首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
采伐方式对米老排人工林天然更新的影响   总被引:1,自引:0,他引:1  
  目的  基于米老排树种生物学特性,探索采伐方式对米老排人工林天然更新的影响,为其天然更新利用和可持续经营提供科学依据。  方法  以南亚热带米老排人工林为对象,按单因素完全随机试验设计方法,设计3种采伐处理(TA:带状皆伐作业,皆伐迹地带宽约为100 m,顺坡长度大于100 m,两侧不采伐保留带宽度均不少于30 m;TB:沿顺坡方向带式渐伐,渐伐带宽约50 m,渐伐后林分保留密度120 ~ 150株/hm2;TC:皆伐,作业面积4.0 hm2)和1种对照CK处理(沿顺坡方向,保留宽度为50 ~ 100 m的不采伐保留带),每个处理布设3块样地。基于数据处理系统(DPS14.5),采用单因素方差分析和最小显著差异法(LSD),对米老排人工林不同采伐作业后天然更新幼树的更新密度、更新频度、生长等进行分析。  结果  (1)在采伐与抚育作业2年后,所有采伐处理迹地天然更新幼树(树高 > 1.3 m)的更新效果均可达到天然更新的良级标准(更新密度大于3 000株/hm2,更新频度大于60%),但仅有TC处理种子更新幼树的更新效果达到采伐迹地天然更新的良级标准。(2)在带状皆伐迹地内,米老排天然更新效果随林缘距离的增加而递减,仅能在距林缘18 m范围内(单侧林缘距离范围)达到天然更新良级标准。(3)采伐处理与对照处理相比,前者米老排天然更新的效果远高于后者。(4)在0 ~ 10 m尺度内,米老排人工林及其采伐迹地种子更新幼树的空间分布多为非单一的分布类型,并呈规律性变化(先呈聚集分布,随后再呈随机分布或均匀分布)。  结论  (1)在采伐处理与对照处理样地之间,采伐与抚育措施对米老排种子更新幼树的空间分布类型影响不明显,对促进种子更新幼树更新密度和更新频度的影响极显著(P < 0.01),对改变种子更新幼树的径级分布作用明显。(2)在米老排人工林落种高峰期(其落种高峰期在10月下旬至12月中旬)外的带状皆伐作业,其作业的带宽宜控制在36 m内。(3)光照是影响米老排人工林天然更新幼树建成的关键因子,利用米老排人工林的落种期和天然更新特性(落种在空旷地易萌发),采用皆伐、渐伐与带状皆伐均可有效实现其采伐迹地的天然更新。   相似文献   

2.
两种不同干扰方式下的天山云杉更新格局   总被引:6,自引:1,他引:6  
该文采用点格局分析方法,对新疆天山中部林区天山云杉林在林冠和强度择伐干扰方式下的天然更新格局进行了研究.结果表明:在林冠干扰方式下,林冠空隙(林窗)内天山云杉天然更新幼树/幼苗呈现聚集分布,并在每一聚集分布中都有最大聚集强度;林冠空隙内天然更新幼树/幼苗与林冠空隙形成木呈现出在空间位置上的依存关系.这在所研究的尺度范围内(130 m×80 m标准地),强度择伐干扰后天山云杉保留木呈现聚集格局,天然更新幼树/幼苗与保留木之间依空间尺度由小到大而在空间上呈现斑块镶嵌、随机排列和空间依存,天然更新幼树/幼苗与择伐作业采伐木伐桩呈现出在空间位置上的依存关系.表明在天山云杉林分中,天然更新幼树/幼苗与强度择伐作业采伐木伐桩之间具有类似于其与林冠空隙形成木之间的空间位置关系.说明在创造天然更新的条件上,强度择伐作业的采伐木具有某些与林冠空隙形成木相同的生态作用.   相似文献   

3.
  目的  分析影响色季拉山典型天然林急尖长苞冷杉Abies georgei var. smithii天然更新影响因子,为有效提高其天然更新提供理论指导。  方法  基于野外样方调查,分析色季拉山阴坡与阳坡5种影响因子与急尖长苞冷杉天然更新幼苗密度的相关性;通过通径分析找到影响其天然更新的关键因子。  结果  阳坡和阴坡种子带翅长度、种子千粒重、苔藓厚度、凋落物厚度及阳坡林分郁闭度与急尖长苞冷杉天然更新幼苗密度均呈现极显著正相关(P<0.01);通径分析认为阳坡凋落物厚度是影响急尖长苞冷杉天然更新幼苗生长的最关键因子,阳坡各影响因子对幼苗密度的影响大小依次为凋落物厚度、种子千粒重、苔藓厚度、种子带翅长度、林分郁闭度;阴坡苔藓厚度是影响急尖长苞冷杉天然更新幼苗生长的最关键因子,阴坡各影响因子对幼苗密度的影响大小依次为苔藓厚度、凋落物厚度、种子千粒重、林分郁闭度、种子带翅长度。  结论  凋落物厚度是影响色季拉山阳坡急尖长苞冷杉天然更新幼苗密度的最大因子,阴坡苔藓厚度是最关键因子。表3参27  相似文献   

4.
不同抚育强度对兴安落叶松幼苗光合作用的影响   总被引:2,自引:0,他引:2  
对大兴安岭的兴安落叶松(Larix gmelinii)天然用材林进行不同强度的人工抚育间伐后,测试分析了林下落叶松幼苗的光合特性。结果表明:抚育间伐后,采伐样地内兴安落叶松幼苗的受光条件明显得到改善,净光合速率、蒸腾速率、气孔导度、环境CO2摩尔分数、胞间CO2摩尔分数、叶片表面光合有效辐射、叶片温度等光合参数,均高于对照样地;净光合速率的日变化呈"单峰"曲线,与光合有效辐射的关系符合一元二次方程,随温度升高先增加后减小;在采伐强度为20.86%~40.01%的样地内,落叶松幼苗光合参数表现最优,对温度的适应能力最强。  相似文献   

5.
  目的  为进一步完备华北落叶松天然更新障碍的研究体系,本研究从幼苗更新特征方面,揭示或反映华北落叶松林天然更新影响因素。  方法  于2019—2020年,对不同强度间伐作业(于2010年6月完成)的27年、31年和47年共3个林龄的华北落叶松人工纯林林下幼苗群体展开调查研究。  结果  (1) 塞罕坝地区华北落叶松林在经过35%极重度间伐、30%重度间伐、20%中度间伐和15%轻度间伐作业以及自然稀疏后的9 ~ 10年里,林下均存在着不同程度的天然更新,更新苗层次均为幼苗,无落叶松幼树存在。幼苗以1年生幼苗为主,多年生幼苗的年龄多为2年。在幼苗更新频率的表现上,更新能力与林龄间呈反比,以27年华北落叶松林的表现最好,47年人工林的最差。(2) 幼苗苗龄分布中,1年生幼苗占比高,更高苗龄的幼苗占比极少,1年生和2年生幼苗的损失较大,在向多年生幼苗的过渡过程中存在更新断层。(3) 幼苗地径和苗高在不同时期以及林分间的差异均较小(P > 0.05)。经过一个生长季,幼苗地径明显减小(P < 0.05),苗高则存在不显著增长(P > 0.05)。(4) 连续2年塞罕坝地区华北落叶松林天然更新等级的观测结果均为更新不良。林龄和林分密度对更新密度的影响较大(P < 0.05),2年内均以31年落叶松林整体更新密度最大(P < 0.05),更新密度则与林分密度间整体呈现正相关(P < 0.05)。相较于2019年,绝大部分样地内更新密度在2020年的表现均存在一定程度地下降(P > 0.05)。(5) 连续2年生长季内幼苗密度的动态变化在3个人工林中相对一致,7月底为萌发高峰期,幼苗损失主要发生在冬季。(6) 生长季成活率和越冬成活率在不同人工林间的差异较小(P > 0.05)。2019年27年落叶松林中生长季成活率要显著优于2020年的(P < 0.05);越冬成活率则在各人工林中均显著低于生长季成活率(P < 0.05)。  结论  塞罕坝地区3个龄级的华北落叶松人工林,在经过4种强度间伐后的9 ~ 10年里,各人工林下存在不同程度的天然更新。林龄和林分密度主要通过影响林下幼苗的更新频率和更新密度影响到天然更新;而对于林下幼苗的年龄分布、生长状况、更新动态以及成活率等更新特征的影响则较小。即林龄和林分密度主要是通过影响幼苗数量来影响林下更新状态。相对而言,对结实能力更强的幼、中龄林,可通过间伐促进母树生长,提高林分整体的种子产量。并可能通过加大间伐强度和缩短轮伐期等方式,增加间伐对于林分的整体种苗品质、林下更新的环境因子和塞罕坝地区幼苗生长季期限等方面的正向影响。   相似文献   

6.
  目的  回归是一种濒危物种保护与种群恢复的重要方法。本研究以极小种群物种东北红豆杉为研究对象,选择3种不同的林型以及两组不同苗龄的东北红豆杉幼苗开展野外回归试验,研究适宜东北红豆杉回归林型以及回归过程中幼苗生长及存活的主要影响因素,以期为东北红豆杉回归保护提供科学依据。  方法  选择杨桦林、红松云冷杉林和红松紫椴林3种林型作为回归试验地,以1 ~ 2年生和4 ~ 5年生东北红豆杉实生幼苗作为试验材料,移栽后调查土壤因子、地形因子等指标,逐月调查幼苗存活率、苗高、地径、冠幅等指标。对幼苗各生长指标进行差异性显著分析和多重比较,通过灰色关联分析等方法研究回归幼苗生长过程中的影响因子。  结果  东北红豆杉回归幼苗当年存活率达86%以上,地径、苗高、冠幅均有所增长,除1 ~ 2年生东北红豆杉幼苗苗高生长量外,各林型中东北红豆杉幼苗生长指标生长量均无显著差异,红松紫椴林的1 ~ 2年生东北红豆杉幼苗苗高生长量显著高于杨桦林和红松云冷杉林。由于越冬期间,4 ~ 5年生东北红豆杉幼苗受到狍啃食,存活率显著下降且长势极差;1 ~ 2年生幼苗受长时间的低温胁迫生长状况也受到一定影响。东北红豆杉回归幼苗的存活和生长受到多种环境因子的影响,关联度最大的是林型,其次是坡向、坡度和郁闭度,土壤化学性质指标的关联度较小。  结论  4 ~ 5年生幼苗因受动物啃食而回归效果不良;1 ~ 2年生幼苗适应杨桦林、红松云冷杉林和红松紫椴林下这3种生境,回归最适宜的林型是红松紫椴林;林型、坡向、坡度、光照是影响东北红豆杉回归的主要环境因子。   相似文献   

7.
凉水地区白桦光-光合特性的比较研究   总被引:9,自引:0,他引:9  
对凉水地区白桦的光——光合特性进行了比较研究。结果表明:白桦幼树最大净光合速率与现观最大量子效率均大于幼苗;有性白桦(幼苗、幼树、成树)最大净光合速率、表马最大量子效率均大于无性白桦(幼苗、幼树、成树);对于不同生境生长的白桦,以上2种光合指标,均为中生>旱生>湿生。  相似文献   

8.
不同采伐强度对辽东栎林幼苗更新的影响   总被引:2,自引:0,他引:2  
为说明不同采伐强度对黄土高原南部辽东栎林幼苗更新的影响,以黄龙山林区蔡家川林场辽东栎群落为研究对象,未采伐为对照,对经过5 a恢复后,皆伐、间伐30%、间伐15%3种采伐强度的辽东栎林地内实生和萌生幼苗生长情况进行了调查。结果表明:不同采伐强度后的实生、萌生幼苗数量、幼苗生长状况、林地生长指标均与未采伐林地有差异;经过间伐30%的林地,其幼苗个体平均基径、高度、冠幅、叶面积、土壤养分、水分等指标均有显著增加;间伐15%林地上述指标均有增加;皆伐后的林地相对未采伐林地,萌生苗数量增加,实生苗数量减少,土壤养分、水分等指标降低。间伐与皆伐措施后比较,间伐措施的林地辽东栎实生幼苗数量多,个体发育良好,土壤养分水分相对较高;皆伐措施的辽东栎建群种萌生幼苗数量多,但土壤水分养分下降。未来该地区辽东栎林经营管理中,应以近自然采伐为主,尽量减少对灌草层破坏,完善群落复层结构;间伐强度拟定为30%,郁闭度应控制在0.5~0.7,并尽量间伐劣质木、病虫木,促进群落向异龄方向发展。  相似文献   

9.
采用野外试验和比较分析的方法,对红松(Pinuskoraiensis)人工林下不同立地条件天然更新的水曲柳(Fraxinusmandshurica)幼苗、幼树的数量、树高、地径及其生长量差异进行了比较。利用层次分析法对影响水曲柳天然更新的主要立地因子进行量化和重要性排序,探索水曲柳天然更新的最适立地因子。结果表明,水曲柳幼苗在红松人工林下天然更新良好,更新类型以1~5a实生起源的更新层幼苗为主,具有较高的生长势;萌生苗个体间的生长势差异较大,但在相同立地条件下,其树高和地径的年平均生长量均明显高于同龄实生苗;光照不足是导致实生苗和萌生苗年龄结构趋于幼年化的主导因子。红松人工林下水曲柳天然更新最适生境的立地因子为:林分郁闭度0. 4~0. 6,枯枝落叶层厚度3. 0~5. 2cm,阳坡中下坡位、坡度不大于5°,草灌盖度20% ~40%,土壤含水量30% ~50%,各因子的重要性依次降低。  相似文献   

10.
采用25m带宽和15m带宽,30m、20m、10m孔径斑块抚育伐,对红松造林试验进行景观处理,栽植了容器苗和裸根苗两种类型的红松苗,并对各种处理方式下红松幼苗的生长、成活率和缓苗情况进行了动态、定位研究。结果表明:红松容器苗造林后生长和成活都优于裸根苗,而且育苗周期缩短两年;红松容器苗采用窄带和中孔径斑块,裸根苗采用带状和林下造林效果较好;带状造林后防寒和裁冠措施没能显著提高造林后幼苗成活率;红松  相似文献   

11.
  目的  探讨核桃在短期缺钾胁迫下的适应机理。  方法  以核桃幼苗为研究对象,设置为期75 d不同程度的缺钾处理:对照(CK)、中度缺钾(MK)和重度缺钾(SK),每隔15 d进行相关指标测定,分析缺钾胁迫对核桃幼苗生长和生理特性的影响。  结果  (1)在缺钾胁迫下,核桃幼苗地上部分生物量、根系生物量、叶绿素a、叶绿素b和类胡萝卜素含量均显著低于CK,且总体上随着缺钾程度的加重和处理时间的延长下降更明显;(2)相比于CK处理,MK和SK处理后期(60 ~ 75 d)核桃幼苗的最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)、电子传递速率(ETR)和光化学猝灭系数(qP)显著下降;(3)随着处理时间的延长,不同缺钾处理下的核桃幼苗中过氧化氢酶(CAT)先上升后下降,MK、SK和CK处理中分别在30、45和60 d时出现最大值;MK和SK处理使超氧化物歧化酶(SOD)活性增加,而SK处理降低了过氧化物酶(POD)活性;处理中期(30 d)后,核桃幼苗中丙二醛(MDA)含量随胁迫程度加深而升高。  结论  核桃受到缺钾胁迫后,根系和地上部分生长以及光合色素的合成均受到明显影响,但核桃能通过自身调节,加大对根部的投入,以提高吸收能力;并通过增加热耗散来消耗PSⅡ反应中心的过剩激发能,减少胁迫对光合机构的损害,调动体内的酶促抗氧化系统,对缺钾胁迫的伤害产生一定的抵抗能力。   相似文献   

12.
不同黄化程度对杂柑幼苗生长及光合作用的影响   总被引:1,自引:0,他引:1  
为了研究不同黄化程度对柑橘幼苗生长及光合作用的影响,以黄果柑、不知火幼苗为材料,分析黄化苗、花叶苗和绿叶苗的生长量、叶绿素含量、光合及叶绿素荧光参数的变化。结果表明,叶片黄化抑制了幼苗的正常生长,黄化苗的生长量显著低于绿叶苗;黄化苗叶片中游离脯氨酸(Pro)、丙二醛(MDA)、可溶性糖(SS)和可溶性蛋白质(SP)含量均显著增加;叶片黄化显著降低了叶片叶绿素a(Chl a)、叶绿素b(Chl b)、类胡萝卜素(Car)含量和光合作用气体交换参数(气孔导度、胞间CO_2浓度、蒸腾速率),改变了叶绿素的组成比例。黄化苗的PSⅡ最大光化学效率(F_v/F_m)、光化学猝灭系数(qP)和非光化学猝灭系数(NPQ)显著低于绿叶苗,导致净光合速率(Pn)显著降低,但花叶苗F_v/F_m下降程度较小。研究表明,叶片黄化抑制了黄果柑、不知火幼苗的正常生长,降低了光合能力。  相似文献   

13.
采用正交试验法进行更新设计,通过对试验区的10a田间观测,结果表明,天然过伐林采伐迹地人工更新较好的设计为;择伐迹地,采伐强度40%以下,冠下丛植更新红松,每穴3株,株行距3m×3m,也可营造红皮云杉,皆伐迹地,更新长白落叶松,株行距1m×3m(1m×2m)并借助天然更析保留水,黄等珍贵阔叶树,使之形成“人天混”。  相似文献   

14.
  目的  探讨濒危植物景宁木兰Magnolia sinostellata在不同光照强度下光合能力的季节变化及适应机制,为种群的繁衍复壮和迁地保护等提供理论依据。  方法  以2年生景宁木兰幼苗为对象,在3种光照处理下(100%全光照、40%全光照和10%全光照),对春季、夏季、秋季3个季节的光合特性指标进行了测定与分析。  结果  ①春季100%全光照和夏季100%全光照、40%全光照下净光合速率日变化均呈“双峰”曲线。②夏季100%全光照、40%全光照下最大净光合速率、光饱和点、光补偿点均显著高于10%全光照(P<0.05),而秋季100%全光照下最大净光合速率、光饱和点却显著低于40%全光照和10%全光照(P<0.05)。③夏季、秋季100%全光照下最大电子传递速率和磷酸丙糖利用率均显著低于40%全光照(P<0.05)。④100%全光照下光系统Ⅱ(PS Ⅱ)最大光化学量子产量在夏季、秋季分别为0.68和0.72。100%全光照下光化学猝灭系数和40%全光照下PSⅡ实际光化学量子产量在夏季均显著高于春季、秋季(P<0.05)。  结论  在100%全光照下,景宁木兰易受夏季高温和强光胁迫,致使叶片灼伤,秋季净光合速率明显下降,而适当遮光条件下,景宁木兰在3个季节均能维持较高的净光合速率。因此,在景宁木兰栽培过程中,建议光合有效辐射保持在自然光照强度的40%以上。图5表1参23  相似文献   

15.
通过在人工林内带状间伐开拓天然更新效应带 ,分析了赤松在不同试验地内的天然更新种群的结构与生长状况 .结果表明 :更新种群个体数量按年龄分布的曲线呈偏态分布 ,峰值偏左 ,在7年生苗木达到最高 .采伐后更新的赤松幼苗 ,地径和苗高生长在 4年生以后对环境条件的差异产生显著反应 ,7年生最为剧烈 ,不同样地中以采伐带内同龄幼苗生长分化最为严重 .带状采伐对伐前更新苗木的高生长也有很大促进作用 .更新苗木死亡的年龄主要集中在 7年生以下阶段 .因此 ,改善林地内的光照条件有利于提高更新幼苗的保存率 ,促进更新苗的生长  相似文献   

16.
  目的  采伐是影响森林植被固碳能力最主要的森林管理方式之一。目前对异龄复层混交林植被碳储量和碳增量对采伐干扰的响应规律尚缺乏足够的认识。本研究旨在揭示不同强度采伐下阔叶红松林乔木地上碳储量和碳增量的动态变化,为合理选择采伐强度,促进阔叶红松林“固碳增汇”提供理论依据。  方法  在吉林蛟河天然阔叶红松林内建立轻度(胸高断面积平均采伐强度17.3%)、中度(34.7%)、重度(51.9%)采伐以及对照(不采伐)样地,对样地内所有胸径大于1 cm的乔木进行连续监测,比较不同采伐强度下保留木、进界木、枯死木碳储量的变化,以及采伐对不同径级树木碳增量的影响,探究采伐干扰后林分碳储量恢复的一般规律和限制因素。  结果  采伐10年后,轻度采伐样地内的乔木地上碳储量已经恢复到伐前水平并超过对照样地,而中度和重度采伐造成的碳储量损失在短期内难以恢复,分别需要约22年和44年才能恢复到伐前水平。乔木地上碳增量在4个采伐强度中有显著差异。轻度采伐使得林分碳年增量显著高于对照,而重度采伐却明显降低了碳增量的增速。这是因为尽管采伐显著提高了林分保留木和进界木的生长量,但高强度采伐造成的林内环境变化、树木受伤等增加了样地内树木的死亡率,使得净碳增量较低。采伐对小径级树木(胸径小于20 cm)的生长(碳增量)有显著的促进作用,而大径级树木(胸径大于30 cm)的碳增量在不同采伐处理之间没有显著影响。将采伐强度与碳增量进行拟合,得到采伐强度为28.4%时碳储量年增量达到最大值。  结论  从本研究结果来看,阔叶红松林的采伐强度在15% ~ 30%是较为合理的。轻度到中度的采伐尽管在短期内会引起植被碳储量一定程度的降低,但通过对林分结构进行调整,加速了保留木和进界木的生长,使得碳增量较快。同时,胸径在20 ~ 30 cm的树木对整个林分的碳增量贡献最大,生长潜力也较大,意味着森林经营时应特别考虑保留这一径级的树木。总之,采伐强度的设定应综合考虑木材生产、生态系统恢复、森林植被碳汇功能等多种因素。   相似文献   

17.
以长白山阔叶红松林为研究对象,通过对不同冠层郁闭度冠下生长季节(5—10月份)红松光响应曲线的测定,研究透光抚育对红松光合作用的影响。结果显示:红松光合作用光响应曲线显著的季节变化模式反映了红松对当地水热等气候条件的适应性。表观量子效率与太阳辐射量呈显著负相关( r=0.9,p<0.05),温度和降水解释了最大净光合速率季节变化的70%;暗呼吸速率与日照时间显著负相关( r=0.92,p<0.05)。红松光合作用光响应曲线随冠层郁闭度变化模式清晰。红松生产力在0~0.3郁闭度组,特别是在0.2~0.3郁闭度组为最优,对应的红松最大净光合速率最优,暗呼吸速率最小。  相似文献   

18.
  目的  通过对不同采伐强度干扰阔叶红松林生态系统碳密度的估算,探讨其伐后30年的恢复状况,解析采伐强度、生态系统各组分碳密度及其与林分结构间的关系,为以生态系统碳汇功能提升和物种多样性保护等为目标的森林经营提供科学依据。  方法  以汪清林业局不同采伐强度干扰的阔叶红松林为对象,通过对未采伐和Ⅰ级(30%)、Ⅱ级(40%)、Ⅲ级(50%)、Ⅳ级(60%以上)、Ⅴ级(皆伐)采伐强度干扰林分植被、枯落物和土壤特征的调查和样品采集与测试分析,系统估算其植被、枯落物和土壤的碳密度,并对比分析其差异,以及他们之间及其与采伐强度、林分结构之间的关系。  结果  虽经30年的恢复,因采伐强度的显著负效应影响,阔叶红松林的植被碳密度仍显著低于对照,但在除皆伐外的其他采伐强度之间已恢复至无差异水平。虽然伐后林分乔木层碳密度的小径级和中小径级林木比例有一定程度的增加,但仍无法弥补40 cm以上大径林木的碳密度损失;幼树和草本植物的碳密度受采伐强度的影响不显著;灌木植物的碳密度与采伐强度呈极显著的正相关,但仅皆伐干扰显著增加。皆伐干扰显著降低了枯落物和B层土壤的碳密度,而其他采伐强度的土壤碳密度则因B层的增加而整体接近或高于对照林分。与对照相比,皆伐和Ⅰ、Ⅱ级采伐强度干扰的生态系统碳密度显著降低,Ⅲ、Ⅳ级采伐强度干扰的生态系统碳密度则分别恢复为与之接近和略高。生态系统碳密度的组成以土壤的碳密度占比最高,冠下植被和枯落物的碳密度合计不足生态系统碳密度的3%。采伐强度对树高均匀度指数、胸径香农指数和胸径均匀度指数的负效应仍显著,林分结构对乔木层碳密度产生了显著的正效应,对灌木植物碳密度为显著的负效应。受采伐的强烈负效应影响,乔木层碳密度与灌木植物的碳密度、枯落物碳密度、草本植物丰富度,以及枯落物碳密度与土壤碳密度和草本植物丰富度间均存在显著的相关关系。  结论  阔叶红松林伐后30年,除皆伐干扰外的生态系统碳密度已基本接近或超过未采伐林分,碳密度的恢复主要源于土壤相对快速的累积,而植被的碳密度损失还尚需一定时间的恢复。采伐强度、生态系统各组分碳密度及其与林分结构间存在着显著的相关关系,主要动因为采伐负效应引起的林分结构改变,导致了乔木层、冠下植被、枯落物和土壤的联动变化。   相似文献   

19.
大兴安岭采伐迹地主要目的树种的天然更新   总被引:6,自引:0,他引:6  
对不同采伐方式(经营择伐、二次渐伐和皆伐)、林分组成、坡向、坡位、郁闭度、土壤厚度、下木盖度、地被物盖度等条件下样地中主要目的树种的更新情况进行了调查。结果表明:经营择伐林分有效天然更新株数最多,温度和光照条件是决定兴安落叶松更新的重要条件;经营择伐林分兴安落叶松天然更新株数主要受林分郁闭度的制约,皆伐和二次渐伐林分兴安落叶松天然更新株数主要受地表草本植物的制约;二次渐伐林分不同坡位间不但更新数量存在差异,而且树木的生长状况差异也很大。  相似文献   

20.
[目的]探讨钛铁试剂对秋茄幼苗的抗寒性调控作用。[方法]以秋茄幼苗为试材,研究喷洒10 mmol/L钛铁试剂对低温胁迫及恢复后植株叶片光合和叶绿素荧光参数、抗氧化系统以及细胞膜透性的影响。[结果]钛铁试剂能显著提高低温胁迫及恢复后秋茄幼苗叶片净光合速率(Pn)、气孔导度(Gs)、PSII最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII),光化学猝灭系数(qP),抑制非光化学猝灭系数(NPQ);钛铁试剂也能增加短期低温胁迫及恢复后秋茄幼苗叶片的超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)活性,抑制相对电导率以及MDA含量积累。[结论]钛铁试剂能有效改善植株抗氧化系统,提高植株的光合作用,从而增强秋茄幼苗的抗寒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号