首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The effect of irradiance and temperature on the photosynthesis of two Japanese agarophytes, Gelidium elegans and Pterocladiella tenuis (Gelidiales), was determined using dissolved oxygen sensors and pulse amplitude modulated (PAM) fluorometry. Gross photosynthesis and dark respiration rates were determined over a range of temperatures (8–36 °C). The highest gross photosynthetic rates were 40.3 and 37.0 mg O2 g ww ?1  min?1 and occurred at 24.3 and 25.5 °C [95 % Bayesian credible interval (BCI) 20.7–28.0 and 23.4–28.3 °C], respectively. The dark respiration rate in G. elegans and P. tenuis increased with increasing temperature at a rate of 0.10 and 0.31 mg O2 g ww ?1  min?1 °C?1 , respectively. Modeling the net photosynthesis–irradiance (PE) responses of G. elegans and P. tenuis at 20 °C revealed that the net photosynthetic rates quickly increased at irradiance levels below the estimated saturation irradiance of 88 and 83 µmol photons m?2 s?1, with a compensation irradiance of 14 and 19 µmol photons m?2 s?1, respectively. The highest value of the maximum effective quantum yield (Φ PSII) occurred at 20.1 °C (BCI 18.9–21.5 °C) and 21.3 °C (BCI 20.2–22.5 °C) for G. elegans and P. tenuis and was 0.49 and 0.45, respectively. These optimal temperatures of Φ PSII were relatively lower than those determined by the photosynthesis–temperature model of oxygen evolution. The temperature response of these species indicates that they are probably well adapted to the current range of seawater temperatures in the study site but that they are near the boundary of their tolerable limits.  相似文献   

2.
Respiratory parameters of grass carp were studied during dissolved oxygen (DO) changes from normal DO to hypoxia, then return to normal DO at 15, 25, and 30 °C acclimation, respectively. The results showed that with increases of acclimation temperature at normoxia the respiratory frequency (fR), oxygen consumption rate (VO2), respiratory stroke volume (VS.R), gill ventilation (VG), and VG/VO2 of grass carp increased significantly, but the oxygen extraction efficiency (EO2) of fish decreased significantly (P < 0.05). With declines of DO levels, the fR, VS.R, VG, and VG/VO2 of fish increased significantly at different acclimation temperatures (P < 0.05). A slight increase was found in VO2, and the EO2 of fish remained almost constant above DO levels of 3.09, 2.91, and 2.54 mg l?1 at 15, 25, and 30 °C, while the VO2 and EO2 began to decrease significantly with further reductions in DO levels (P < 0.05). After 0.5 h of recovery to normoxia from hypoxia at three acclimation, the fR, VS.R, VG, and VG/VO2 of the fish decreased sharply; meanwhile, the VO2 and EO2 increased sharply (P < 0.05). The respiratory parameters of fish gradually approached initial values with prolonged recovery time to normoxia, and reached their initial values in 2.5 h at 25 and 30 °C acclimation. The critical oxygen concentrations (Cc) of fish for VO2 were 2.42 mg l?1 at 15 °C, 2.02 mg l?1 at 25 °C, and 1.84 mg l?1 at 30 °C, respectively. The results suggest that grass carp are highly adapted to varied DO and short-term hypoxia environments.  相似文献   

3.
The effect of dietary protein reduction balanced by an increase in carbohydrate (starch) level on growth performance, feed utilization and intermediary metabolism of Senegalese sole juveniles was evaluated at two temperatures, 12 and 18°C. For that purpose two isolipidic (16% lipids) diets were formulated to contain 550gkg?1 protein and 90gkg?1 starch (diet HP:LC), and 450gkg?1 protein and 200gkg?1 starch (diet LP:HC). Each experimental diet was fed to triplicate groups of 20 fish (initial body weight: 15.9g) within each temperature. Diets had no effect on growth and feed utilization. Temperature affected growth but not feed efficiency, with fish growing more at 18°C. Fatty acid synthetase and glutamate dehydrogenase activities were higher at 12°C than at 18°C while activity of the other measured enzymes was not affected by water temperature. Glucokinase and malic enzyme activities were lower while fructose 1,6‐bisphosphatase activity was higher in fish fed the HP:LC diet. Our data suggest that protein can be reduced from 550 gkg?1 to 450 gkg?1 by increasing starch level in high lipid diets for Senegalese sole juveniles without affecting overall performance. A reduction in protein content through an increase in dietary starch decreases hepatic gluconeogenesis. Increasing temperature from 12°C to 18°C improves fish growth but does not affect feed efficiency.  相似文献   

4.
Solvent‐extracted soybean meal (SESBM) has been reported to cause subacute enteritis in certain fish species. Two 34‐day experiments investigated the effects of SESBM and soy protein concentrate (SPC) on the intestinal mucus layer and development of subacute enteritis in the hindgut of yellowtail kingfish (Seriola lalandi) at 22 and 18 °C. Fish were fed increasing levels of SESBM (Exp. 1: 0 g kg?1, 100 g kg?1, 200 g kg?1, 300 g kg?1) and SPC (Exp. 2: 0 g kg?1, 200 g kg?1, 300 g kg?1, 400 g kg?1). No visual signs of inflammation in the hindgut were observed in either experiment. However, increasing dietary SESBM significantly reduced mucus layer thickness. Neutral and acidic goblet cell mucin composition increased at 18 and 22 °C, respectively. A significant positive linear relationship was evident between goblet cell number and SESBM inclusion at 18 °C. SPC inclusion and water temperature had no significant effect on mucus layer thickness or mucin composition. However, at 18 °C, goblet cell numbers decreased with SPC inclusion. Results suggest the early stages of subacute enteritis may have been manifesting in SESBM fed fish. In the long term, mucus layer alterations associated with feeding SESBM may compromise fish health. Longer‐term studies should investigate the effects of feeding SESBM to yellowtail kingfish, particularly at suboptimal water temperatures.  相似文献   

5.
Two feeding trials were conducted to determine the effects of feeding rates in juvenile Korean rockfish, (Sebastes schlegeli) reared at 17 and 20 °C water temperature. Fish averaging 5.5 ± 0.2 g (mean ± SD) at 17 °C and 5.5 ± 0.3 g (mean ± SD) at 20 °C water temperature were randomly distributed into 18 indoor tanks. At each water temperature, triplicate tanks were randomly assigned to one of six different feeding rates: 2.8, 3.8, 4.1, 4.4, 4.7 % and satiation (4.99 % BW day?1) at 17 °C and 2.8, 3.8, 4.1, 4.4, 4.7 % and satiation (5.0 % BW day?1) at 20 °C. After 4 weeks of feeding trial, weight gain (WG) and specific growth rate of fish fed groups at satiation and 4.7 % (BW day?1) were significantly higher than those of fish fed groups at 2.8, 3.8 and 4.4 % (BW day?1) in both 17 and 20 °C temperature. Feed efficiency and protein efficiency ratio of fish fed group at 2.8 % (BW day?1) was significantly lower than those of fish fed groups at 3.8, 4.1, 4.4 and 4.7 % (BW day?1) in both experiments. Hematocrit was significantly higher in fish fed group at 4.4 % (BW day?1) at 17 °C, and there was no significant difference in hemoglobin content amongst all fish fed groups at 20 °C. Glutamic oxaloacetic transaminase and glutamic pyruvic transaminase of the fish fed group at 2.8 % (BW day?1) were significantly higher than those of all other fish fed groups in both experiments. Broken line regression analysis of WG indicated that the optimum feeding rate of juvenile Korean rockfish was 4.48 % (BW day?1) at 17 °C and 4.83 % (BW day?1) at 20 °C. Therefore, these results indicated that the optimum feeding rate could be >4.1 % but <4.48 % at 17 °C and >4.4 % but <4.83 % at 20 °C. As we expected, current results have indicated that 5 g of juvenile Korean rockfish perform better at 17 °C than at 20 °C water temperature.  相似文献   

6.
Abstract Fishes are often stocked outside natural distribution ranges with inadequate information on target streams, particularly thermal regimes. Australian bass, Macquaria novemaculeata (Steindachner), is a catadromous species that is regularly stocked into upland reaches of rivers and impoundments in south‐eastern Australia. Critical Thermal Minima (CTMin) were determined for age‐0 Australian bass fingerlings with a mean fork length of 64.4 ± 0.4 mm and weighing 3.8 ± 0.8 g. Four treatments were used, including three replicate aquaria for each treatment. Fingerlings were acclimated at either 8 or 15 °C at densities of 15 fish in 56‐L glass aquaria. Water temperatures were then decreased at either 1 °C day?1 or 1 °C h?1 until loss of equilibrium (LOE), which occurred between 3 and 7 °C. Mean CTMin among treatments was 3.22–4.64 °C and was influenced by acclimation temperature and rate of temperature decline. Fingerlings acclimated at 8 °C subjected to a temperature decline of 1 °C h?1 experienced highest LOE temperature. Post‐LOE mortality among treatments was highest at 100% in the 8 °C acclimation with a 1 °C day?1 temperature decline. Mortalities following LOE occurred within 5 days. The results suggest that stocking age‐0 Australian bass is unlikely to be successful in areas where winter temperatures fall below 6 °C.  相似文献   

7.
We determined through morphological and rbcL phylogenetic analyses that a previously unidentified, but introduced species of macroalga, which has been easily cultivated in indoor tanks in Japan, is Agardhiella subulata (Solieriaceae). Additionally, the photosynthetic biology of this alga was examined by inducing photosynthetic activity under a variety of water temperatures and photosynthetic active radiation (PAR) to clarify the optimal conditions needed for its efficient cultivation. Photosynthetic activity was evaluated by using both dissolved oxygen (DO) and pulse amplitude modulated-chlorophyll fluorometric (PAM) techniques, and focused on elucidating temperature and PAR levels that would potentially maximize productivity. The DO method revealed that the net photosynthetic rates at 24 °C quickly increased as PAR increased, and approached a P max of 27.8 mg O2 g ww ?1  min?1 (95 % Bayesian credible interval, BCI 23.8–32.1). The maximum gross photosynthetic rate occurred at 26.7 °C (BCI 24.4–28.3 °C). However, PAM experiments indicated that for the maximum quantum yield, the optimal temperature was 23.7 °C (BCI 22.7–24.6) and the maximum relative electron rates occurred when the water temperature was 31.0 °C (BCI 30.6–31.5). This study suggests that the broad tolerance of maximal photosynthetic activity to temperature (22.7–31.5 °C) is one of the main reasons why this alga can be successfully cultivated year-round.  相似文献   

8.
Suitable culture conditions for Rhodomonas sp. Hf-1 strain were examined for high productivity. Hf-1 strain was grown in an incubator for 7 days. The factorial experimental design investigated the following 19 variables: temperature (12, 16, 20, 24 and 28 °C), salinity (7, 14, 21, 28 and 35 psu), light intensity (20, 35, 50, 65 and 80 μmol m?2 s?1), light color (white, red, green and blue lights), and 3 factorial designs of photoperiod (24L:0D, 16L:8D and 12L:12D light:dark cycle). The cell density and specific growth rates (SGR) were analyzed. The best cell growth was observed under the following culture conditions: temperature of 24 °C, salinity of 21 psu, light intensity of 80 μmol m?2 s?1, and white light. In the photoperiod test, the highest cell density of 4.7?×?106 cells ml?1 was obtained at 24L:0D light:dark cycle, and the SGR was 0.57 μ day?1 at this time. We found that the Hf-1 strain was able to be cultured in extremely wide culture conditions. These results are expected to serve as a baseline study for culturing the Hf-1 strain in the laboratory and for its use in aquaculture.  相似文献   

9.
A 74‐day trial was undertaken to evaluate the effects of temperature (16 and 22 °C) and dietary protein/lipid ratio on the performance of juvenile Senegalese sole (mean body weight: 6.4 g). Four experimental diets were formulated to contain two protein levels (550 g kg?1 and 450 g kg?1) combined with two lipid levels (80 g kg?1 and 160 g kg?1). Growth was higher at 22 °C and within each temperature in fish fed diets 55P8L and 45P16L. Feed efficiency, N retention (% NI) and energy retention (% EI) were higher at 22 and at both temperatures in fish fed diet 55P8L. Temperature affected whole‐body composition, with dry matter, protein, lipid and energy being higher and ash lower in fish kept at higher temperature. Independently of temperature, whole‐body lipid, energy and ash were higher and protein was lower in fish fed the high‐lipid diets. Visceral and hepatosomatic indices were not affected by diet composition but were higher in fish kept at 16 °C. Liver glycogen and lipid contents and activities of glutamate dehydrogenase, alanine and aspartate aminotransferases were not affected by diet or water temperature. Malic enzyme (ME) and glucose 6‐phosphate dehydrogenase activities were higher in fish fed the low‐lipid diets. ME activity was higher at lower temperature. In conclusion, increasing water temperature from 16 to 22 °C improves growth and feed efficiency of Senegalese sole juveniles; regardless of water temperature, the diet with 550 g kg?1 protein and 80 g kg?1 lipid promoted the best growth and feed efficiency.  相似文献   

10.
The effect of short‐chain fructooligosaccharides (scFOS) incorporation on growth, feed utilization, body composition, plasmatic metabolites and selected liver enzyme activities of turbot juveniles reared at winter (15 °C) and summer (20 °C) temperatures was studied. Four comparable diets were formulated to contain circa 50 : 50 fish meal and plant ingredients as protein sources. Experimental diets included increasing levels of scFOS (0, 5, 10 and 20 g kg?1). Final weight was higher at 20 °C, but thermal growth unit, feed efficiency, nitrogen and energy retention were better at 15 °C. scFOS supplementation did not affect fish growth performance. Fish reared at 15 °C had higher liver glycogen, visceral and hepatosomatic indices. Liver lipids, plasma triglycerides, total lipids, cholesterol HDL and LDL were higher in turbot reared at 20 °C. Malic enzyme, fatty acid synthetase, alanine aminotransferase and glutamate dehydrogenase activities were higher in fish reared at 15 °C. Malic enzyme was lower in turbot fed with 20 g kg?1 scFOS compared to control diet; however, fatty acid synthetase presented an increasing trend as dietary scFOS increased up to 10 g kg?1. Glutamate dehydrogenase activity was higher in fish fed the control diet. Results seem to indicate no benefits of scFOS incorporation to diets on growth performance of turbot.  相似文献   

11.
We investigated the growth of juvenile common snook (Centropomus undecimalis) reared at 25°C and 28°C and salinities of 0.3, 15, and 32 g L?1. Total length, weight, RNA/DNA, and protein/DNA ratios were determined after 90 days of experiment. Higher growth was observed at 28ºC compared with 25°C, at the same salinity. At 28°C and 15 g L?1 salinity, the weight (25.14 g) of juveniles was twice that of the juveniles reared at the lower temperature. At different salinities, only higher temperature affected growth, with higher weight values obtained at 15 g L?1 in comparison with 0.3 and 32 g L?1. Length was similar at 0.3 and 15 g L?1. The RNA/DNA ratio was greater in juveniles reared at a salinity of 15 g L?1 when compared with 0.3 and 32 g L?1. This study shows that the combination of higher temperature and intermediate salinity promotes better growth of common snook juveniles.  相似文献   

12.
Histidine decarboxylase (HDC) from Staphylococcus epidermidis TYH1, a halotolerant histamine-producing bacterium isolated from Japanese fermented fish-miso, was purified to homogeneity for the first time. The enzyme was purified 182-fold from cell-free extracts by ammonium sulfate precipitation, anion exchange chromatography and gel filtration chromatography. The N-terminal amino acid sequences of two polypeptide chains of 27–30 and 7–9 kDa were highly homologous with those of α- and β-chains of other staphylococcal HDCs. The optimum pH and temperature for the enzyme were 6.0 and 60 °C, respectively. This enzyme did not decarboxylate lysine, arginine, tyrosine, tryptophan or ornithine. The enzyme activity decreased with the addition of NaCl. At pH 4.8, the V max and K m values were 45.5 μmol histamine min?1 mg?1 and 1.10 mmol/L, respectively. Moreover, this enzyme was resistant to heat treatment (80 °C for 15 min) and was stable upon freezing at ?30 °C for 7 days. The very similar physiological properties of this enzyme and the almost identical N-terminal amino acid sequence to that of the HDC from S. capitis indicated that this enzyme may be evolutionally highly conserved in the genus Staphylococcus. The biophysical properties of staphylococcal HDC were elucidated using native purified enzyme.  相似文献   

13.
The research aims to explore the impact of cold acclimation and storage temperature on crucian carp in a waterless preservation. It is conducted by studying the influence of cold acclimation on crucian carp in temperatures of 5 and 1 °C h?1, followed by having them preserved under waterless conditions at 4 and 0 °C for 24 h to analyze their aerobic and anaerobic capacities. The research findings revealed that the temperature drop at 1 °C h?1 is conducive to preserving the activity of lactate dehydrogenase. The activity of isocitrate dehydrogenase was maintained, and the brain succinate dehydrogenase remained unchanged. With regards to alanine transaminase, its activity, being sensitive to the changes of storage temperatures, was maintained when the temperature was decreased to 0 °C and malondialdehyde was accumulated at the same temperature. Stored in cold environment, blood catalase was accumulated; however, obvious changes were not found in the liver. It is likely that cold acclimation contributes to retaining aerobic and anaerobic metabolism under waterless preservation as well as decreasing the damage of blood oxidation.  相似文献   

14.
This study examined the effects of acclimation temperature (10, 15, 20, or 25 °C) and an acute exposure to various temperatures on the routine metabolism of juvenile (~11 g) shortnose sturgeon (Acipenser brevirostrum). For the acclimation experiment, the minimum, mean, and maximum routine metabolic rates were established for sturgeon at each temperature. Mean routine metabolic rates for 10, 15, 20, and 25 °C were 134, 277, 313, and 309 mg O2 kg?1 h?1, respectively, with significant differences occurring between 10 and 15, 10 and 20, and 10 and 25 °C. For the acute exposure, similar patterns and significant differences were observed. Temperature quotient (Q 10) values indicate that the greatest effect of temperature occurred between 10 and 15 °C for both the acclimation and acute temperature experiments. In addition, the effect of temperature on the metabolic rate of sturgeon was nearly negligible between 15 and 25 °C. These results suggest that juvenile shortnose sturgeon are sensitive to temperature changes at the lower end of the range, and less sensitive in the mid-to-upper temperature range.  相似文献   

15.
The effects of acclimation temperature (15, 20, 25 °C) on routine oxygen consumption and post-exercise maximal oxygen consumption rates (MO2) were measured in juvenile shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818). The routine MO2 of shortnose sturgeon increased significantly from 126.75 mg O2 h?1 kg?1 at 15 °C to 253.13 mg O2 h?1 kg?1 at 25 °C. The temperature coefficient (Q 10) values of the routine metabolic rates ranged between 1.61 and 2.46, with the largest Q 10 values occurring between 15 and 20 °C. The average post-exercise MO2 of all temperature groups increased to a peak value immediately following the exercise, with levels increasing about 2-fold among all temperature groups. The Q 10 values for post-exercise MO2 ranged from 1.21 to 2.12, with the highest difference occurring between 15 and 20 °C. Post-exercise MO2 values of shortnose sturgeon in different temperature groups all decreased exponentially and statistically returned to pre-exercise (resting) levels by 30 min at 15 and 20 °C and by 60 min at 25 °C. The aerobic metabolic scope (post-exercise maximal MO2-routine MO2) increased to a maximum value ~156 mg O2 h?1 kg?1 at intermediate experimental temperatures (i.e., 20 °C) and then decreased as the temperature increased to 25 °C. However, this trend was not significant. The results suggest that juvenile shortnose sturgeon show flexibility in their ability to adapt to various temperature environments and in their responses to exhaustive exercise.  相似文献   

16.
This paper presents a comparative study of the roles of Cl? and HCO3 ? in the functioning of the GABAAR-associated Cl?/HCO3 ?-ATPase of the plasma membranes of the olfactory sensory neurons (OSNs) and mature brain neurons (MBNs) of fish. The ATPase activity of OSNs and its dephosphorylation were increased twofold by Cl?(15–30 mmol l?1), whereas the enzyme from MBNs was not significantly affected by Cl?. By contrast, HCO3 ?(15–30 mmol l?1) significantly activated the MBN enzyme and its dephosphorylation, but had no effect on the OSN ATPase. The maximum ATPase activity and protein dephosphorylation was observed in the presence of both Cl?(15 mmol l?1)/HCO3 ?(27 mmol l?1) and these activities were inhibited in the presence of picrotoxin (100 μmol l?1), bumetanide (150 μmol l?1), and DIDS (1000 μmol l?1). SDS-PAGE revealed that ATPases purified from the neuronal membrane have a subunit with molecular mass of ~?56 kDa that binds [3H]muscimol and [3H]flunitrazepam. Direct phosphorylation of the enzymes in the presence of ATP-γ-32P and Mg2+, as well as Cl?/HCO3 ? sensitive dephosphorylation, is also associated with this 56 kDa peptide. Both preparations also showed one subunit with molecular mass 56 kDa that was immunoreactive with GABAAR β3 subunit. The use of a fluorescent dye for Cl? demonstrated that HCO3 ?(27 mmol l?1) causes a twofold increase in Cl? influx into proteoliposomes containing reconstituted ATPases from MBNs, but HCO3 ? had no effect on the reconstituted enzyme from OSNs. These data are the first to demonstrate a differential effect of Cl? and HCO3 ? in the regulation of the Cl?/HCO3 ?-ATPases functioning in neurons with different specializations.  相似文献   

17.
Nile tilapia Oreochromis niloticus (L.) held in timed‐pulse feeding chambers, were provided with algal‐rich water dominated by either green algae (Scenedesmus, Ankistrodesmus, Chlorella and Tetraedron) or cyanobacteria (Microcystis) to determine the effect of temperature and phytoplankton concentration on filtration rates. Green algae and cyanobacteria filtration rates were measured as suspended particulate organic carbon (POC) kg?1 wet fish weight h?1. Ivlev's filter‐feeding model described the relationships between filtration rates and suspended POC concentration of green algae and cyanobacteria. Filtration rates of both green algae and cyanobacteria increased linearly as water temperature increased from 17 °C to 32 °C and were significantly higher in the warm‐water regime (26–32 °C) than in the cool‐water regime (17–23 °C). Filtration rates at 95% saturation POC (FR95) in green algal and cyanobacterial waters were 700 mg C kg?1 h?1 and 851 mg C kg?1 h?1 in the warm‐water regime and 369 mg C kg?1 h?1 and 439 mg C kg?1 h?1 in the cool‐water regime respectively. The FR95 in warm water were achieved at lower POC concentrations than in cool water.  相似文献   

18.
ABSTRACT

The effect of photoperiod (24L:00D, 12L:12D, and 00L:24D) and temperature (22 ± 1°C and 28 ± 1°C) on performance of Clarias gariepinus larvae was tested. Larvae weighing 3.2 ± 0.24 mg were cultured in aquaria at a stocking density of 20 fish L?1 and fed twice a day on catfish starter diet (40% CP) at 10 % BW day?1. Highest mean weight gain (31.00 mg), SGR (7.56% day?1), and survival (83%) were achieved at photoperiod and temperature combination of 00L:24D and 28 ± 1°C. Percent survival of larvae differed significantly (p < .05) among treatments with optimal survival of (83%) in treatment combination of 28 ± 1°C and 00L:24D, while lowest survival (40%) in treatment combination of 22 ± 1°C and 24L:00D.  相似文献   

19.
ABSTRACT

The serine protease trypsin was isolated and purified from the digestive system of carp Labeo rohita rohu by ammonium sulphate precipitation, ion exchange, and affinity chromatography. The purified enzyme showed high activity between pH 7.0 and 9.0. The activity was maximum at 40°C. Incubation of the purified enzyme with CaCl2 (2 mM) stabilized the enzyme activity for 8 h. The enzyme showed stability at 30 and 40°C for 1 h, but above 40°C, enzyme activity was reduced. The kinetic constants were recorded as Km (0.104 mM), kcat (44.25 s?1), and catalytic efficiency (427.54 s?1 mM?1). Monovalent, bivalent, and trivalent ions (Li+, K+, Hg2+, Al3+, Mg2+, Cd2+, Co2+, Zn2+, and Al3+) influenced the enzyme activity. Phenylmethylsulfonylflouride, soybean trypsin inhibitor, and N-α-p-tosyl-L-lysine chloromethyl ketone completely inhibited the enzyme activity, while ethylenediaminetetraacetate caused partial inhibition. Molecular mass of the purified enzyme was 22.46 kDa. The pH and temperature stability of enzyme may be useful for its industrial applications.  相似文献   

20.
In order to define temperature regimes that could benefit successful production of spotted wolffish (Anarhichas minor) juveniles, experiments with offspring from two different females were carried out. The larvae were fed a new formulated feed or a commercial start‐feed for marine fish, both of which have given high survival rates. In the first experiment newly hatched larvae were fed at constant 6 °C, 8 °C, 10 °C and 12 °C as well as at ambient seawater temperature (2.9–4.5 °C) during 63 days. High survival, 90% to 96%, was registered at ambient and most constant temperature regimes, whereas in the 12 °C groups survival was reduced to 80%. Growth rate (SGR) was very low, 1.8% day?1, at the low ambient temperatures. Growth rate was positively correlated with temperature and varied between 3.1% day?1 to 4.7% day?1, from 6 °C to 12 °C. In the second experiment, set up to include potential detrimental temperatures and study beneficial effects of a more restricted, elevated first‐feeding temperature regime, the larvae were fed at constant 8 °C, 10 °C, 12 °C, 14 °C and 16 °C until 30 days post hatch, followed by constant 8 °C for the next 33 days. In this experiment, low survival, 25% and 2.0%, was registered at 63 days post hatch when larvae were reared initially at 14 °C and 16 °C respectively. The survival of the larvae at the other temperature regimes varied from 47% to 64%, highest survival rate (64%) was found at 8 °C. The lowest specific growth rate, 2.6% day?1, was noted in the 16 °C group. At constant 8 °C to 14 °C (regulated to 8 °C), the SGR varied from 4.45% day?1 to 5.13% day?1. The larvae grew faster in the experiment when initially comparable temperatures (8 °C, 10 °C and 12 °C) were regulated to constant 8 °C after 30 days compared with the first experiment where feeding was carried out at the same constant temperatures (8 °C, 10 °C and 12 °C) during the whole experimental period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号