首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Genetic mapping of loci determining long glumes in the genus Triticum   总被引:1,自引:0,他引:1  
Elongated glumes are present in thetetraploid wheat species T.polonicum, T. turanicum, T.durum convar. falcatum and in thehexaploid species T. petropavlovskyi.Inheritance of glume length was studiedwith the aim to map the respective lociusing wheat microsatellite markers. In T. polonicum and T. petropavlovskyiloci conferring long glume were mapped nearthe centromere on chromosome 7A. These twoloci are designated P-A pol 1 andP-A pet 1, respectively. It isshown that both are probably homoeoallelicto each other and to the P gene ofT. ispahanicum on chromosome 7B. The loci determining elongated glumes in T. turanicum and T. durum conv. falcatum are not homoeologous to the P loci in the centromeric region of thegroup 7 chromosomes.  相似文献   

2.
N. Watanabe  I. Imamura 《Euphytica》2002,128(2):211-217
The Chinese wheat landrace, Xinjiang rice wheat (T. petropavlovskyi Udacz. et Migusch., 2n = 42), known as ‘Daosuimai’ or rice-head wheat is characterized by long glumes, and was found in the agricultural areas in the west part of Talimu basin, Xinjiang, China in 1948. The gene for long glume from T. petropavlovskyi was introduced into a line of spring durum wheat, LD222. The gene for long glume is located approximately46.8 cm from the cn-A1 locus, which controls the chlorinatrait. Significant deviation from a 3:1 in the F2 of LDN7D(7A)/ANW5C confirmed that the long glume of T. petropavlovskyi can be controlled by a gene located on chromosome 7A. The gene locates approximately 12.4 ± 0.5 cM from the centromere on the long arm of 7A. It is considered that the gene for long glume from T. petropavlovskyi is an allele on the P 1 locus, and it should be designated as P 1a. It is suggested that T. petropavlovskyi originated from either the natural hybrid between T. aestivum that has an awn-like appendage on the glume and T. polonicum or a natural point mutation of T. aestivum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Liguleless phenotypes of wheat lack ligule and auricle structures on all leaves of the plant. Two recessive genes principally control the liguleless character in tetraploid wheat. The F2 progenies of k17769 (liguleless mutant)/Triticum dicoccoides and k17769/T. dicoccum segregated in a 15:1 ratio, whereas the F2 progenies of k17769/T. durum and k17769/T. turgidum segregated in a 3:1 ratio. A new gene, lg3, was found on chromosome 2A. Segregation of F2 progenies between k17769 and chromosome substitution lines for homoeologous group 2 chromosomes suggested that the liguleless genotype had occurred by mutation at the lg3 locus on chromosome 2A, and then by mutation at the lg1 locus on chromosome 2B, in the process of domestication of tetraploid wheat. The gene (lg1) was linked to Tc2 (11.9 cM), which determines phenol colour reaction of kernels, on the long arm of chromosome 2B. The distance of lg1 to the centromere was found to be 60.4 cM, and microsatellite mapping established the gene order, centromere – Xgwm382Xgwm619Tc2lg1 on the long arm of chromosome 2B.  相似文献   

4.
End-use quality of wheat for noodles is influenced by polyphenol oxidase activity and its corresponding substrates. This study investigated the chromosomal location of genes that determine phenol colour reaction of kernels in tetraploid wheat using aneuploid stocks. Polyphenol oxidase activity was estimated by the colour reaction of kernels to phenol solution. It was found that the genes located on homoeologous group 2 chromosomes have an important effect on the level of phenol colour reaction of kernels. The genes (Tc1 and Tc2) responsible for high phenol colour reaction of kernels were mapped to the long arms of chromosome 2A and chromosome 2B, respectively. The map distances were estimated to be 46.8 cM for Tc1 and 40.7 cM for Tc2 from the centromere using double-diltelosomics of durum wheat.  相似文献   

5.
Summary Several near-isogenic lines of durum wheat cv. LD222 have been developed. These include a near-isogenic line carrying gene P and designated P-LD222. The P gene from Triticum polonicum determines a long empty outer glume. The objective of this study was to determine the inheritance and chromosomal location of the P gene. To determine the inheritance, P-LD222 was crossed to two chlorina mutants and to a near-isogenic line for the purple culm trait, Pc-LD222. Linkage of the P gene with the mutated gene in chlorina mutant CDd6 indicated that the P gene was located on chromosome 7A. P-LD222 was also crossed with durum cultivar Langdon (LDN) and the LDN D genome substitution lines, LDN 7D(7A) and LDN 7D(7B). Segregation for the long glume trait in the F2 of LDN/P-LD222 and LDN 7D(7B)/P-LD222 was normal (3:1) and indicated P gene was not on chromosome 7B. Significant deviation from a 3:1 in the F2 of LDN 7D(7A)/P-LD222 confirmed the location of P on chromosome 7A, as indicated by the linkage analysis.  相似文献   

6.
N. Watanabe 《Euphytica》1999,106(1):39-43
The Ispahan emmer wheat, Triticum ispahanicum Heslot, was discovered in Iran 1957 by the French expedition of Vinnot- Bourgen. T. ispahanicum has a long glume and a more slender spike than T. turgidum var. polonicum. The objectives of this study were (1) to determine the inheritance and chromosomal location of the gene for long glume, P2, from T. ispahanicum using the near- isogenic line P2-LD222, and (2) to compare the effects of the genes for long glume. The gene for long glume, P2, was located approximately 36.5 cM from the cn-B1 locus, which controls the chlorina trait and approximately 40 cM from the centromere on the long arm of 7B. The location of P2 approximately 29.6 cM from the Pc locus produced additional evidence that the order of loci was cn-B1, P2, and Pc. This raises the possibility of a paralogous gene set conditioning long glumes. A significant deviation from a 3:1 ratio in the F2 of LDN 7D(7B)/P2-LD222 confirmed the location of P2 on chromosome 7B. It is proposed that T. ispahanicum originated as a mutation of a gene affecting glume length on chromosome 7B of T. dicoccum, a spelt type of cultivated tetraploid wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Septoria glume blotch, caused by Stagonospora nodorum, is an important disease of wheat (Triticum aestivum). Separate genetic mechanisms were found to control flag leaf and spike resistance. Genes for resistance to S. nodorum were located on different chromosomes in the few wheat cultivars studied. These studies only partially agree on the chromosome locations of gene in wheat for resistance to S. nodorum, and chromosomal arm locations of such genes are not known. The objectives of this study were to determine the chromosome and chromosomal arm locations of genes that significantly influence resistance to S. nodorum in wheat cultivar Cotipora. Monosomic analysis showed that flag leaf resistance was controlled by genes on chromosomes 3A, 4A, and 3B whereas the spike resistance was controlled by genes on chromosomes 3A, 4A, 7A, and 3B (P=0.01). Additionally, genes on chromosomes 6B and 5A influenced the susceptibility of the flag leaf and spike reactions, respectively (P=0.01). Telocentric analysis showed that genes on both arms of chromosome 3A, and the long arms of chromosomes 4A and 3B were involved in the flag leaf resistance whereas genes on both arms of chromosome 4A, the short arm of chromosome 3A, and the long arm of chromosome 3B conferred spike resistance.  相似文献   

8.
N. Watanabe  N. Ikebata 《Euphytica》2000,115(3):215-220
`Langdon' (LDN), a durum wheat (Triticum turgidum L. var. durum) cultivar, and a set of chromosome substitution lines of Langdon, where A or B genome chromosome were replaced with a homologous chromosome of wild emmer wheat, T. turgidum ssp. dicoccoides (DIC), were used to assess the effect of the specific chromosome on seed dormancy in tetraploid wheat. The LDN(DIC 3A) and LDN (DIC 313) lines showed significantly lower seed germination than Langdon. It appears that LDN(DIC 3A) and LDN(DIC 3B) have red grain whose allele were designated as R-A1b and R-B1b, respectively and the rachises of LDN(DIC 3A) and LDN(DIC 3B) were fragile. The alleles for brittle rachis were designated as Br 2 for LDN(DIC 3A) and Br 3 for LDN(DIC 3B). From the F2 of the crosses, Langdon/LDN(DIC 3A) and Langdon/LDN(DIC 3B), Br 2 was located approximately 44.2 cM from the R-A1b locus and Br 3 approximately 47.0 cM from the R-B1b locus, respectively. Recombinant inbred chromosomal lines for 3A and 3B were used to assess (1) the linkage relationship between grain colour and fragile rachis, and (2) the effect of grain colour on germination. Estimated distance between R-B1b – Br 2 was 39.6 cM. For the 3A population, germination percentage of both colour groups was 12.4% for the red grain group and 68.6% for the amber group, respectively. For the 3B population, germination percentage of the red group was 7.3% and that of the amber group was 82.1%. For both populations, differences were statistical significant by t-tests. We considered that seed dormancy of T. turgidum ssp. dicoccoides was dependent on grain colour. It raised the possibility that brittle rachis is due to a paralogous gene set on homoeologous group 3 chromosomes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Four sets of wheat-rye addition lines were screened to localize genes in rye that restore male fertility to hexaploid wheat with timopheevi cytoplasm. One gene, designated Rfc3, was physically located in the distal 40 % of the long arm of chromosome 6R. No allelic variation at Rfc3 was found; normal male fertility was consistently observed in all F1 hybrid combinations tested. A second gene, designated Rfc4, was located on the long arm of chromosome 4R. Variation between chromosomes 4R in the level of restoration was observed; fertility in hybrids ranged from 0 % to about 50 % of normal. Attempts to genetically map Rfc4 were inconclusive but suggested it was located 16.1 cM from the telomere of the long arm and at least 8.0 cM from the centromere. These restorers, particularly Rfc3, may have potential in hybrid wheat breeding programs and can be manipulated for production of male sterile triticale lines.  相似文献   

10.
Summary The highly effective stripe rust resistance gene, Yr15, derived from Triticum dicoccoides, was located in chromosome 1BS. Yr15 showed linkage of 0.30 (34 cM) with Yr10 and 0.07 with the centromere. Yr15 was preferentially transmitted relative to its alternate allele.  相似文献   

11.
Summary Aegilops tauschii (Coss.) Schmal. (2n = 2x = 14, DD), a wild relative of wheat has been considered to be a valuable source of variation for improvement of cultivated wheats. However, undesirable genes can be incorporated into the cultivated varieties from wild relatives. The spontaneous spike shattering caused by the brittle rachis character is of adaptive value in wild grass species, but not in cultivated varieties. The rachis of R-61, which was derived from the cross of T. aestivum cv. Bet Hashita with an accession of Ae. tauschii, was brittle. Using telosomic stocks, the brittle rachis gene Br 61 (tentatively designated) of B-61 was located on the short arm of chromosome 3D and the distance of Br 61 to the centromere was 31.9 cM. The distance of Br 61 from the centromeric marker Xgdm72 was 25.3 cM on the short arm of chromosome 3D. The location of Br 61 was similar to Br 1 whose location was determined by telosomic mapping and microsatellite mapping. Discrepancy of disarticulation type was found between R-61 and Aegilops tauschii suggesting that the recombination around the regions of Br 1 locus and Br t locus created the wedge type disarticulation of R-61.  相似文献   

12.
Summary The tolerance of aluminum (Al) of disomic substitution lines having the chromosomes of the D genome of Triticum aestivum L. cv. Chinese Spring individually substituted for their homoeologues in T. turgidum L. cv. Langdon was investigated by the hematoxylin method. The disomic substitution lines involving chromosome 4D were more Al tolerant than Langdon. The tolerance was found to be controlled by a single dominant gene, designated Alt2, that is in the proximal region of the long arm of chromosome 4D. The locus was mapped relative to molecular markers utilizing a population of recombinant chromosomes from homoeologous recombination between Chinese Spring chromosome 4D and T. turgidum chromosome 4B. Comparison of the location of Alt2 in this map with a consensus map of chromosomes 4B and 4D based on homologous recombination indicated that Alt2 is in a vicinity of a 4 cM interval delineated by markers Xpsr914 and Xpsr1051. The Alt2 locus is distal to marker Xpsr39 and proximal to XksuC2. The Altw locus is also proximal to the Knal locus on chromosome 4D that controls K+/Na+ selectivity and salt tolerance. In two lines, Alt 2 and Knal were transferred on a single 4D segment into the long arm of T. turgidum chromosome 4B.  相似文献   

13.
N. Watanabe  N. Takesada  Y. Shibata  T. Ban 《Euphytica》2005,144(1-2):119-123
Glaucous leaf and tough rachis phenotypes are rare in Aegilops tauschii, the D genome donor to common wheat (Triticum aestivum). The genes for glaucous leaf and tough rachis were mapped using microsatellite probes in A. tauschii. The glaucous phenotype was suppressed by the inhibitor W2I located on chromosome 2DS. The gene W2I was mapped to the distal part of 2DS, and was unlinked to the centromere. This suggests that the distance of the W2I locus from the centromere was maintained during the evolution of hexaploid wheat from its diploid progenitors as the inhibitor gene is at the same position in A. tauschii and bread wheat. The Brt (Brittle rachis of A. tauschii) locus was located on the short arm of chromosome 3D, and was 19.7 cM from the centromeric marker, Xgdm72.3D. Brt causes breakage of the spike at the nodes, thus creating barrel-shaped spikelets, while Br1 in hexaploid wheat causes breakage above the junction of the rachilla with the rachis such that a fragment of rachis is attached below each spikelet.  相似文献   

14.
In the presented study, the existing AFLP and SSR maps of barley were used to find chromosomal position of four genes controlling different stages of root hair development. Four barley mutants were used in the analysis: the root hairless mutant rhl1.b, mutant rhp1.b with root hair development blocked at the initial bulge formation, mutant rhi1.a with irregular pattern of sparsely located root hairs and mutant rhs1.a with very short root hairs. Each mutant was crossed with parents of ‘Steptoe’/‘Morex’ mapping population and F2 progenies of crosses: mutant × ‘Steptoe’ and mutant × ‘Morex’ were analyzed for segregation of root hair phenotype and polymorphic AFLP and SSR markers. It was possible to map all the analyzed genes on barley chromosomes: rhl1 gene on the short arm of chromosome 7H, rhp1 gene on chromosome 1H, rhs1 locus in the pericentromeric region of chromosome 5H and rhi1 gene on the long arm of chromosome 6H. Subsequently, the Bulk Segregant Analysis and AFLP technique were used for saturation of the identified regions with new markers. The joint maps were constructed using as common points the SSR markers located in the target regions. Linkage maps of the regions around the four genes involved in the root hair formation in barley were composed of 8–11 markers and spanned over 16.1–49.0 cM. The distances between localized genes and the closest markers ranged from 1.0 to 3.8 cM. The identified chromosomal locations of genes can be used for their fine mapping and future map-based cloning.  相似文献   

15.
The spikes of club wheat are significantly more compact than spikes of common wheat due to the action of the dominant allele of the compactum (C) locus. Little is known about the location of C on chromosome 2D and the relationship between C and to other spike-compacting genes. Thus, a study was undertaken to place C on linkage maps and a chromosome deletion bin, and to assess its relatedness to the spike compacting genes zeocriton (Zeo) from barley and soft glume (Sog) from T. monococcum. Genetic mapping was based on recombinant inbred lines (RILs) from a cross between the cultivars Coda (club) and Brundage (common) and F2 progeny from a cross between the club wheat Corrigin and a chromosome 2D substitution line [Chinese Spring (Ae. tauschii 2D)]. The C locus was flanked by Xwmc144 and Xwmc18 in the RIL population and it was completely linked to Xcfd116, Xgwm358 and Xcfd17 in the F2 population. C could not be unambiguously placed to a chromosome bin because markers that were completely linked to C or flanked this locus were localized to chromosome bins on either side of the centromere (C-2DS1 and C-2DL3). Since C has been cytogenetically mapped to the long arm of chromosome 2D, we suspect C is located in bin C-2DL3. Comparative mapping suggested that C and Sog were present in homoeologous regions on chromosomes 2D and 2Am, respectively. On the other hand, C and Zeo, on chromosome 2H, did not appear to be orthologous.  相似文献   

16.
N. Watanabe  S.F. Koval 《Euphytica》2003,129(3):259-265
The chlorophyll a:b ratio of chlorina mutants is much higher than that of wild type plants. Physical mapping of the chlorina mutant loci (cn-A1, cn-B1 and cn-D1) of common wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.) was carried out with partial deletion lines of Chinese Spring(CS) of the long arms of homoeologous group7 chromosomes. F1 plants of partial deletion lines with near-isogenic lines (ANK-32A and ANK-32B) of the spring bread wheat Novosibirskaya 67 and a near-isogenicline of durum wheat LD222, ANW-7B were evaluated for chlorophyll a:b ratio of the leaves. Hemizygous and heterozygous plants were more easily distinguished by chlorophyll a:b ratio than by visual observation. The dose effects of the chlorina loci on chlorophyll a:b ratio were also confirmed. The position of the allele on the chromosome was localized by fraction length, the comparative values between whole chromosome and partially deleted chromosome. The locus cn-A1 was localized on the region of 83% distal from the centromere on the long arm of chromosome 7A, cn-B1 locus was localized on the region between 69% and 78% distal from the centromere on the long arm of chromosome 7B, and cn-D1 locus was localized on the region between 76% and 77% distal from the centromere on the long arm of chromosome 7D. We consider the map derived by deletion mapping is more accurate than the map calculated from recombination frequency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A novel gene, designated Pg (purple glume), controlling anthocyanin pigmentation of the glume was identified and mapped in an F2 population from the durum wheat (Triticum durum) cross TRI 15744/TRI 2719. This gene was close to one of the two complementary dominant genes, controlling anthocyanin pigmentation of the pericarp (gene Pp3) in the centromere region of chromosome 2A; the other Pp gene (Pp1) was mapped on the short arm of chromosome 7B, near gene Pc controlling anthocyanin pigmentation of the culm and co-segregating with Pls (purple leaf sheath) and Plb (purple leaf blade). On the basis of the mapping results, the Pp3, Pc, Pls and Plb genes of T. durum were regarded as allelic to the T. aestivum Pp3, Pc-B1, Pls-B1 and Plb-B1 loci. The likely allelism of Pp1 in T. durum and T. aestivum remains in dispute, the present durum Pp gene mapped to the short arm of chromosome 7B, whereas in common wheat it was reportedly located on the long arm.  相似文献   

18.
Wheat grain size and shape are associated not only with yield but also with product and milling quality. A subspecies of cultivated tetraploid wheat, Triticum turgidum ssp. polonicum, is characterized by elongated glumes. To elucidate morphological effects of the subspecies differentiation-related gene, we conducted QTL analysis for grain and spikelet shape using a mapping population between two tetraploid wheat subspecies, polonicum and durum. P1, the gene controlling the elongated glumes, was located on chromosome 7A, and the polonicum-type allele acted in an incomplete dominance manner to express the elongated glume phenotype. The polonicum allele of the P1 locus significantly affected not only glume length but also grain shape, spike shape, awn length and seed fertility in tetraploid wheat. The elongated glume phenotype was correlated with an increase in spike length, grain length and grain weight, and with a decrease in fertility, grain number and awn length. Thus, the subspecies differentiation-related gene in subspecies polonicum dramatically affects grain shape accompanied by alteration of spikelet shape in tetraploid wheat.  相似文献   

19.
Yellow rust (stripe rust), caused by Puccinia striiformis Westend f. sp. tritici, is one of the most devastating diseases of wheat throughout the world. Wheat-Haynaldia villosa 6AL.6VS translocation lines R43, R55, R64 and R77, derived from the cross of three species, carry resistance to both yellow rust and powdery mildew. An F2 population was established by crossing R55 with the susceptible cultivar Yumai 18. The yellow rust resistance in R55 was controlled by a single dominant gene, which segregated independently of the powdery mildew resistance gene Pm21 located in the chromosome 6VS segment, indicating that the yellow rust resistance gene and Pm21 are unlikely to be carried by the same alien segment. This yellow rust resistance gene was considered to beYr26, originally thought to be also located in chromosome arm 6VS. Bulked Segregation Analysis and microsatellite primer screens of the population F2 of Yumai 18 × R55 identified three chromosome 1B microsatellite locus markers, Xgwm11, Xgwm18 and Xgwm413, closely linked to Yr26. Yr26 was placed 1.9 cM distal of Xgwm11/Xgwml8, which in turn were 3.2 cM from Xgwm413. The respective LOD values were 21 and 36.5. Therefore, Yr26 was located in the short arm of chromosome 1B. The origin and distribution of Yr26 was investigated by pedigree, inheritance of resistance and molecular marker analysis. The results indicated that Yr26 came from Triticum turgidum L. Three other 6AL.6VS translocation lines, R43, R64 and R77, also carried Yr26. These PCR-based microsatellite markers were shown to be very effective for the detection of the Yr26 gene in segregating populations and therefore can be applied in wheat breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A novel photoperiod response gene, designated Ppd-B2, was mapped to wheat chromosome arm 7BS, using a set of lines carrying various segments of 7BS from the early flowering breeding line ‘F26-70 7B’ in a background of the variety ‘Favorit’. The gene was 4.4 cM distal of the microsatellite locus Xgwm0537 and 20.7 cM proximal to Xgwm0255. In contrast to the well-characterized Ppd-1 genes, which require short days for expression, Ppd-B2 was detected when plants were exposed to a long photoperiod. The accelerated flowering produced by Ppd-B2 was correlated with increased grain protein content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号