首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
大豆产量及主要农艺性状QTL的上位性互作和环境互作分析   总被引:2,自引:0,他引:2  
以栽培大豆晋豆23为母本,半野生大豆灰布支黑豆ZDD2315为父本杂交衍生的F2:15和F2:16的447个RIL家系为遗传群体,绘制SSR遗传图谱,采用混合线性模型方法,对2年大豆小区产量及主要农艺性状进行加性QTL、加性×加性上位互作及环境互作分析。结果检测到9个与小区产量、茎粗、有效分枝、主茎节数、株高、结荚高度相关的QTL,分别位于J_2、I、M连锁群上,其中小区产量、茎粗、株高、有效分枝和主茎节数QTL的加性效应为正值,说明增加这些性状的等位基因来源于母本晋豆23。同时,检测到7对影响小区产量、茎粗、株高和结荚高度的加性×加性上位互作效应及环境互作效应的QTL,共发现14个与环境存在互作的QTL。上位效应和QE互作效应对大豆小区产量及主要农艺性状的遗传影响较大。大豆分子标记辅助育种中,既要考虑起主要作用的QTL,又要注重上位性QTL,才有利于性状的稳定表达和遗传。  相似文献   

2.
甘蓝型油菜产量及其构成因素的QTL定位与分析   总被引:9,自引:2,他引:7  
产量性状是复杂的数量性状, 对种子的单株产量及其构成因素(全株总有效角果数、每角粒数、千粒重)进行QTL定位和上位性分析,确定其在染色体上的位置及其遗传效应,可以探讨油菜杂种优势产生原因,提高育种中对产量性状优良基因型选择的效率,达到提高油菜产量的目的。在双低油菜细胞质雄性不育保持系1141B和双高恢复系垦C1构建的F2作图群体中,运用SRAP、AFLP和SSR三种标记技术构建了一个甘蓝型油菜(Brassica napus L.)的分子标记遗传连锁图谱。共包含244个标记,分布于20个主要连锁群、1个三联体上,图谱总长度为2 769.5 cM。采用Windows QTL Cartographer Version 2.0统计软件及复合区间作图法,对油菜单株产量及其3大构成因素进行QTL定位,共检测到QTLs 16个分布在9个连锁群上,其中第6和13连锁群最多,均有3个。单个QTL解释性状表型变异的0.38%~73.34%。对于同一性状,等位基因的增效作用既来自母本,亦源自父本;采用双向方差分析法对位点间互作及其上位性进行分析,检测到26对影响产量构成性状的上位性互作效应QTL,说明油菜基因组中存在大量控制产量的互作位点,油菜产量性状的上位性存在着多效性,上位性互作包括QTL与非QTL位点,其中以非QTL位点较多。一般互作位点的独立效应值较小,而互作的效应值显著增大,且一般超过两位点独立效应值之和。反映了控制产量性状基因的复杂性。上位性是甘蓝型油菜产量性状杂种优势的重要遗传基础。  相似文献   

3.
玉米籽粒产量与产量构成因子的关系及条件QTL分析   总被引:13,自引:0,他引:13  
以我国玉米育种的骨干亲本齐319和黄早四构建的230个F2:3家系群体为材料,通过条件分析结合QTL定位方法探讨了单株产量(GYPP)与单株粒数(KNPP)和百粒重(KWEI)的遗传关系。结果表明,百粒重比单株粒数和单株产量遗传力高,受环境影响小。相关分析表明,单株粒数和百粒重与单株产量均呈现显著正相关,单株粒数与单株产量的相关系数更高。单株产量非条件QTL分析共定位到5个遗传主效应QTL和5对上位性位点,其中4个是控制3个性状(单株产量、单株粒数和百粒重)的一因多效性位点,1个是控制2个性状(单株产量和单株粒数)的一因多效性位点,全部5对上位性位点都与单株粒数和百粒重有关。条件QTL分析还检测到14个QTL位点及10对上位性位点,这些位点在非条件QTL分析中未被检测到,其效应较小。因此,单株粒数和百粒重与单株产量密切相关,通过改良单株粒数和百粒重可有效提高产量;条件QTL分析方法在单个QTL水平上证实了单株产量与单株粒数、百粒重较强的遗传相关性,并且能够检测到更多效应较小的QTL;发掘的两个效应较大的一因多效位点可为玉米高产分子育种和进一步精细定位提供理论参考。  相似文献   

4.
基于多个相关群体的玉米雄穗相关性状QTL分析   总被引:5,自引:0,他引:5  
雄穗相关性状对玉米生产至关重要。为了解析玉米雄穗相关性状的遗传机制,利用以黄早四为共同亲本组配的11个重组自交系群体,对玉米雄穗一级分枝数、雄穗主轴长和雄穗干重3个性状进行QTL分析。经过对11个群体及亲本两年三点的田间鉴定,单环境和联合环境下的玉米雄穗相关性状QTL定位,及基因型与环境互作和上位性互作分析,检测到15个在多环境下稳定表达(5个环境以上)的“环境钝感”主效QTL,其中,在染色体bin3.04区域,齐319群体和旅28群体中都定位到1个主效雄穗一级分枝数相关QTL,其平均贡献率分别为17.4%和14.4%,并且2个群体的QTL标记区间高度重叠,在IBM2008 Neighbors图谱上的重叠区间为226.0~230.1。对比不同群体结果发现,在2个群体以上都能检测到的一致性区间21个,其中在第2、第3、第6、第8染色体上的5个一致性区间在3个群体中可稳定表达。这些多环境和多个遗传背景下稳定表达的位点可作为玉米雄穗性状分子标记辅助选择、精细定位及基因克隆的候选位点。  相似文献   

5.
玉米生育期QTL定位及上位性互作效应的遗传研究   总被引:4,自引:0,他引:4  
为了探讨玉米生育期的遗传规律,以自交系N6和BT-1为亲本组配了重组自交系(Recombinant inbred line,RIL)群体,利用207个微卫星标记构建分子标记遗传连锁图谱,对生育期相关的抽雄、吐丝和散粉3个性状进行QTL定位,并进行上位性效应分析。结果表明,在第1染色体umc1676-umc1590区域和第2染色体的umc1422-umc1776区域存在共同控制抽雄、吐丝和散粉3个性状的稳定的QTL位点。生育期3个性状QTL的上位性分析,都检测到3对加性×加性上位性互作效应,分别可以解释3.78%~5.43%,1.24%~2.36%和3.27%~4.04%的表型遗传变异。上位性效应是生育期性状的重要遗传基础。  相似文献   

6.
水稻糙米蛋白质含量的QTL定位   总被引:1,自引:0,他引:1  
蛋白质含量是评价稻米品质的一项重要指标,控制水稻糙米蛋白质含量的基因位点是数量性状,检测水稻糙米蛋白质含量的QTL并进行遗传效应分析对于水稻品质遗传育种具有重要的意义.本研究以中优早/丰锦重组自交系群体作为定位群体,结合构建的遗传连锁图谱利用Windows QTL Cartogtapher2.0软件,采用复合区间作图法对水稻糙米蛋白质含量进行QTL定位和效应分析.检测到控制糙米蛋白质含量的QTL 6个(qPc-3、qPc-6、qPc-7、qPc-8-1、qPc-8-2和qPc-11),分别位于第3、6、7、8和11连锁群上.单个QTL对群体表型变异的贡献率为3.79%~19.41%,联合贡献率为61.07%.在这些QTL的区间中,第8染色体的口Pc-8-1基因区域对糙米蛋白质含量具有主效作用.进一步分析和比较了相关研究结果,讨论了研究结果对开展稻米品质遗传育种的意义.  相似文献   

7.
大豆籽粒硬实加性和上位性QTL定位   总被引:2,自引:0,他引:2  
硬实是植物种子的普遍特性, 是影响大豆种子发芽率、生存能力及储存期的重要数量性状, 同时影响着大豆的加工品质。本实验通过对大豆籽粒硬实性状的加性和上位性互作QTL (quantitative trait locus)分析, 明确控制大豆籽粒硬实的重要位点及效应, 旨在为进一步解析硬实性状复杂的遗传机制提供理论依据。以冀豆12和地方品种黑豆(ZDD03651)杂交构建的包含186个家系的F6:8和F6:9重组自交系群体为材料, 采用WinQTL Cartographer V. 2.5的复合区间作图法(composite interval mapping, CIM)定位不同年份的籽粒硬实性状相关的加性QTL, 同时采用IciMapping 4.1软件中的完备区间作图法(inclusive composite interval mapping, ICIM)检测籽粒硬实性状的加性及上位性QTL。共检测到3个籽粒硬实性状相关的加性QTL, 分别位于第2、第6和第14染色体, 遗传贡献率范围为5.54%~12.94%。同时检测到4对上位性互作QTL, 分别位于第2、第6、第9、第12和第14染色体, 可解释的表型变异率为2.53%~3.47%。同时检测到籽粒硬实性状加性及上位性互作QTL, 且上位性互作多发生在主效QTL间或主效QTL与非主效QTL间, 表明上位性互作效应在大豆籽粒硬实性状的遗传基础中具有重要的作用。  相似文献   

8.
以海陆渐渗系13-1×辽棉12组配的195个单株的F2群体为作图群体,利用SSR(Simple sequence repeat)标记和Join Map3.0软件构建遗传连锁图谱,构建的遗传连锁图谱包含39个多态性标记、13个连锁群,该图谱总长1174.4 c M,覆盖棉花基因组的26.7%,利用Ici Mapping完备区间作图法对F2:3家系进行相关性状的QTL定位,共检测到30个叶绿素荧光参数、7个叶片干物质含量、6个叶面积指数、1个叶绿素含量的QTL位点,分布在8条染色体上,在同一染色体共标记区间内存在多个性状的QTL,部分位点加性遗传效应来自同一亲本,与干物质含量、最大光化学效应相关的QTL位点在3条染色体上不同标记区间内重复出现,与叶面积指数、最大光化学效应相关的QTL位点在4条染色体上不同标记区间内重复出现,表现出遗传上的一因多效或基因连锁效应,可用于高光效聚合育种。  相似文献   

9.
大豆籽粒大小与形状性状的QTL定位   总被引:2,自引:0,他引:2  
大豆籽粒大小和粒形性状不仅与产量和外观品量紧密相关,还对机械化播种有着一定的影响。本研究采用大粒栽培品种冀豆12与小粒半野生地方品种黑豆(ZDD03651)杂交衍生的包含188个重组自交系的F6:8和F6:9群体为材料,对粒长、粒宽、粒厚、长宽比、长厚比和宽厚比的遗传结构进行分析,并分别以WinQTLCart 2.5、QTLNetwork 2.1和IciMapping 4.1 3种模型对以上性状的加性效应QTL,QE互作效应及上位性互作效应进行检测。6个性状的广义遗传率介于64.01%~79.57%,遗传力较高,且除粒厚外的其他性状受环境影响显著。共定位到加性效应QTL38个,单个QTL的贡献率介于2.21%~10.71%之间,分布在12条染色体的17个标记区间内,且12个染色体区段至少与两种性状相关。两种及以上模型同时检测到的QTL有24个,3种模型均能检测到的QTL共8个,分别为qSL-17-1、qSL-18-1、qSW-6-1、qST-2-1、qST-6-1、qSLT-2-2、qSWT-2-1和qSWT-20-1。检测到7对上位性互作QTL,分别涉及粒长、粒宽、长宽比、长厚比和宽厚比,互作效应贡献率介于0.78%~6.20%之间。QE互作效应贡献率均较低,介于0.0005%~0.3900%之间。以多种模型同时检测结果准确性较高,可为分子标记辅助育种工作提供可靠理论基础。  相似文献   

10.
棉花叶绿素含量和光合速率的QTL定位   总被引:10,自引:2,他引:8  
秦鸿德  张天真 《棉花学报》2008,20(5):394-398
 为了探讨棉花光合作用及相关生理性状的遗传规律, 利用四交分离作图群体泗棉3号/苏12//中4133/8891的273个F2:3家系为材料,用MAPQTL5.0软件及区间作图方法(IM), 对棉花叶绿素含量及光合速率进行了QTL分析。检测到3个与叶绿素含量相关的QTL, 分别位于染色体D6、D8和A10, 解释性状表型变异的4.3%, 4.5% 和5.2%。检测到3个与光合速率相关的QTL, 位于D5、D6和A11染色体, 解释性状表型变异的3.8%,7.4% 和8.4%。两个性状所有QTL的遗传效应均以加性效应为主。本研究定位的棉花叶绿素含量和光合速率QTL均是首次报道,可尝试应用于高光效育种的分子标记辅助选择。  相似文献   

11.
产量及其相关性状如单株有效穗数、千粒重、穗实粒数、穗总粒数和结实率等是水稻重要的农艺性状,了解产量及其相关性状QTL的加性及上位性效应对以分子标记聚合育种改良水稻产量具有重要意义。本文以16个单片段代换系及15个双片段代换系分析了水稻产量相关性状QTL的加性及上位性效应。共检出影响产量及其相关性状的13个QTL,包括产量性状1个、单株有效穗数1个、千粒重4个、穗实粒数4个、穗总粒数2个和结实率1个,分布于第2、第3、第4、第7和第10染色体上。此外,检出12对双基因互作。结果显示,2个正向(或负向)产量性状QTL聚合,往往会产生负向(或正向)的上位性效应,能否产生更大(或更小)的目标性状,取决于双片段遗传效应(加性效应与上位效应代数和)绝对值与单片段最大加性效应绝对值的差。本研究结果对实施高产分子标记聚合育种方法有重要参考价值。  相似文献   

12.
Boron (B) and phosphorus (P) are two essential nutrients for plants. To unravel the genetic basis of B and P efficiency in Brassica napus, quantitative trait locus (QTL) and epistatic interaction analysis for yield and yield-related traits under contrast B and P conditions were performed using two mapping populations across various environments. Main effect QTLs were detected by QTLNetwork and QTL Icimapping (ICIM), and were compared with our previously reported main effect QTLs identified by QTLCartographer. Epistatic QTLs were identified by QTLNetwork, ICIM and Genotype matrix mapping (GMM), and multiple comparisons of main effect QTLs and epistatic QTLs were conducted. For the two mapping populations, 51 main effect QTLs were identified by QTLNetwork, 106 by ICIM. Among them, 35 main effect QTLs were simultaneously identified by three programs. Moreover, 578, 18 and 62 epistatic QTLs were identified by GMM, QTLNetwork and ICIM, respectively. Interestingly, a total of 235 epistatic QTLs identified by GMM were associated with 50 main effect QTLs identified by three programs. However, only nine epistatic QTLs identified by QTLNetwork and ICIM were involved in main effect QTLs. Twenty-two main effect QTLs in the BERIL population overlapped with 20 main effect QTLs for the same traits in the BQDH population, but no main effect QTLs were detected both under P and B stress environments, indicating the genetic differences in B and P homeostasis in B. napus. By in silico mapping, 29 candidate genes were located in the consensus QTL intervals. This study suggested the availability of dissecting genetic basis for complex traits under B/P deficiency by analyzing main effect QTLs and epistatic QTLs using multiple programs across different environments. The robust main effect QTLs and epistatic QTLs associated could be useful in breeding B and P efficient cultivars of B. napus.  相似文献   

13.
粳稻杂种优势遗传基础剖析   总被引:2,自引:1,他引:1  
为了解控制粳稻产量相关性状及其中亲优势的基因作用类型, 利用秀堡RIL群体及其2个回交(BCF1)群体对株高、生育期、单株有效穗数、穗长、每穗颖花数、结实率、一次枝梗数和二次枝梗数8个性状及其中亲杂种优势进行QTL定位。共检测到58个显著的主效QTL (M-QTL), 单个M-QTL的贡献率变幅为3.3%~41.9%。77.6%的M-QTL表现为加性效应, 15.5%的M-QTL表现为部分或完全显性效应, 6.9%的M-QTL表现为超显性效应。共检测到90对显著的双基因上位性QTL(E-QTL)。在RIL群体中检测到44对E-QTL, 单对E-QTL的贡献率变幅为1.7%~8.0%, 平均3.7%。在XSBCF1群体中检测到27对E-QTL, 其中利用BCF1表型值检测到16对E-QTL, 单对E-QTL的贡献率变幅为12.7%~78.5%, 平均29.2%; 利用中亲优势值检测到11对E-QTL, 单对E-QTL的贡献率变幅为15.0%~71.8%, 平均40.1%。在CBBCF1群体中检测到19对E-QTL, 其中利用BCF1表型值检测到12对E-QTL, 单对E-QTL的贡献率变幅为2.7%~64.4%, 平均30.1%; 利用中亲优势值检测到9对E-QTL, 单对E-QTL的贡献率变幅为21.7%~64.1%, 平均40.0%。在CBBCF1群体中, 利用BCF1表型值和中亲优势值都检测到的E-QTL有2对。上述结果表明上位性效应是粳稻秀堡组合杂种优势的主要遗传基础。  相似文献   

14.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:6,自引:3,他引:3  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

15.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:1,自引:0,他引:1  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

16.
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important vegetables in China. However, the inheritance of yield-related traits in Chinese cabbage is poorly understood to date. To map quantitative trait loci (QTL) for yield-related traits in Chinese cabbage, a genetic linkage map was constructed with 192 doubled haploid (DH) lines. The genetic map was constructed based on 190 sequence-related amplified polymorphisms and 43 simple sequence repeats. QTL mapping was conducted for 11 yield-related traits in 170 DH lines derived from a cross between two diverse Chinese cabbage lines, ‘WZ’ and ‘FT’, under different environmental conditions. A total of 46 main QTL (M-QTL) and 7 epistatic QTL (E-QTL) were identified. The phenotypic variation explained by each M-QTL and E-QTL ranged from 4.85 to 25.06 % and 1.85 to 13.29 %, respectively. The QTL-by-environment interactions were detected using the QTLNetwork 2.0 program in joint analyses of multi-environment phenotypic values. The phenotypic variation explained by each QTL and by QTL × environment interaction was 1.14–4.24 % and 0.00–1.26 %, respectively. Our results provide a better understanding of the genetic factors controlling leaf and head-related traits in Chinese cabbage.  相似文献   

17.
Z. F. Li    J. M. Wan    J. F. Xia    H. Q. Zhai  H. Ikehashi 《Plant Breeding》2004,123(3):229-234
Milling quality of rice grains is important to both producers and consumers. In this study, quantitative trait loci (QTLs) controlling brown rice rate (BR), milled rice recovery (MR) and head rice recovery (HR) were analysed by composite interval mapping over 2 years using 98 backcross inbred lines (BILs). A total of 12 QTLs for the three traits were detected, of which five were for BR, four for MR and three for HR. The proportion of phenotypic variation explained by individual QTLs ranged from 7.5 to 19.9%, and additive effects contributed by a single QTL accounted for 0.46 to 2.34% of the variation. QTL‐by‐environment interactions were observed by comparing QTL mapping of the same population grown in two consecutive years. Three of five QTLs for BR and two of four QTLs for MR were detected in 2 years, and all three QTLs for HR were detected in 1 year only. BR was significantly correlated with MR, and all four QTLs of MR were located in the same regions as those of BR. This indicated that QTLs for highly correlated traits could often be detected in the same interval.  相似文献   

18.
Two soybean recombinant inbred line populations, Jinpumkong 2 × SS2-2 (J × S) and Iksannamulkong × SS2-2 (I x S) showed population-specific quantitative trait loci (QTLs) for days to flowering (DF) and days to maturity (DM) and these were closely correlated within population. In the present study, we identified QTLs for six yield-related traits with simple sequence repeat markers, and biological correlations between flowering traits and yield-related traits. The yield-related traits included plant height (PH), node numbers of main stem (NNMS), pod numbers per plant (PNPP), seed numbers per pod (SNPP), 100-seed weight (SW), and seed yield per plant (SYPP). Eighteen QTLs for six yield-related traits were detected on nine chromosomes (Chrs), containing four QTLs for PH, two for NNMS, two for PNPP, three for SNPP, five for SW, and two for SYPP. Two highly significant QTLs for PH and NNMS were identified on Chr 6 (LG C2) in both populations where the major flowering gene, E1, and two DF and DM QTLs were located. One other PNPP QTL was also located on this region, explaining 12.9% of phenotypic variation. Other QTLs for yield-related traits showed population-specificity. Two significant SYPP QTLs potentially related with QTLs for SNPP and PNPP were found on the same loci of Chrs 8 (Satt390) and 10 (Sat_108). Also, highly significant positive phenotypic correlations (P < 0.01) were found between DF with PH, NNMS, PNPP, and SYPP in both populations, while flowering was negatively correlated with SNPP and SW in the J × S (P < 0.05) and I × S (P < 0.01) populations. Similar results were also shown between DM and yield-related traits, except for one SW. These QTLs identified may be useful for marker-assisted selection by soybean breeders.  相似文献   

19.
Xieyou9308 is the first commercial super hybrid rice released in 1996 in China. To clarify its genetic mechanism underlying high yield potential, a recombinant inbred line (RIL) population derived from the cross between the maintainer line XieqingzaoB (XQZB) and the restorer line Zhonghui9308 (ZH9308) and two derived backcross F1 (BCF1) populations were developed for the identification of quantitative trait loci (QTLs) related to ten important agronomic traits (tiller number (TN), heading date (HD), and grain yield per plant (GYPP), etc.). The BCF1 performance was closely correlated with the performance of their parental RILs according to both the analysis of broad-sense heritability (h B 2) and phenotypic correlation coefficient (PCC) in the two BCF1 populations, but not proved by QTL analysis. A total of 21 additive-effect main QTLs (M-QTLs), 22 dominant-effect M-QTLs, and 19 dominant-effect M-QTLs were detected with the WinQTLCart 2.50 software for the ten traits in the RIL and two BCF1 populations, respectively. Of theses, three QTLs (qHD7a, qPPP3a, and qPL10) of 21 were detected repeatedly in the RIL and one BCF1 populations, ten QTLs underlying four traits were only detected repeatedly in two BCF1 populations, and nine QTLs controlling more than two traits were detected repeatedly, the additive-effect QTLs and dominant-effect QTLs play an important role in the performance of agronomic traits and no epistatic QTL of additive by additive effect and dominant by dominant-effect was detected for all traits in three populations. This research is valuable for M-QTL related to important agronomic trait in future fine mapping and positional cloning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号