EB injection 24 h after the end of a progestagen treatment.  相似文献   

20.
Lactating dairy cows (n = 667) at random stages of the oestrous cycle were assigned to either ovsynch (O, n = 228), heatsynch (H, n = 252) or control (C, n = 187) groups. Cows in O and H groups received 100 μg of GnRH agonist, i.m. (day 0) starting at 44 ± 3 days in milk (DIM), and 500 μg of cloprostenol, i.m. (day 7). In O group, cows received 100 μg of GnRH (day 9) and were artificially inseminated without oestrus detection 16–20 h later. In H group, cows received 1 mg oestradiol benzoate (EB) i.m., 24 h after the cloprostenol injection and were artificially inseminated without oestrus detection 48–52 h after the EB injection. Cows in C group were inseminated at natural oestrus. On the day of artificial insemination (AI), cows in all groups were assigned to subgroups as follows: human Chorionic Gonadotrophin (O‐hCG) (n = 112), O‐saline (n = 116), H‐hCG (n = 123), H‐saline (n = 129), C‐hCG (n = 94) and C‐saline (n = 93) subgroups. Cows in hCG and saline subgroups received 3000 IU hCG i.m. and or 10 ml saline at day 5 post‐AI (day 15), respectively. Pregnancy status was assessed by palpation per rectum at days 40 to 45 after AI. The logistic regression model using just main effects of season (summer and winter), parity (primiparous and pluriparous), method1 (O, H and C) and method2 (hCG and saline) showed that all factors, except method1, were significant. Significant effects of season (p < 0.01), hCG and parity (p < 0.01), and a trend of parity and season (p < 0.1) were detected. A clear negative effect of warm period on first service pregnancy rate was noted (p < 0.01). The pregnancy rate was the lowest in the H protocol during warm period (p < 0.05). Treatment with hCG 5 days after AI significantly improved pregnancy rates in those cows that were treated with the H protocol compared with saline treatments (41.5% vs 24.8%; p < 0.01). O and H were more effective in primiparous than in pluriparous cows (46.1% vs 29.9%; p < 0.1 and 43.6% vs 24.6%; p < 0.01). First service pregnancy rates were higher in primiparous hCG‐treated than in pluriparous hCG‐treated cows (57.9% vs 32.3%; p < 0.01). The pregnancy rate was higher for the hCG‐treated cows compared with saline‐treated cows during warm period (37.9% vs 23.6%; p < 0.001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号