首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物炭对盐渍土理化性质和紫花苜蓿生长的影响   总被引:4,自引:0,他引:4  
为揭示生物炭对滨海盐渍土理化性质和紫花苜蓿生长的影响规律,采用盆栽试验方法,研究了不同生物炭添加量(炭土质量分数0、0.5%、1%、2%、5%、10%)处理下黄河三角洲盐渍化土壤养分、结构、盐分以及紫花苜蓿产量、品质等变化特征,并采用灰色关联度法评价了生物炭的应用效果。结果表明,添加生物炭后,土壤有机质和全氮含量分别增加了16.27%~246.65%和6.38%~58.51%,全磷、有效磷和全钾含量变化相对较小;土壤容重显著降低,低量生物炭处理显著提高了盐渍化土壤大于0.25 mm团聚体的含量和团聚体稳定性;水溶性盐总量降低了38.90%~46.17%,其中Mg~(2+)、Cl~-和SO_4~(2-)含量降幅较大;紫花苜蓿产量提高了8.19%~43.00%,品质无显著变化。整体而言,随着施炭量的增加,土壤肥力有所提高,团聚体稳定性降低,盐分含量和紫花苜蓿产量呈先降后增的趋势。施用生物炭改善了盐渍化土壤的理化性质,促进了紫花苜蓿生长,生物炭用量0.5%时施用效果最优。  相似文献   

2.
生物炭对坡耕地土壤肥力和大豆产量的影响与预测   总被引:2,自引:0,他引:2  
为探究施用生物炭对东北黑土区不同坡度坡耕地土壤肥力和大豆产量影响的持续性,于2016—2018年在3种典型坡度的坡耕地上开展生物炭持续效应试验,分析施加生物炭对土壤团聚体及其稳定性、土壤养分指标、大豆产量及其构成要素影响的持续性,并采用改进的灰色理论预测模型对大豆产量进行预测,进而确定生物炭一次性施入后的增产作用年限。结果表明:施用生物炭使土壤团聚体直径d 0. 25 mm的土壤团聚体含量明显减少、d 0. 25 mm的土壤大团聚体含量显著增加;施用生物炭使大于0. 25 mm的水稳性团聚体含量比例R0. 25、平均质量直径(MWD)和几何平均直径(GMD)增加,使土壤不稳定团LT粒指数E_(LT)减小,即土壤团聚体稳定性提高,该稳定性增强幅度随坡度增大、施炭后时间延长而减小;施加生物炭使土壤pH值、铵态氮、速效钾、有机质含量这4个指标显著增加(P 0. 05),最大增长率分别为17. 88%、27. 23%、20. 31%、17. 51%,施炭后土壤养分等级有所上升,土壤肥力增强,增强效果与施炭后年限呈负相关,但生物炭对有效磷含量并无明显影响;施加生物炭后,大豆单株荚数、单株粒数、百粒质量、产量均显著提高(P 0. 05),增产率高达26. 29%,并且坡度越大、施炭年限越长,各指标增加幅度越小,各因素对大豆产量影响由大到小依次为施炭与否、坡度、施炭后年限;改进的多变量灰色预测模型精度较高,预测单次施用生物炭后大豆增产有效时间为5~6年。研究结果可为东北黑土区生物炭应用提供理论依据。  相似文献   

3.
【目的】探究生物炭与沼液配施的最优组合,为农田合理施肥提供科学依据。【方法】基于3 a(2017―2019年)田间定位试验,设置CK、单施生物炭(12 t/hm2)、3个水平沼液(沼液∶水分别为1∶6、1∶4和1∶2)和生物炭分别与3个水平沼液配施,共计8个处理,利用湿筛法测定了土壤团聚体分布和有机碳质量分数。【结果】生物炭和沼液配施能有效提高>0.25 mm粒级的土壤水稳性团聚体质量分数,较CK增加幅度为13.0%~36.3%;各施肥处理不同程度地提高了土壤团聚体的平均重量直径(MWD)和几何平均直径(GMD),增加幅度分别为9.8%~39.3%和10.0%~37.5%,沼液配比为1∶4时生物炭配施沼液对团聚体MWD值和GMD值影响最大;施肥处理各粒级团聚体有机碳质量分数显著高于CK,生物炭配施沼液的效果要优于单施生物炭或沼液处理。有机碳与>0.25 mm粒级的团聚体质量分数、MWD值和GMD值均呈极显著正相关关系。同时,各施肥处理降低了土壤体积质量,最大降幅为6.7%。添加生物炭和猪场沼液对提高土壤团聚体稳定性和改善土壤结构有积极作用。【结论】从提高土壤质量和资源高效利...  相似文献   

4.
施用生物炭对膜下滴灌玉米土壤水肥热状况及产量的影响   总被引:1,自引:0,他引:1  
为探究生物炭在河套灌区滴灌玉米种植过程中的适用性,试验设置不施用生物炭(CK)、生物炭施用量为15 t/hm~2(ST1)、30 t/hm~2(ST2)、45 t/hm~2(ST3)和60 t/hm~2(ST4)共5个处理,研究了不同施炭量对土壤含水率、温度、养分含量和玉米产量指标的影响。结果表明:随生物炭施用量的增加,玉米耕层土壤含水率呈先增加后减小的趋势,但均明显高于CK,且当施炭量达到45 t/hm~2,效果最为显著,各生育期0~20 cm平均含水率较CK高15.01%、19.60%、13.12%、11.06%和3.38%。施用生物炭显著提高了耕层土壤养分含量,玉米全生育期内,各施用生物炭处理土壤有机碳含量平均较CK高37.48%~56.09%,差异性显著,以处理ST4增幅最大;速效磷平均较CK高51.26%~69.75%,差异性显著,且处理ST3增幅最大;速效钾平均较CK高25.97%~49.37%,差异性显著;碱解氮含量平均较CK高29.91%~51.88%,差异性显著,以处理ST3增幅最大。施用生物炭显著提高了耕层土壤温度,且随施炭量的增加呈增加趋势,但当施炭量达到45 t/hm~2后,增温效果减弱。施用生物炭显著提高了玉米产量,处理ST1、ST2、ST3和ST4分别较CK增产11.05%、18.56%、22.46%和18.72%,差异性显著。综上所述,施用生物炭显著改善了耕层土壤的水肥热条件,且增产效果显著,较适宜在河套灌区膜下滴灌玉米种植过程中应用推广。  相似文献   

5.
黑土区施加生物炭对土壤综合肥力与大豆生长的影响   总被引:5,自引:0,他引:5  
为探明黑土区施加生物炭对土壤持水性能、土壤养分以及大豆生长的影响,以东北黑土区3°坡耕地田间径流小区为研究对象,进行为期4年的观测。按照生物炭施加量,2015年共设置C0(0 t/hm~2)、C25(25 t/hm~2)、C50(50 t/hm~2)、C75(75 t/hm~2)、C100(100 t/hm~2) 5个处理,2016—2018年分别连续施加等量的生物炭。结果表明:连续4年,0~60 cm土层土壤储水量随施炭量的增加呈先增大、后减小的趋势,而对60~100 cm土层土壤储水量影响不显著;连续4年,饱和含水率随施炭量的增加呈逐渐增大的趋势; 2015年田间持水率、凋萎系数随施炭量的增加呈逐渐增大趋势,2016—2018年呈先增加、后减小趋势;连续4年,施加生物炭提高了大豆各生育阶段的株高和叶面积,同期相对较优处理分别为C75、C50、C50、C25;连续4年,大豆冠层覆盖度与施炭量呈抛物线变化(R~2均在0. 89以上,P 0. 01),连续施加2年的C50处理各生育期提高量最大,与C0相比提高了81. 4%、36. 7%、31. 5%和39. 6%;连续4年,土壤pH值和有机质、速效钾含量随施炭量的增加呈逐渐升高趋势,碱解氮、有效磷含量呈先升高、后降低趋势,相对较优处理为C50、C50、C25、C25。采用改进的内梅罗指数模型计算的土壤综合肥力指数与产量呈正相关(R~2=0. 861 5,P=0. 001 2,RMSE为0. 75),土壤综合肥力水平最高的生物炭施用模式为连续2年施加50 t/hm~2的生物炭。  相似文献   

6.
为揭示生物炭和猪场沼液节水、保肥的性能机理,以黄淮海平原高产农田定位试验为基础,研究了施用生物质炭和猪场沼液对潮土团聚体及氮库形态的影响。结果表明,生物炭和猪场沼液改善了土壤团聚体及密度状况,总孔隙度分别比对照提高了13.63%和6.14%。生物质炭处理下,土壤pH值、全氮及有机质均有所提高;沼液处理下pH值下降,而全氮和有机质显著增加。全氮和有机氮均与粒径5mm以上团聚体正相关,而矿质氮与粒径5mm以上团聚体负相关。  相似文献   

7.
土壤盐渍化问题已成为制约新疆地区农业发展的主要因素,近年来生物炭在改良土壤方面发挥了极大优势。为研究不同生物炭施用量对土壤理化性质以及盐分分布的影响,于2018—2020年在新疆地区开展生物炭改良盐碱土试验,种植作物为棉花-甜菜间作,模式为当地传统“一膜两管四行”栽培模式。2018年试验设置4个生物炭水平,分别为0、10、50、100 t/hm2。2019年增加设置25 t/hm2。综合分析2018年和2019年的试验结果,2020年生物炭施用量调整为0、10、25、30 t/hm2。生物炭混合深度为30 cm。在作物的不同生育期对各个处理不同剖面深度取土测定电导率、pH值和有机质含量,分析不同生物炭施用量对土壤pH值、有机质和盐分的影响。结果表明,添加生物炭显著降低生育初期和生育末期0~30 cm土层的pH值,且降低幅度与生物炭施用量成正比。生物炭对30~40 cm土层的pH值有降低作用,但效果不显著。因生物炭自身有机质丰富,生物炭施用10~100 t/hm2可增加土壤有机质含量31.8%~135...  相似文献   

8.
生物炭对草甸黑土物理性质及雨后水分动态变化的影响   总被引:3,自引:0,他引:3  
为探明生物炭对草甸黑土物理性质及雨后水分动态变化的影响,在大豆全生育期生长条件下,研究了东北黑土区草甸黑土5种生物炭添加量(0、25、50、75、100 t/hm2)下土壤物理性质(包括:土壤水分特征曲线、土壤含水率常数、土壤水分扩散率)和单次降雨土壤含水率变化特征,分析了生物炭对黑土区草甸黑土耕层土壤持水能力及雨后水分动态变化的影响。结果表明,施用生物炭能降低土壤残余含水率,增加土壤饱和含水率和田间持水量,其中对残余含水率的影响最显著,100 t/hm~2生物炭处理使残余含水率最多降低27.6%;施用生物炭能明显降低土壤水分扩散率,随生物炭添加量的增加依次比对照组减少34.8%、37.5%、71.4%和58.9%;在单次降雨过程中,施用生物炭能减小土壤含水率的变化幅度,使土壤含水率在降雨之后更快地由迅速下降期进入缓慢下降期,并能明显提高缓慢下降期对应的土壤含水率;施用生物炭可以提高大豆产量,以75 t/hm~2生物炭处理最高。研究结果可为黑土区农业水土资源高效利用与保护提供理论依据。  相似文献   

9.
为探讨生物炭在河套灌区玉米种植过程中的适用性,试验设置不施用生物炭(CK)、生物炭施用量为15t/hm~2(ST1)、30 t/hm~2(ST2)、45 t/hm~2(ST3)和60 t/hm~2(ST4)共5个处理,研究了不同施炭量对玉米土壤水分、土壤温度以及株高和产量的影响。结果表明:不同处理含水率随施炭量的增加呈现先增加后减小的趋势,但均明显高于处理CK,且在生物炭施用量为45 t/hm~2时对玉米土壤含水率增幅最为显著,各生育期平均较对照处理CK高12.95%、14.83%、11.06%、8.86%和10.40%。随生物炭施用量的增加,表层0~25 cm土壤平均温度呈递增趋势,且全生育期内,不同生物炭施用量处理土壤温度均显著高于对照处理CK(P0.05),生物炭施用量为60 t/hm~2时土壤增温效果最为显著,全生育期显著高于其他各处理(P0.05)。适量施用生物炭可显著促进玉米的生长发育,全生育期内玉米株高随生物炭施用量的增加呈现先增大后减小的变化规律,在生物炭施用量为45 t/hm~2时对玉米株高的生长发育促进效果最优。施用生物炭可显著提高玉米产量,处理ST1、ST2、ST3和ST4分别较对照处理CK产量提高8.93%、14.14%、17.09%和15.43%,差异性显著(P0.05)。综上所述,生物炭可显著改善土壤的水热环境,同时对玉米的生长发育和产量的形成具有明显的促进作用,且综合分析得出45 t/hm~2的生物炭施用量较适宜在河套灌区玉米种植过程中加以推广应用。  相似文献   

10.
【目的】揭示排土场土壤团聚体分布特征。【方法】在北方草原区露天煤矿复垦排土场选取典型复垦样地,调查土体裂缝(GF)发育特征,采用干筛法和湿筛法测定土壤团聚体组成与分布特征,分析团聚体稳定性及其与土体裂缝的关系【。结果】各个土体裂缝>0.25 mm风干土团聚体量为23.02%~42.70%,水稳性团聚体量为16.9%~29.52%,表现为各裂缝之间无显著差异,GFⅠ、GFⅡ、GFⅢ裂缝0~60 cm土层>0.25 mm水稳性团聚体量依次为25.26%、26.57%、23.62%;3个裂缝土壤团聚体结构破坏率分别为20.77%~36.17%、20.52%~25.00%、26.58%~40.56%,GFⅢ裂缝显著大于GFⅠ裂缝和GFⅡ裂缝;0~10、10~20、20~30、30~40、40~50、50~60 cm土壤团聚体结构破坏率依次为28.81%、29.96%、26.19%、23.50%、24.91%、29.38%;GFⅠ、GFⅡ、GFⅢ裂缝土壤风干土团聚体分形维数为2.847~2.919,土壤水稳性团聚体分形维数为2.898~2.942,团聚体以小团聚体或细小颗粒为主;3个...  相似文献   

11.
生物炭配施沼液对淋溶状态下土壤养分的影响   总被引:1,自引:0,他引:1  
为探讨生物炭配施沼液对土壤养分淋失的影响,通过室内土柱试验,采用三因素三水平正交试验方法,系统研究了生物炭添加量、淋溶强度、沼液施加量对土壤养分淋失及土壤养分垂直分布的影响规律。结果表明,土壤养分淋失主要集中在前8次,后期淋失量均维持在较低水平并趋于稳定。各因素对氨态氮、速效磷、速效钾淋失的影响由大到小依次为淋溶强度、生物炭添加量、沼液施加量,而对硝态氮淋失量的影响由大到小依次为生物炭添加量、沼液施加量、淋溶强度。添加生物炭能明显减少养分淋失,且添加生物炭的0~20cm深度土壤的养分明显高于未添加生物炭的20~40cm土壤,各因素对氨态氮、硝态氮、速效钾在土壤中的含量影响差异显著,而对速效磷的影响则无显著差异。  相似文献   

12.
黑土区坡耕地连年施加生物炭的最佳模式研究   总被引:1,自引:0,他引:1  
为探讨东北黑土区连续多年施加生物炭的应用效果及其综合影响,寻找最佳的施碳量以及施加年限,于2015年在位于黑龙江省北安市的红星农场开展了生物炭最佳施用模式的研究。按照生物炭的施加量设置Y0(0 t/hm~2)、Y25(25 t/hm~2)、Y50(50 t/hm~2)、Y75(75 t/hm~2)、Y100(100 t/hm~2) 5个处理,每个处理重复两次,连续施加4年(2015—2018年),对土壤理化性质、水土保持效应以及节水增产效应等指标进行观测,建立基于优化遗传算法的投影模型,对指标进行了综合评价。结果表明:随着生物炭施加量、施加年限的增加,土壤容重呈现降低趋势,土壤p H值、土壤碳氮比则呈现上升趋势,且生物炭的累积施加量越大,这种趋势就越明显。Y25、Y50处理下的田间持水率随着施加年限的增加呈现逐年升高趋势,Y75处理则呈现出先升高、后降低的趋势,Y100处理则呈现逐年下降趋势,其中2018年Y25处理下的田间持水率为37. 33%。径流系数与土壤侵蚀量均与施炭量呈现先降低、后升高的趋势,连续施加两年50 t/hm~2生物炭的径流减少效果与抗侵蚀效果最优。连续施加4年25 t/hm2生物炭的玉米产量在所有处理中最高,为10 350 kg/hm~2。水分利用效率(WUE)的最优处理为2015年的Y50,为32. 85 kg/(mm·hm~2)。通过综合评价模型得出,连续3年施加32. 63 t/hm~2生物炭为东北黑土区最佳生物炭施用模式。该研究结果可为生物炭对黑土区土壤改良提供理论依据。  相似文献   

13.
生物炭、河沙对盐碱土水盐、氮素及玉米产量的影响   总被引:1,自引:0,他引:1  
【目的】探究连续施用生物炭与河沙1 a和3 a对黄河三角洲地区中度盐碱土的改良效果、氮素及夏玉米产量的影响。【方法】采用田间小区试验,共设置CK、C1[5 t/(hm~2·a)生物炭]、C2[10 t/(hm~2·a)生物炭]、C3[20 t/(hm~2·a)生物炭]、S1(5%沙)、S2(10%沙)、S3(15%沙)7个处理。【结果】(1)施加生物炭对掺炭层土壤含水率提升效果显著,施用1 a较CK增加2.20%~7.34%,第3年较CK增加5.08%~16.38%。其中,C3处理效果较优;随施沙量增加,掺沙层的土壤含水率呈降低趋势。(2)3 a累积效应下,掺沙处理土壤降盐效果要优于生物炭处理,掺沙10%~15%的脱盐效果较好,较CK脱盐率达15.52%,且3 a累积效果优于1 a。(3)施加生物炭能明显提高0~40 cm土层的硝态氮(第1年:10.34%~60.60%;第3年:14.24%~41.92%)、铵态氮量(第1年:0.96%~16.96%;第3年:-4.56%~7.37%),其中,C3处理增幅显著,掺沙处理则仅提升了20~40cm土层氮素量。(4)生物炭处理对夏玉米产量的提升优于掺沙处理,第3年较第1年增幅为2.40%~19.86%,且随施炭量增加而增大。【结论】添加生物炭对盐碱地的改良效果、氮素量及作物产量的提升要优于掺沙,且3a的累积效果较优,因此,建议对黄河三角洲地区的中度盐碱地长期掺加20 t/(hm~2·a)的生物炭。  相似文献   

14.
秸秆生物炭对黑土区坡耕地生产能力影响分析与评价   总被引:4,自引:0,他引:4  
采用径流小区试验,选取不施用生物炭(CK)、生物炭施用量25 t/hm~2(T1)、50 t/hm~2(T2)、75 t/hm~2(T3)和100 t/hm~2(T4)5个处理,分析生物炭施用量对土壤理化性质、持水能力、水土保持效应、节水增产效应等能够反映土地生产能力的指标的影响,建立基于Gumbel Copula函数的不同生物炭施用量下黑土区坡耕地生产能力评价模型,结果表明:随着生物炭施用量的增加,土壤容重降低,孔隙度增大,养分分布更为均匀,土壤有效P、速效K、pH值和有机质含量呈线性递增趋势,土壤铵态N含量呈指数增长;土壤饱和含水率、田间持水量、凋萎系数和有效水最大含量均与生物炭施用量正相关,且高施炭量处理对于土壤水分的影响程度明显高于低施炭量处理;随着生物炭施用量的增加,年径流深和土壤侵蚀量均呈线性递减,减流率和减沙率均呈对数函数递增,而大豆产量和水分利用效率则先增后减,呈抛物线型变化。基于Gumbel Copula函数计算的土地生产能力评价结果较为理想,计算的土地生产能力指数随生物炭施用量的增加呈"S型"曲线递增,土壤理化性质、持水能力和水土保持效应指数均呈线性递增,而节水增产效应指数则呈抛物线型先增后减。  相似文献   

15.
生物质炭对稻田氮素淋失和氧化亚氮排放的影响   总被引:2,自引:0,他引:2  
为降低农田面源污染和温室气体排放,通过田间试验研究了优化施氮情况下,添加不同剂量生物质炭(0、4.5、9、13.5 t/hm~2)对宁夏引黄灌区稻田土壤氮素淋失和土壤N_2O排放的影响。结果表明,添加生物质炭显著降低了100 cm土层处的硝态氮和铵态氮淋失量,降低比例分别为18.23%~26.02%和28.86%~52.05%。与C0处理相比,C1处理(4.5 t/hm~2)对土壤N_2O累计排放量影响不显著,但C2处理(9 t/hm~2)和C3处理(13.5 t/hm~2)土壤N_2O累计排放量显著降低了25.13%和28.88%。添加生物质炭可增加水稻产量和吸氮量,降低土壤硝态氮和铵态氮量以及土壤体积质量,是引起土壤氮素淋失降低和土壤N_2O排放减少的重要原因之一。综合考虑生物质炭对土壤氮素淋失和土壤N_2O排放的影响以及生产成本,宁夏引黄灌区的生物质炭推荐添加量为9 t/hm~2。  相似文献   

16.
连年施加生物炭对黑土区土壤改良与玉米产量的影响   总被引:1,自引:0,他引:1  
为研究连年施加生物炭对黑土区坡耕地的土壤结构、持水性能、玉米产量及可持续性的影响,从2015年开始,在黑土区3°坡耕地径流小区内,将玉米作为试验作物连续进行4年生物炭效应试验。共设置C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)和C100(100 t/hm2) 5种生物炭的施用量处理。结果表明:4年中土壤容重随生物炭的增加有减小的倾向,孔隙度有逐渐增加的倾向;适量生物炭可有效降低土壤固相比例,提高气相和液相比例,除2015年外,连续3年广义土壤结构指数(GSSI)随施炭量的增加先增大后减小,土壤三相结构距离指数(STPSD)随施炭量的增加先减小后增大,均在第3年C50处理达到最优(99.96、0.63),同时土壤三相比偏离值R最小(1.03),三相比最接近理想状态;连续4年大于0.25 mm团聚体含量R0.25、平均质量直径(MWD)和几何平均直径(GMD)随着生物炭的增加有先增加后减小的倾向;连...  相似文献   

17.
【目的】我国亚热带地区为典型的双季稻种植区,水分管理多采用长期淹水和间歇灌溉2种方式,灌溉方式的不同会影响土壤含水率的差异,势必会影响土壤酸碱性的改变。添加生物质炭可改变土壤性质。探明稻田淹水灌溉和间歇灌溉条件下添加生物质炭对双季稻田土壤水分及酸碱性的影响。【方法】采用田间小区试验,研究水分管理方式(长期淹水(CF)和间歇灌溉(IF))及生物质炭施用量(0、24 t/hm~2(LB+IF)和48 t/hm~2(HB+IF))对亚热带双季稻田土壤含水率及pH值的影响。【结果】与长期淹水相比,早稻季和晚稻季间歇灌溉的土壤含水率并没有显著降低。生物质炭添加并未显著影响早稻季和晚稻季土壤含水率,但在休闲季生物质炭处理的土壤含水率有所降低。研究期间,CF、IF、LB+IF和HB+IF处理的土壤含水率周年均值分别为47.35%、39.58%、36.81%和39.02%,与长期淹水相比,间歇灌溉降低了全年的土壤含水率,降幅达16.41%,而生物质炭对间歇灌溉稻田土壤含水率影响不大。与长期淹水相比,早稻季和晚稻季间歇灌溉处理的土壤pH值分别显著降低了0.22和0.57个单位,休闲季不同水分管理方式之间的土壤pH值差异不显著。由于生物质炭本身呈碱性,添加到土壤后可增加土壤pH值,且随着生物质炭添加量的增加而增加。与IF处理相比,早稻季和晚稻季生物质炭处理的pH值分别增加了0.23~0.68个单位和0.17~0.60个单位。【结论】水分管理可影响双季稻田土壤含水率和pH值。间歇灌溉降低了亚热带地区双季稻酸性土壤的pH值。生物质炭添加,尤其是高量生物质炭添加,可在一定程度上缓解间歇灌溉对酸性土壤pH值的降低作用。  相似文献   

18.
生物炭与化肥互作对土壤含水率与番茄产量的影响   总被引:7,自引:0,他引:7  
为探明生物炭与化肥互作对番茄土壤含水率与及产量的影响,试验设置5个生物炭水平0t/hm~2(B1)、10t/hm~2(B2)、20t/hm~2(B3)、40t/hm~2(B4)、60t/hm~2(B5)和2个化肥水平中肥(F1)和低肥(F2)。结果表明:0~20cm土层土壤含水率均随生物炭施用量增加呈现增大趋势。在番茄生长阶段,0~20cm低炭处理土壤含水率与对照相比增幅在10%以内,高炭处理增幅达40%。20~40cm土壤含水率与0~20cm变化规律恰好相反,与对照相比施炭处理土壤含水率均呈下降趋势。其中B4F1和B4F2含水率最小,为对照的70%。施加生物炭后土壤含水率变化幅度(Ka)和变异程度(Cv)减弱。同一深度土壤随着施炭量增加Ka和Cv均减小。与对照相比较高施炭处理(B4F1、B4F2、B5F1、B5F2)变异系数Cv相对较小。随着番茄生长土壤水分在垂直剖面影响表现为较高施炭量(B4F1、B4F2、B5F1、B5F2)能有效保持耕作层有效水分,与对照相比差异显著。随着施炭量增加番茄产量增幅出现先升高后降低趋势,且均高于对照。B4F1、B4F2、B5F1、B5F2分别增幅46.34%、58.61%、49.63%和39.18%,其中B4F2产量最高。同一施炭不同施肥处理间差异不显著。研究成果可为内蒙古半干旱地区农业生产提供依据。  相似文献   

19.
不同施肥条件下微生物对棕壤团聚体和碳分布的影响   总被引:1,自引:0,他引:1  
王亮  孙向阳  刘克锋 《农业机械学报》2012,43(3):57-61,82
以北京市延庆县绿富隆有机肥蔬菜研究基地长期定位肥料试验地为试验平台,利用湿筛法获得不同粒级的团聚体,通过16SrDNA-PCR-DGGE技术进行测序分析,研究不同施肥条件下微生物群落对棕壤土团聚体和碳分布的影响。结果表明,有机肥(OF)处理的0.25~2 mm水稳性团聚体增加,增加幅度为109.0%;0.053~0.25 mm和小于0.053 mm粒级团聚体的含量均下降,与CK(不施肥)相比分别下降了31.9%和142.1%。OF处理对土壤各粒级团聚体中碳含量均有显著提高,与CK相比,提高15.2%~46.9%,其中大于2 mm团聚体中碳含量提高了46.9%。棕壤碳含量与大于2 mm粒级团聚体含量呈正相关;与0.25~2 mm粒级团聚体呈极显著正相关;与0.053~0.25 mm粒级团聚体含量呈极显著负相关;与小于0.053 mm粒级团聚体呈显著负相关。  相似文献   

20.
为探究植烟土壤团聚体分布及稳定性对不同耕作方式的响应,以丘陵烟区烟田黄壤土为研究对象,通过田间定位试验,设置深松1遍(T1)、常规旋耕2遍(T2)和翻耕1遍+旋耕1遍(T3)3个处理,研究不同耕作方式对植烟土壤团聚体分布及稳定性的影响,包括对力稳定性团聚体含量、水稳定性团聚体含量、团聚体平均重量直径、水稳性团聚体稳定率、构体破碎率和不稳定团粒指数进行测定与分析。结果表明:与翻耕1遍+旋耕1遍处理相比,深松1遍和旋耕2遍处理可使0~20cm土壤层的0.25-2mm粒级团聚体的力稳性团聚体数量显著提高,20~30cm土壤层的>0.25mm粒级团聚体的力稳性团聚体数量显著提高。深松1遍和旋耕2遍处理可使0~10cm和20~30cm土壤层的平均重量直径(干筛)值和0~30cm土壤层的平均重量直径(湿筛)值显著提高。深松1遍处理可使0~10cm土壤层的水稳性团聚体稳定率增大,而旋耕2遍处理可使10~20cm和20~30cm土壤层的水稳性团聚体稳定率增大。上述研究结果说明,采用适宜的耕作方式将有助于植烟土壤团聚体形成和稳定性的提升,为优化丘陵烟区耕作方式提供理论支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号