首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterotoxemia attributable to Clostridium perfringens type D in goats is difficult to diagnose because of a lack of specific clinical signs or postmortem lesions, on which to base the diagnosis. This report describes the clinical signs, postmortem lesions, and clinical responses to treatment and vaccination in 4 goat herds, in which a diagnosis of enterotoxemia was confirmed. Four clinical cases had the diagnosis confirmed on the basis of signs of diarrhea or sudden death and the isolation of C perfringens and epsilon toxin from the feces at the time of admission. The 10 necropsy cases were diagnosed on the basis of the isolation of C perfringens (not typed) or epsilon toxin from the intestinal contents of goats that died with clinical signs compatible with enterotoxemia and without lesions associated with a second serious disease. Enterocolitis was the most consistent lesion reported at necropsy in the 10 goats with enterotoxemia. Ovine enterotoxemia vaccines were of limited value in preventing enterotoxemia. These observations imply that naturally induced enterotoxemia in goats involves a different pathophysiologic mechanism than that associated with enterotoxemia in sheep.  相似文献   

2.
Thirty-three species of bacteria were isolated from the gastrointestinal mucosa of 23 adult horses and two foals. The bacteria isolated could be related to gross and microscopical lesions in some cases. Clostridium perfringens type A, Actinobacillus equuli, Salmonella typhimurium and Campylobacter coli biotype 1 could all be associated with gastrointestinal lesions. C jejuni biotype 1 and Aeromonas hydrophila were both recovered in this study and have been identified as causes of enteritis in horses or in other species. The case of C coli enteritis appears to be the first such report. The difficulties in examining adult horses with enteritis and relating the lesions seen to the bacteria isolated are discussed.  相似文献   

3.
Clostridium perfringens type C is one of the most important agents of enteric disease in newborn foals. Clostridium difficile is now recognized as an important cause of enterocolitis in horses of all ages. While infections by C. perfringens type C or C. difficile are frequently seen, we are not aware of any report describing combined infection by these two microorganisms in foals. We present here five cases of foal enterocolitis associated with C. difficile and C. perfringens type C infection. Five foals between one and seven days of age were submitted for necropsy examination to the California Animal Health and Food Safety Laboratory. The five animals had a clinical history of acute hemorrhagic diarrhea followed by death and none had received antimicrobials or been hospitalized. Postmortem examination revealed hemorrhagic and necrotizing entero-typhlo-colitis. Histologically, the mucosa of the small intestine and colon presented diffuse necrosis and hemorrhage and it was often covered by a pseudomembrane. Thrombosis was observed in submucosal and/or mucosal vessels. Immunohistochemistry of intestinal sections of all foals showed that many large bacilli in the sections were C. perfringens. C. perfringens beta toxin was detected by ELISA in intestinal content of all animals and C. difficile toxin A/B was detected in intestinal content of three animals. C. perfringens (identified as type C by PCR) was isolated from the intestinal content of three foals. C. difficile (typed as A(+)/B(+) by PCR) was isolated from the intestinal content in 3 out of the 5 cases. This report suggests a possible synergism of C. perfringens type C and C. difficile in foal enterocolitis. Because none of the foals had received antibiotic therapy, the predisposing factor, if any, for the C. difficile infection remains undetermined; it is possible that the C. perfringens infection acted as a predisposing factor for C. difficile and/or vice versa. This report also stresses the need to perform a complete diagnostic workup in all cases of foal digestive disease.  相似文献   

4.
Non-enterotoxigenic type A Clostridium perfringens are associated with bovine enterotoxaemia, but the alpha toxin is not regarded as responsible for the production of typical lesions of necrotic and haemorrhagic enteritis. The purpose of this study was to investigate the putative role of the more recently described beta2 toxin. Seven hundred and fourteen non-enterotoxigenic type A C. perfringens isolated from 133 calves with lesions of enterotoxaemia and high clostridial cell counts (study population) and 386 isolated from a control population of 87 calves were tested by a colony hybridisation assay for the beta2 toxin. Two hundred and eighteen (31%) C. perfringens isolated from 83 calves (62%) of the study population and 113 (29%) C. perfringens isolated from 51 calves (59%) of the control population tested positive with the beta2 probe. Pure and mixed cultures of four C. perfringens (one alpha+beta2+, one alpha+enterotoxin+ and two alpha+) were tested in the ligated loop assay in one calf. Macroscopic haemorrhages of the intestinal wall, necrosis and haemorrhages of the intestinal content, and microscopic lesions of necrosis and polymorphonuclear and mononuclear cell infiltration of the intestinal villi were more pronounced in loops inoculated with the alpha and beta2-toxigenic C. perfringens isolate. These results suggest in vivo synergistic role of the alpha and beta2 toxins in the production of necrotic and haemorrhagic lesions of the small intestine in cases of bovine enterotoxaemia. However, isolation of beta2-toxigenic C. perfringens does not confirm the clinical diagnosis of bovine enterotoxaemia and a clostridial cell counts must still be performed.  相似文献   

5.
Clostridium perfringens type C is an important cause of enteritis and/or enterocolitis in several animal species, including pigs, sheep, goats, horses and humans. The disease is a classic enterotoxemia and the enteric lesions and associated systemic effects are thought to be caused primarily by beta toxin (CPB), one of two typing toxins produced by C. perfringens type C. This has been demonstrated recently by fulfilling molecular Koch's postulates in rabbits and mice. We present here an experimental study to fulfill these postulates in goats, a natural host of C. perfringens type C disease. Nine healthy male or female Anglo Nubian goat kids were inoculated with the virulent C. perfringens type C wild-type strain CN3685, an isogenic CPB null mutant or a strain where the cpb null mutation had been reversed. Three goats inoculated with the wild-type strain presented abdominal pain, hemorrhagic diarrhea, necrotizing enterocolitis, pulmonary edema, hydropericardium and death within 24h of inoculation. Two goats inoculated with the CPB null mutant and two goats inoculated with sterile culture media (negative controls) remained clinically healthy during 24h after inoculation and no gross or histological abnormalities were observed in the tissues of any of them. Reversal of the null mutation to partially restore CPB production also increased virulence; 2 goats inoculated with this reversed mutant presented clinical and pathological changes similar to those observed in goats inoculated with the wild-type strain, except that spontaneous death was not observed. These results indicate that CPB is required for C. perfringens type C to induce disease in goats, supporting a key role for this toxin in natural C. perfringens type C disease pathogenesis.  相似文献   

6.
OBJECTIVE: To determine the percentage of broodmares and foals that shed Clostridium perfringens in their feces and classify the genotypes of those isolates. DESIGN: Prospective cross-sectional study. ANIMALS: 128 broodmares and their foals on 6 equine premises. PROCEDURES: Anaerobic and aerobic bacteriologic cultures were performed on feces collected 3 times from broodmares and foals. All isolates of C. perfringens were genotyped. RESULTS: Clostridium perfringens was isolated from the feces of 90% of 3-day-old foals and 64% of foals at 8 to 12 hours of age. A lower percentage of broodmares and 1- to 2-month-old foals shed C. perfringens in their feces, compared with neonatal foals. Among samples with positive results, C. perfringens type A was the most common genotype identified (85%); C. perfringens type A with the beta2 toxin gene was identified in 12% of samples, C. perfringens type A with the enterotoxin gene was identified in 2.1% of samples, and C. perfringens type C was identified in < 1% of samples. CONCLUSIONS AND CLINICAL RELEVANCE: Clostridium perfringens was identified from the feces of all but 6 foals by 3 days of age and is likely part of the normal microflora of neonatal foals. Most isolates from broodmares and foals are C. perfringens type A; thus, the clinical relevance of culture results alone is questionable. Clostridium perfringens type C, which has been associated with neonatal enterocolitis, is rarely found in the feces of horses.  相似文献   

7.
Two Quarter Horse foals from different premises died from enterotoxemia. Clostridium perfringens toxins alpha and beta were demonstrated in the foal's intestines by mouse protection tests. Clostridium perfringens type C was isolated from the intestines of each foal. Histologic examination revealed hemorrhage, necrosis, and massive numbers of C perfringens.  相似文献   

8.
Clostridial enteric infections in pigs.   总被引:1,自引:0,他引:1  
Clostridium perfringens types A and C and Clostridium difficile are the principal enteric clostridial pathogens of swine. History, clinical signs of disease, and gross and microscopic findings form the basis for a presumptive diagnosis of C. perfringens type-C enteritis. Confirmation is based on isolation of large numbers of type-C C. perfringens and/or detection of beta toxin in intestinal contents. Diagnosis of C. perfringens type-A infection, however, remains controversial, mostly because the condition has not been well defined and because type-A organisms and their most important major (alpha) toxin can be found in intestinal contents of healthy and diseased pigs. Isolation of large numbers of C. perfringens type A from intestinal contents, in the absence of other enteric pathogens, is the most reliable criterion on which to base a diagnosis. Recently, beta2 (CPB2) toxin-producing C. perfringens type A has been linked to disease in piglets and other animals. However, implication of CPB2 in pathogenesis of porcine infections is based principally on isolation of C. perfringens carrying cpb2, the gene encoding CPB2, and the specific role of CPB2 in enteric disease of pigs remains to be fully defined. Clostridium difficile can also be a normal inhabitant of the intestine of healthy pigs, and diagnosis of enteric infection with this microorganism is based on detection of its toxins in feces or intestinal contents.  相似文献   

9.
Enterotoxemia caused by Clostridium perfringens type D in sheep is believed to result from the action of epsilon toxin (ETX). However, the sole role of ETX in the intestinal changes of the acute and chronic forms of enterotoxemia in goats remains controversial, and the synergistic action of other C. perfringens toxins has been suggested previously. The current study examined 2 goats that were found dead without premonitory clinical signs. Gross lesions at necropsy consisted of multifocal fibrinonecrotic enterocolitis, edematous lungs, and excess pleural fluid. Histologically, there were multifocal fibrinonecrotic and ulcerative ileitis and colitis, edema of the colonic serosa, and proteinaceous interstitial edema of the lungs. Clostridium perfringens type D carrying the genes for enterotoxin (CPE) and beta2 toxin (CPB2) was cultured from intestinal content and feces of 1 of 2 goats, while C. perfringens type D CPB2-positive was isolated from the other animal. When multiple colonies of the primary isolations from both animals were tested by Western blot, most of the isolates expressed CPB2, and only a few isolates from the first case expressed CPE. Alpha toxin and ETX were detected in ileal and colonic contents and feces of both animals by antigen capture enzyme-linked immunosorbent assay. CPB2, but not CPE, was identified in the small and large intestines of both goats by immunohistochemistry. These findings indicate that CPB2 may have contributed to the necrotic changes observed in the intestine, possibly assisting ETX transit across the intestinal mucosa.  相似文献   

10.
Clostridium perfringens produces enteric diseases, generically called enterotoxemias, in sheep, goats, and other animals. This microorganism can be a normal inhabitant of the intestine of most animal species, including humans, but when the intestinal environment is altered by sudden changes in diet or other factors, C. perfringens proliferates and produces potent toxins that act locally or are absorbed into the general circulation with usually devastating effects on the host. History, clinical signs, and gross postmortem findings are useful tools for establishing a presumptive diagnosis of clostridial enterotoxemia in sheep and goats. Definitive diagnosis requires laboratory confirmation. Isolation of some types of C. perfringens (e.g., B and C) can be of diagnostic value, but other types (e.g., A) are so commonly found in the intestine of normal animals that isolation is meaningless from a diagnostic point of view. The most accepted criterion in establishing a definitive diagnosis of enterotoxemia is detection of C. perfringens toxins in intestinal contents. Also, histopathological examination of brain is very useful for diagnosis of type D disease, as lesions produced by epsilon toxin in the brains of sheep and goats are pathognomonic for type D enterotoxemia. Ancillary tests, such as measuring urine glucose or observing Gram-stained smears of intestinal mucosa, can be used. However, although such tests have a presumptive diagnostic value when positive, they cannot be used to rule out a diagnosis of enterotoxemia when negative.  相似文献   

11.
One hundred and fourteen strains of Clostridium perfringens, isolated from the intestinal contents of cattle, sheep, and chickens with enteritis or other disease conditions were studied for their ability to produce enterotoxin. Reversed passive hemagglutination, fluorescent antibody and immunodiffusion tests were used. On the basis of the reversed passive hemagglutination titres, supported by the other two tests, enterotoxigenicity of the strains was arbitrarily classified into two categories: highly enterotoxigenic and potentially enterotoxigenic, with 12% falling into each category. All the highly enterotoxigenic strains originated from cases of enteritis and included all three animal species. Apart from enterotoxigenicity, one C. perfringens strain produced beta toxin (type C) and 21 strains produced large amounts of alpha-toxin. The latter strains were predominantly associated with necrotic enteritis in chickens.  相似文献   

12.
Faecal samples from adult horses and from foals with diarrhoea or with normal faeces were evaluated for the presence of Clostridium difficile, C. difficile toxins, C. perfringens enterotoxin (CPE) and C. perfringens spore counts. Clostridium difficile was isolated from 7/55 horses (12.7%) and 11/31 foals (35.5%) with colitis, but from 1/255 normal adults (0.4%) and 0/47 normal foals (P<0.001). Clostridium difficile toxins A and/or B were detected in 12/55 diarrhoeic adults (21.8%) and 5/30 diarrhoeic foals (16.7%) but in only 1/83 adults (1.2%) and 0/21 foals with normal faeces (P<0.001 and P<0.05, respectively). Clostridium perfringens enterotoxin was detected in 9/47 diarrhoeic adults (19%) and 8/28 diarrhoeic foals (28.6%), but was not detected in 47 adult horses (P<0.002) or 4 foals (P = 0.22) with normal faeces. The positive predictive value of isolation of C. perfringens with respect to the presence of CPE was only 60% in adult horses and 64% in foals. There was no association between total C. perfringens spore count and CPE in the faeces. The overall mortality rate from colitis was 22% for adult horses and 18% for foals. Clostridium difficile toxin-positive adult horses with colitis were less likely to survive than C. difficile-negative horses with colitis (P = 0.03). This study provides further evidence that C. difficile and enterotoxigenic C. perfringens are associated with equine enterocolitis.  相似文献   

13.
Eleven Clostridium perfringens type C strains isolated from fatal cases of hemorrhagic enterotoxemia of Canadian calves, a piglet, and a foal were studied for the production of soluble antigens. All the isolates from calves and a foal failed to produce delta toxin, but were capable of producing large amounts of lethal beta toxin. A strain isolated from a piglet produced delta, but very little beta toxin. Other differences were relatively minor. The results indicated that young domestic animals may be susceptible to all subtypes of C. perfringens type C. A simple method of using blood agar plates coated with type A antiserum for demonstration of hemolytic patterns was found advantageous in differentiation of C. perfringens strains.  相似文献   

14.
产气荚膜梭菌ε毒素及其疫苗研究进展   总被引:1,自引:0,他引:1  
产气荚膜梭菌病是由产气荚膜梭菌引起的一种重要的人兽共患传染病,可导致山羊、绵羊等动物的肠毒血症或坏死性肠炎,并且可引起动物脑、心、肺和肾组织的水肿.B型和D 型产气荚膜梭菌所产生的ε毒素是引起动物上述病理变化和死亡的重要因素之一.虽然甲醛灭活的毒素疫苗能对动物产生保护性抗体,但是,灭活苗潜在的安全性原因使其在应用上受到限制.因此,基于ε毒素基因的重组疫苗和弱毒疫苗就成为人们研究的目标.  相似文献   

15.
A survey based on clinical, pathological and microbiological investigations was performed on 11 Brown Swiss cattle affected with depression, anorexia, agalaxia, ruminal hypomotility, abdominal pain and melaena. In eight animals, macroscopical lesions consisted in haemorrhagic enteritis in the small intestine. Seven of eight isolates from tissue samples were identified as Clostridum perfringens type A, and four were identified as C. perfringens type A with the beta2 toxin gene. Based on these observations, animals were considered affected with haemorrhagic bowel syndrome.  相似文献   

16.
Investigations were performed on shedding of C. perfringens in sows from four different pig farms. In two farms where no outbreaks of necrotizing enteritis had been observed, no strains of C. perfringens producing beta-toxin were detected in the faeces of sows. In contrast, C. perfringens strains producing beta-toxin were detected in sows on both farms suffering outbreaks of acute necrotizing enteritis. Strains of C. perfringens producing beta-toxin were invariably positive for the beta 2-toxin gene. However, strains carrying the beta 2-toxin gene only (i.e. negative for beta-toxin) were present in animals on all farms with roughly similar frequencies (mean 28.2% carriers). Some sows carried C. perfringens strains of both toxin genotypes simultaneously. Whereas these data further support the role of betatoxin as a cause of necrotizing enteritis, the role of beta 2-toxin in intestinal disease of piglets remains unclear. To establish the role of faecal shedding vs. environmental contamination as reservoirs of C. perfringens type C, strains were isolated from teats and feedlot trough swabs (toxin genotype beta/beta 2), as well as from fodder (genotype beta 2). However, sows carried this pathogen intermittently and in small numbers. This renders an individual, reliable diagnosis of carrier sows very difficult. Ribotyping of 34 C. perfringens isolates of different toxin genotypes showed five distinct profiles. Different toxin genotypes can belong to the same ribotype, and the same toxin genotype can be present in different ribotypes. Thus, even if a majority (79.4%) of strains investigated in a limited geographic region belonged to ribotype 1, ribotyping offered discrimination of strains beyond toxin typing.  相似文献   

17.
Currently, the factors/toxins responsible for Clostridium perfringens-associated avian enteritis are not well understood. To assess whether specific C. perfringens' toxinotypes are associated with avian enteritis, the isolates of C. perfringens from 31 cases of avian necrotic or ulcerative enteritis submitted between 1997 and 2005 were selected for retrospective analysis using multiplex PCR. C. perfringens was isolated from chickens, turkeys, quail, and psittacines. The toxinotypes of isolates from diseased birds were compared against the toxinotype of 19 C. perfringens isolates from avian cases with no evidence of clostridial enteritis. All C. perfringens isolates were classified as type A regardless of species or disease history. Although many isolates (from all avian groups) had the gene encoding the C. perfirngens beta2 toxin, only 54% produced the toxin in vitro when measured using Western blot analysis. Surprisingly, a large number of healthy birds (90%) carried CPB2-producing isolates, whereas over half of the cpb2-positive isolates from diseased birds failed to produce CPB2. These data from this investigation do not suggest a causal relationship between beta2 toxin and necrotic enteritis in birds.  相似文献   

18.
A female Shetland sheep dog died suddenly with hemorrhagic diarrhea and vomitting, and was examined pathologically and microbiologically. Gross pathological change was restricted to the intestinal tract. The intestine contained watery, blood-stained fluid. Histopathologically, the principal intestinal lesion was superficial mucosal hemorrhagic necrosis at the jejunoileum. Many Gram-positive bacilli were found adhering to the necrotic mucosal surface in parts of the intestinal tract. Clostridium perfringens in pure culture were isolated from jejunal contents by anaerobic culture. These results suggested that the typical lesion of this case coincided with canine hemorrhagic enteritis and enterotoxemia due to C. perfringens infection could be the cause of sudden death.  相似文献   

19.
OBJECTIVE: To compare the frequency of isolation, genotypes, and in vivo production of major lethal toxins of Clostridium perfringens in adult dairy cows affected with hemorrhagic bowel syndrome (HBS) versus left-displaced abomasum (LDA). DESIGN: Case-control study. ANIMALS: 10 adult dairy cattle with HBS (cases) and 10 adult dairy cattle with LDA matched with cases by herd of origin (controls). PROCEDURE: Samples of gastrointestinal contents were obtained from multiple sites during surgery or necropsy examination. Each sample underwent testing for anaerobic bacteria by use of 3 culture methods. The genotype of isolates of C. perfringens was determined via multiplex polymerase chain reaction assay. Major lethal toxins were detected by use of an ELISA. Data were analyzed with multivariable logistic regression and chi2 analysis. RESULTS: C. perfringens type A and type A with the beta2 gene (A + beta2) were the only genotypes isolated. Isolation of C. perfringens type A and type A + beta2 was 6.56 and 3.3 times as likely, respectively, to occur in samples from cattle with HBS than in cattle with LDA. Alpha toxin was detected in 7 of 36 samples from cases and in 0 of 32 samples from controls. Beta2 toxin was detected in 9 of 36 samples from cases and 0 of 36 samples from controls. CONCLUSIONS AND CLINICAL RELEVANCE: C. perfringens type A and type A + beta2 can be isolated from the gastrointestinal tract with significantly greater odds in cattle with HBS than in herdmates with LDA. Alpha and beta2 toxins were detected in samples from cows with HBS but not from cows with LDA.  相似文献   

20.
Four hundred and twenty intestinal content samples (not including intestinal tissues) of freshwater fishes (60 silver carps, 100 carps, 100 crucian carps, 60 catfishes and 100 zaieuws) caught from one water reservoir were examined bacteriologically for the occurrence of C. perfringens. Isolates were examined by polymerase chain reaction (PCR) for genes encoding the four lethal toxins (alpha, beta, epsilon and iota) for classification into toxin types and for genes encoding enterotoxin and the novel beta2 toxin for further subclassification. C. perfringens could be isolated in 75 intestinal contents samples (17.9%) from freshwater fish including: 13 silver carps, 2 carps, 12 crucian carps, 40 zaieuws, and 8 catfishes. In 75 isolates, 58 strains (77.3%) were C. perfringens toxin type C (alpha and beta toxin positive), 13 strains (17.3%) were toxin type A (alpha toxin positive) and 4 strains (5.3%) were toxin type B (alpha, beta and epsilon toxin positive). In addition, the gene encoding for beta2 toxin was found in 47 strains (62.7%) of all the isolates, seven from type A, two from type B, and 38 from type C. The gene encoding for enterotoxin was not found in any isolate. These amplified toxin gene fragment were cloned and sequenced and compared with reference strains, the identity varied from 98.15% to 99.29%. This is the first report of C. perfringens alpha, beta, epsilon, beta2 toxins in freshwater fish and of beta, epsilon toxins in fish in general, and is the first discovery that the beta2 toxin could be detected in strains of type B. The origin of this bacterium and its importance to human food poisoning in freshwater fish is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号