首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
河南省秸秆露天焚烧大气污染物排放量的估算与分析   总被引:3,自引:2,他引:1  
为了解河南省秸秆露天焚烧大气污染物排放情况,根据2014年河南省的主要农作物产量、草谷比、焚烧比例和排放因子,采用排放因子法估算河南省秸秆焚烧大气污染物的排放量,建立河南省秸秆露天焚烧的污染物排放清单,并分析了大气污染物排放量的时空分布。结果表明:2014年河南省秸秆露天焚烧共排放:CO_21 210.45万t、CO 51.74万t、CH_43.27万t、NMVOCs 7.19万t、NH_30.59万t、BC 0.42万t、OC 2.47万t、SO_20.55万t、NO_X3.13万t、PM_(2.5)7.48万t。小麦和玉米是河南省露天焚烧排放大气污染物主要贡献源,其贡献率分别为38%~67%和17%~36%。大气污染物排放的高值区主要集中在驻马店、周口、南阳和商丘四个地市。大气污染物排放的高峰期集中在6月和10月,这两个月的各类污染物排放量对全年总排放量的分担率分别为37.1%~65.7%和11.3%~37%。  相似文献   

2.
基于南京市移动源活动水平,采用适当的估算方法,建立了南京市2015年移动源排放清单。结果表明:南京市2015年移动源排放的CO、HC、NO_x、PM_(10)、PM_(2.5)、SO_2分别为9.61万t、1.88t、5.66万t、0.22万t、0.20万t和0.29万t。道路移动源中,小型载客汽车对HC和CO排放量贡献率最大,分别为61.0%和54.7%。重型载货汽车是NOx、PM_(10)、PM_(2.5)和SO_2四种污染物的主要排放来源,占比分别为54.0%、46.7%、45.8%和42.9%。非道路移动源中,船舶对CO、HC、NOx、PM_(10)、PM_(2.5)和SO_2排放量的贡献率均最大,分别为53.8%、49.4%、44.5%、57.8%、57.1%和89.6%。  相似文献   

3.
生物质燃烧和采暖燃煤对太原市大气PM_(2.5)的影响   总被引:2,自引:0,他引:2  
[目的]研究山西省太原市秋冬季生物质燃烧和采暖燃煤对大气细颗粒物(PM_(2.5))质量浓度及化学成分的影响。[方法]使用武汉天虹公司TH-150C中流量大气PM_(2.5)采样器于2014年10月4日至11月23日在山西大学环境科学研究所楼顶采集大气PM_(2.5)样品,测定其重金属、水溶性无机离子和有机碳(OC)、元素碳(EC)含量,记录采样期间气温、相对湿度、风速、大气PM_(2.5)日均浓度值,并查阅同期太原市周围卫星火点图。[结果]卫星火点图显示,2014年10月下旬太原市周边火点明显多于11月,与之相联系,采样点大气PM_(2.5)质量浓度呈现10月高、11月前2周低、之后快速上升的趋势,与该趋势变化相一致的是PM_(2.5)中的无机水溶离子SO_4~(2-)、NO_3~-、NH_4~+、K~+、重金属元素Zn、Pb、As以及含碳颗粒OC、EC,而F~-、Cl~-和重金属Cd、Ni却呈现缓慢累积的变化规律,Na~+、Mg~(2+)、Ca~(2+)浓度变化幅度较小,说明PM_(2.5)的来源复杂,影响因素较多;与采暖前相比,采暖后NO_3~-和SO_4~(2-)质量浓度比以及OC/EC均下降,表明采暖燃煤可使大气中SO_2和EC的排放迅速增加。[结论]太原市大气PM_(2.5)质量浓度及化学成分受多种因素的影响,除气象因素和燃煤外,生物质燃烧是重要的贡献源,城市周边生物质大量燃烧甚至可以超过采暖燃煤对大气PM_(2.5)浓度的影响。  相似文献   

4.
南京市餐饮油烟源大气污染物排放清单构建的研究   总被引:1,自引:0,他引:1  
该文以南京市为研究区域,以2014年为研究基准年,建立了南京市餐饮油烟源大气污染物排放清单。结果表明,2014年南京市餐饮油烟源PM10、PM2.5、BC、OC和VOCs的排放总量为3 950t、3 160t、64t、2 212t和2 765t,主要集中在人口居住密集区域。本研究建立的排放源清单具有一定的不确定性,后续研究工作中应针对典型餐饮污染源开展污染物排放因子实测工作。  相似文献   

5.
该研究应用COPERT Ⅳ模型建立了南京市2014年机动车污染排放清单。结果表明:南京市2014年机动车CO、NO_x、VOCs、PM_(10)和PM_(2.5)排放量分别为6.80万t、4.46万t、1.12万t、0.21万t和0.16万t。各车型污染物贡献率各不相同,小客车排放的CO和VOCs量最大,分别为59.2%和48.2%。重型货车是NO_x、PM_(10)和PM_(2.5)排放的主要来源,贡献率分别为50.8%、37.2%和41.0%。按排放标准划分,国Ⅲ标准的车辆对CO、VOCs、NO_x、PM_(10)和PM_(2.5)排放的贡献率最大,分别为30.4%、55.5%、26.5%、51.3%和54.9%。  相似文献   

6.
基于美国沙漠所研制的Model 2001A热/光碳分析仪对徐州市区2016年冬季重污染时期PM2.5中的碳质组分[有机碳(OC)和元素碳(EC)]以及水溶性离子(NO_3~-、SO_4~(2-)、F~-、Cl~-、NO_2~-、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、Na~+)进行昼夜采样监测,并采用优化的MRS算法对二次有机碳(SOC)含量进行了估算。结果表明,在采样期间徐州市区PM2.5平均质量浓度达到了(129.7±37.0)μg/m~3。通过OC/EC比值分析,采样期间徐州市区碳质气溶胶主要受到汽油车和柴油车尾气排放影响。SOC平均质量浓度为3.4μg/m~3,对OC的贡献达了44.3%,且夜晚二次污染程度要大于白天。重污染时期水溶性离子平均质量浓度达到了(126.0±24.0)μg/m~3,3种主要水溶性离子(NO_3~-、SO_4~(2-)、NH_4~+)以NH_4NO_3、(NH_4)_2SO_4的形式存在。通过对NO_3~-、SO_4~(2-)质量浓度比值的分析,表明以燃煤为主的固定源对水溶性离子贡献较大。利用PMF模型分析重污染期间大气PM2.5的质量浓度来源主要有6个,分别为交通源(48.7%)、二次无机气溶胶污染源(24.3%)、海盐及燃煤燃烧源(14.9%)、二次化工污染源(12.1%)、生物质燃烧源(0.9%)、道路扬尘源(0.1%)。总体来说,大气中PM2.5的来源较为多源化,其中交通源以及二次无机气溶胶污染源占据主导地位。  相似文献   

7.
运用自主设计的生物质燃烧烟气分析系统,结合烟气分析仪、颗粒物分析仪和元素分析仪模拟分析大兴安岭9种主要乔灌树种在不同燃烧状态下释放含碳气体及颗粒物(PM_(2.5))中元素碳(EC)、有机碳(OC)的排放因子.结果表明,在明燃状态下不同树种枝(叶)燃烧CO、CO_2、C_xH_y、PM_(2.5)以及OC、EC的平均排放因子分别为181.51(180.17)、1 509.25(1 496.59)、36.96(28.84)、6.25(3.79)、3.01(2.09)、0.52(0.27) g·kg~(-1),阴燃状态下不同树种枝(叶)燃烧CO、CO_2、C_xH_y、PM_(2.5)以及OC、EC的平均排放因子分别为184.29(228.95)、1 122.98(1 402.57)、53.52(53.97)、5.58(5.98)、2.89(3.15)、1.03(0.88) g·kg~(-1);两种燃烧状态下苕条与榛子的CO排放因子均显著高于其他树种;明燃状态下CO_2排放因子在树种间差异不显著,而阴燃状态下灌木的CO_2排放因子普遍大于乔木;明燃状态下兴安杜鹃的C_xH_y排放因子最高,阴燃状态下白桦最高.此外,阴燃状态下乔木的C_xH_y排放因子普遍高于灌木;在两种燃烧状态下乔木PM_(2.5)排放因子均大于灌木,且5种乔木间PM_(2.5)排放因子差异显著而4种灌木PM_(2.5)排放因子差异较小;CO、C_xH_y、PM_(2.5)以及OC、EC排放因子表现为阴燃大于明燃;在两种燃烧状态下PM_(2.5)及其OC、EC的排放因子规律性相似,均表现为乔木大于灌木,但灌木之间没有显著差异.  相似文献   

8.
采用自主设计的民用炉灶燃烧-烟气稀释采样装置,获得安徽淮南和湖北武汉的小麦、玉米、水稻、花生、大豆5类典型农作物秸秆燃烧排放PM_(2.5)及其碳组分的排放因子,分析了排放因子的差异,筛选了碳组分的标识组分。结果表明,秸秆燃烧PM_(2.5)的排放因子随秸秆种类和地区的不同而呈现明显差异,淮南的秸秆燃烧烟气PM_(2.5)排放因子在0.56~7.67 g·kg~(-1),武汉的秸秆燃烧烟气PM_(2.5)排放因子在3.53~7.91 g·kg~(-1);不同种类秸秆烟气PM_(2.5)排放因子有明显差异,花生秸秆燃烧烟气PM_(2.5)的排放因子最高(均值5.98 g·kg~(-1)),是大豆秸秆燃烧烟气PM_(2.5)排放因子(均值2.04 g·kg~(-1))的2.93倍。秸秆燃烧PM_(2.5)的排放因子随秸秆含水率的增加而明显增大。碳组分是5种秸秆燃烧PM_(2.5)的主要成分碳,总碳(TC)占PM_(2.5)的36.40%~65.84%,其中花生秸秆TC排放因子最高(均值2.58 g·kg~(-1)),是小麦秸秆的TC排放因子(均值1.07 g·kg~(-1))的2.41倍;秸秆燃烧PM_(2.5)中的有机碳(OC)浓度远高于元素碳(EC),OC/EC值为2.36~13.73,表明秸秆燃烧对二次气溶胶的形成具有重要影响。淮南及武汉的秸秆燃烧烟气PM_(2.5)中char-EC/soot-EC值为17.20~64.16,char-EC显著高于soot-EC,可作为判断秸秆燃烧源的一个重要指标。主成分分析结果表明,秸秆燃烧PM_(2.5)中的OC1、OC2和EC1在碳组分中贡献较大,因此,OC1、OC2和EC1可作为秸秆燃烧PM_(2.5)的标识性组分。  相似文献   

9.
为探究南方常见生物质燃烧产生的气态污染物的排放特征,利用炉灶对广西地区常见生物质燃烧产生的烟气进行实测,分析生物质燃烧排放污染物的排放因子、组分特征及化学反应活性。研究表明:生物质燃烧的CO、NOx、CH4和非甲烷总烃(NMVOCs)的平均排放因子为36.42、1.73、0.89 g·kg-1和2.39 g·kg-1;乙醛是生物质燃烧排放的最主要的醛酮污染物,排放因子为147.09~599.10 mg·kg-1;7种生物质的醛酮污染物的臭氧生成潜势(OFP)总量在6.73~18.58 mg·m-3之间,其中甲醛、乙醛和丙烯醛的OFP较高;广西2010—2019年间生物质秸秆燃烧排放的CO、NOx、CH4、NMVOCs及醛酮污染物的平均总排放量分别为252 660.14、19 060.86、23 765.92、52 795.02 t及40 410.62 t,水稻、玉米和甘蔗秸秆是广西生物质燃烧释放大气污染物的主要贡献源。  相似文献   

10.
2013年7月至2014年4月期间,在银川市兴庆区设1个环境监测点,分4季采集PM_(10)和PM_(2.5) 样品,测试二者质量浓度及水溶性阴离子(Cl~-、NO_3~-、SO_4~(2-))、阳离子(K~+、Na~+、Ca~(2+)、Mg~(2+)、NH_4~+)成分,分析其主要组成、季节变化及污染来源。结果表明:银川市PM_(10)和PM_(2.5) 中离子平均浓度为33.8、18.74μg/m3,分别占PM_(10)和PM_(2.5) 的17.2%、23.5%。NH_4~+、Cl~-、NO_3~-和SO_4~(2-)等二次离子含量高,分别占离子总量的75%和84%,且冬季含量是其他季节的数倍;颗粒物总体呈碱性,PM_(10)中阳离子总量与阴离子总量的比值为1.23,PM_(2.5) 中两者比值为1.14,PM_(10)比PM_(2.5) 碱性强;大气中存在SO_2向SO_4~(2-)二次转化过程。冬季PM_(2.5) 中二次离子主要以(NH4)_2SO_4和NH_4NO_3形式存在;来源分析发现,PM_(2.5) 、PM_(10)可能主要来源于生物质燃烧、二次反应及燃煤尘。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号