首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Four diverse sorghum hybrids (yellow, cream, hetero-yellow and red) and corn grain were dry-rolled and fed in an 85% grain diet to Angus-Hereford steers (241 kg) equipped with ruminal and double L-type duodenal and ileal cannulas to compare the effects of grain source on site and extent of digestion. Yellow (yel) has a homozygous yellow endosperm, with a yellow seed coat, whereas cream and hetero-yellow (het-yel) have a heterozygous yellow endosperm with white and red seed coats, respectively. Red has a homozygous white endosperm with a red seed coat. Diets were fed at 2% of initial BW (DM basis) in a 5 x 5 Latin square. Total digestive tract starch digestibility (%) was greater (P less than .05) for corn (92.5) than for red (84.3), yel (84.3) and het-yel (82.9) but not greater (P greater than .10) than for cream (87.9). Ruminal starch digestibility (%) was greater (P less than .10) for corn (85.8) than for sorghum hybrids (69.1). Pre-cecal starch digestibility (%) was greater (P less than .05) for corn (90.6) than for het-yel (76.2), red (74.8) and yel (74.1). Ruminal escape (%) of grain N was greater (P less than .10) for red (79.9) than for het-yel (69.2), cream (66.5) and yel (66.1), with corn (53.6) being less (P less than .10) than sorghum hybrids. Pre-cecal and total tract non-NH3 N digestibilities (%) were not altered (P greater than .10) by grain source. Hybrid of sorghum altered site and extent of starch digestion and ruminal escape of grain N; hybrids had estimated gain:feed ratios that were 81 to 93% of those of rolled corn grain.  相似文献   

2.
To determine the effect of dry (D); reconstituted and ensiled (R); reconstituted and acid-treated (A); and urea-treated, high-moisture (U) sorghum grain on starch digestibility, four Angus x Hereford steers (means BW = 350 kg) with duodenal and ileal cannulas were used in a 4 x 4 Latin square design. Diets consisting of 69% ground sorghum grain were fed every 2 h in equal portions (8.2 kg/d). Diets averaged 46.5% starch and 12% CP, except for U, which averaged 14% CP due to urea treatment. Ytterbium attached to sorghum was used as a particulate marker. Duodenal, ileal, and fecal samples were taken 1 h postfeeding after a 14-d adaption to diets. Whole samples were analyzed. Preduodenal starch digestion (%) was 89, 83, 76, and 70, and starch digestion over the total tract was 99, 97, 95 and 91 for R, U, A, and D, respectively. Starch digestion proximal to each site (duodenum and ileum) was enhanced (P less than .05) by R and U compared with D. Within the small intestine, there was a linear relationship (P less than .003) between starch digestion and daily starch supply. However, digestibility of starch in the small intestine (mean = 45%) was not different among diets. Apparent digestibility of starch in the large intestine was not significantly different from digestibility in the small intestine. Urea-treated sorghum grain was equivalent to reconstituted, ensiled sorghum in digestion characteristics and was superior to dry sorghum.  相似文献   

3.
Hetero-yellow (HY), red (RED) and brown (BR, high tannin) sorghums were fed dry-rolled or reconstituted (RED and BR only) to evaluate the effect of variety and reconstitution on the site and extent of starch and protein digestion in steers fitted with ruminal, duodenal and ileal cannulae. Processed grains were incorporated into 88% sorghum (DM basis) diets fed at 2% of body weight in a 5 X 5 Latin square. Ruminal fermentation of organic matter, starch and protein tended to be lower for the dry-rolled RED than for either the dry-rolled HY or BR sorghum. Digestion of organic matter (OM) and starch in the small intestine was very low for dry-rolled sorghums. Total tract starch digestibility was lower for the dry-rolled RED sorghum (86.9%) than the BR (90.8%) and HY (91.4%). Nitrogen (N) digestibility ranged from 53.1% for the dry-rolled BR to 64.5% for the HY. Tannins were extensively (95.2%) degraded in the rumen, which may have enhanced fermentation of the BR sorghum. Reconstitution increased (P less than .05) total-tract starch digestion of the RED and tended to increase starch digestion of the BR as well. Total N flow to the duodenum tended to increase with reconstitution, with most of the increase being due to greater (P less than .05) microbial-N. Reconstitution also increased (P less than .05) total-tract N digestibility of the RED. The response to reconstitution for the RED sorghum appeared to be due primarily to an increase (P less than .10) in the extent of fermentation of organic matter and starch in the rumen. Reconstitution of BR, however, enhanced disappearance of starch from the small intestine. In both cases, most (97.3%) of the digestible starch of the reconstituted sorghums had disappeared before the terminal ileum. In contrast, 14.5% (621 g) of the digestible starch of dry-rolled RED disappeared in the large intestine. Sorghum grain variety and reconstitution appear to alter site and extent of starch and protein digestion, which may result in variable performance of cattle fed sorghum grain diets.  相似文献   

4.
Crossbred steers (n = 7; 400 kg BW), fitted with T-type cannulas in the duodenum and ileum, were used to examine the effects of processing method, dry-rolled (DR) vs. steam-flaked (SF) sorghum grain, and degree of processing (flake density; FD) of SF corn (SFC) and SF sorghum (SFS) grain on site and extent of DM, starch, and N digestibilities and to measure extent of microbial N flow to the duodenum. In Exp. 1, diets contained 77% DRS or 77% SFS with FD of 437, 360, and 283 g/L (SF34, SF28, and SF22). In Exp. 2, diets contained 77% SFC with FD of SF34 or SF22. For sorghum and corn diets, respective average daily intakes were as follows: DM, 6.7 and 8.1 kg; starch, 3.8 and 4.7 kg; N, 136 and 149 g. Steers fed SFS vs. DRS increased (P = .01) starch digestibilities (percentage of intake) in the rumen (82 vs. 67%) and total tract (98.9 vs. 96.5%) and decreased digestibilities in the small intestine (16 vs. 28%; P = .01) and large intestine (.5 vs 1.2%; P = .05). As a percentage of starch entering the segment, digestibility was increased (P = .01) within the small intestine (91 vs. 85%) but was not altered within the large intestine by steers fed SFS vs. DRS. Decreasing FD of SFS and of SFC, respectively, linearly increased starch digestibilities (percentage of intake) in the rumen (P = .03, .02) and total tract (P = .03, .09) and linearly diminished starch digestibilities in the small intestine (P = .04, .09). Starch digestibilities (percentage of entry) within the small or large intestine were not changed by FD. The percentage of dietary corn or sorghum starch digested in the large intestine was very small, less than 2% of intake. Microbial N flow to the duodenum was not altered by SFS compared to DRS, or by decreasing FD of SFS and SFC. Reducing FD of SFS, but not of SFC, tended to decrease (P = .07) microbial efficiency linearly and tended to increase (P = .06) total tract N digestibilities linearly. Steam flaking compared to dry rolling of sorghum grain and decreasing FD of SFC and SFS grain consistently increased starch digestibility in the rumen and total tract of growing steers. The greatest total digestibility of dietary starch occurred when the proportion digested in the rumen was maximized and the fraction digested in the small intestine was minimized. These changes in sites of digestion account, in part, for the improved N conservation and greater hepatic output of glucose by steers fed lower FD of SFS reported in our companion papers.  相似文献   

5.
Two finishing trials, one laboratory trial and one metabolism trial were conducted with the following objectives: 1) to determine the associative effects of feeding high-moisture corn (HMC) with either dry-rolled grain sorghum (DRGS) or dry-rolled corn (DRC) and 2) to evaluate HMC when harvested at different moisture levels, stored in different structures, or fed as whole or rolled HMC. In Trial 1, yearling steers (BW, 328 kg) were fed diets containing mixtures of HMC and DRGS. As level (0, 33, 100%, as percentage of grain DM) of DRGS increased, ADG (P less than .03) and gain/feed (P less than .001) decreased linearly; gain/feed tended to be affected quadratically (P = .14). In Trial 2, yearling steers (BW, 382 kg) fed HMC, stored whole in an upright, oxygen-limiting silo and rolled coarsely before feeding, gained faster (1.46 vs 1.36 kg/d) and more efficiently (.142 vs. .131 gain/feed) than steers fed whole HMC (P less than .01). In Trial 3, as length of storage of bunker HMC increased, in vitro rate of starch digestion and soluble N content increased (20.4 and 36.8%, respectively) and grain pH decreased (10.9%). In Trial 4, steers fed HMC or a mixture of 75% HMC with 25% DRGS had similar ruminal pH throughout a grain adaptation period, but total ruminal VFA were greater (P less than .005) for steers fed HMC alone. These data are interpreted to suggest that feeding a mixture of HMC, ground and stored in a bunker or silo bag, with DRGS will result in a 3.2% associative effect. However, no associative effects were measured when a mixture of HMC, stored whole and fed whole or rolled, and DRC were fed.  相似文献   

6.
Twelve steers (332 kg) were used in three simultaneous 4 x 3 incomplete Latin squares to evaluate effects of beet molasses (BEET), cane molasses (CANE), or concentrated separator by-product (CSB) as base ingredients in cooked molasses blocks on intake and digestion of prairie hay and ruminal characteristics. All steers had ad libitum access to prairie hay (5.9% CP and 69.4% NDF; DM basis). The four experimental treatments included a control (no supplement) and three cooked molasses blocks, based on BEET, CANE, or CSB, fed daily at .125% of BW (.42 kg/d as-fed, .13 kg/d CP). Forage OM, NDF, and N intakes; digestible OM, NDF, and N intakes; and total tract OM and N digestibilities (percentage of intake) were greater (P < .05) for steers fed cooked molasses blocks than for control steers. Total tract OM digestibility was greater (P < or = .06) for steers fed BEET blocks (54.0%) than for those fed CSB (52.1%) or CANE blocks (52.2%). Digestion of NDF was greatest (P < .05) for steers fed BEET blocks (51.9%) and tended to be greater (P < .07) for steers fed CANE (49.3%) or CSB blocks (49.3%) than for control steers (46.9%). Ruminal ammonia concentrations were greater (P < .05) for steers fed cooked molasses blocks (.89 mM) than for control steers (.21 mM); this was primarily due to increases to 4.6 mM at 2 h postfeeding for steers fed blocks. Concentrations of total VFA in ruminal fluid were greater (P < .05) for steers fed BEET (92.7 mM) and CSB (88.1 mM) blocks than for control steers (80.3 mM), whereas concentrations for steers fed CANE blocks were intermediate (85.4 mM). Steers supplemented with cooked molasses blocks had greater molar percentages of butyrate than did control steers, particularly shortly after feeding. In summary, supplementation with cooked molasses blocks increased forage intake and digestion. The three base ingredients elicited similar responses, although steers fed BEET had slightly greater OM and NDF digestibilities than those fed CANE or CSB.  相似文献   

7.
Feedlot performance was studied in a 262-d trial using 126 crossbred beef steers (182 kg initial BW) to determine whether source of dietary roughage influences performance and carcass characteristics by steers fed growing (112 d) and finishing (150 d) diets with various flake densities (FD) of steam-processed sorghum grain. A 3 x 3 arrangement of treatments (two pens of seven steers each) was used, with dietary roughages being chopped alfalfa hay or 50:50 mixtures (equal NDF basis) of cotton-seed hulls or chopped wheat straw with alfalfa hay; sorghum grain was steam-flaked to densities of 386, 322, and 257 g/L (SF30, SF25, and SF20, reflecting bushel weight in pounds). The effects of these same FD on nutrient digestibilities were determined in three experiments with 24 crossbred steers fed finishing diets containing each of the roughage sources. No interactions between FD and roughage type were detected in any performance or carcass measurements (P > .10). Intake of DM decreased linearly (P < .05) in response to decreased FD. Daily rate and efficiency of gain were not altered (P >.10) by FD. Decreasing FD decreased linearly (P < .05) dressing percentage and fat thickness, but not other carcass measurements. Dietary roughage did not affect (P >.10) daily gains or carcass measurements, but DM intake was lower and feed efficiencies were superior (P < .05) when alfalfa hay was the sole source of roughage. Cottonseed hulls and wheat straw were relatively less valuable in the low roughage finishing diets than in higher roughage growing diets. Digestibilities of starch increased linearly as FD was decreased (P = .02) when steers were fed diets containing wheat straw, but not for alfalfa hay or cottonseed hull diets. Digestibilities of DM did not vary with changes in FD; however, changes in CP, NDF, and ADF digestibilities due to FD seemed to differ among experiments. In conclusion, performance and carcass measurement responses by growing-finishing steers to differences in sorghum grain FD were not related to source of dietary roughage, but diets with alfalfa hay as the only source of roughage were most efficient. Decreasing FD of sorghum grain below 386 g/L (30 lb/bu) was not advantageous in improving performance or carcass merit by growing-finishing steers.  相似文献   

8.
Seven crossbred, abomasally fistulated yearling steers (400 kg) were used in two digestion trials (crossover design) to study the effect of processing sorghum grain on the site and extent of feed and microbial protein digestion. Steers were fed an 81.5% sorghum grain diet in which the grain was either dry-rolled (DR; four steers) or steam-processed, flaked (SPF; three steers). At the end of the first trial steers were switched to the opposite treatment. Dysprosium (21 to 23 micrograms/g of feed) was used as a digesta marker. Feed, abomasal contents and fecal grab samples were collected at 12-h intervals during a 6-d total fecal collection period. Organic matter (OM) intake for SPF and DR grain diets averaged 6,426 and 6,787 g/d, respectively. Compared with DR, SPF increased (P less than .05) the apparent total digestibility and ruminal digestibility of OM. Trichloroacetic acid precipitable protein consumed by the steers was lower (P less than .05) for SPF than the DR treatment. Processing method had no effect on ruminal digestion of crude protein (CP), bacterial protein (BP) synthesis, quantity of CP entering the small intestine or on total digestion of feed protein. There was a trend for increased total and post-ruminal digestion of CP with the SPF diet. Post-ruminal digestion of BP was increased (P less than .05) by SPF grain as compared with DR. Percentage of non-BP digested ruminally, post-ruminally or in the total tract was not significantly affected by processing method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Grain sorghum grown in 38-cm (high-density) or 76-cm rows (normal-density) was steam-flaked, harvested as high-moisture grain followed by rolling and ensiling, or dry-rolled. Chemical composition, enzymatic starch availability, CP insolubility, and IVDMD in a reduced-strength buffer were evaluated. High-density planting increased (P < .10) OM and starch concentration and decreased (P < .0001) CP concentration but did not affect (P > .10) P concentration, enzymatic starch availability, or CP insolubility. High-density planting resulted in lower (P < .10) in vitro ruminal culture pH at 6, 12, and 18 h of incubation when grain sorghum was processed by steam flaking, and lower (P < .10) IVDMD at 6, 12, and 18 h of digestion when grain sorghum was processed by dry rolling. Steam flaking decreased (P < .10) CP concentration and solubility and increased (P < .10) OM concentration. High-moisture ensiling decreased (P < .10) the insolubility of CP but did not otherwise seem to alter the chemical composition of grain sorghum relative to dry rolling. Starch was more available (P < .10), and DM was digested more rapidly and extensively (P < .10) in vitro, in steam-flaked sorghum followed by high-moisture sorghum. Based on these data, it seems that planting density primarily affected chemical composition of grain sorghum, whereas processing primarily affected CP insolubility and rate and extent of starch fermentation.  相似文献   

10.
Eight cannulated Holstein steers (average BW: 251 kg) were used in 2 simultaneous 4 x 4 Latin squares in a split-plot arrangement to test the effects of processing method [dry-rolled (DR) vs. steam-flaked (SF); main plot] and vitreousness (V, %; subplot) of yellow dent corn (V55, V61, V63, and V65) on site of digestion of diets containing 73.2% corn grain. No vitreousness x processing method interactions were detected for ruminal digestion, but ruminal starch digestion was 14.4% lower (P < 0.01) for DR than for SF corn. Interactions were detected between vitreousness and processing method for postruminal (P < 0.10) and total tract digestion (P < 0.05). With DR, vitreousness tended to decrease (linear effect, P < 0.10) postruminal OM and starch digestion. With SF, vitreousness did not affect (P > or = 0.15) postruminal digestion of OM and starch. Postruminal N digestion tended to decrease (linear effect, P = 0.12) as vitreousness increased. Postruminal digestion was greater for SF than for DR corn OM (25.7%, P < 0.05), starch (94.3%, P < 0.10), and N (10.7%, P < 0.01). Steam flaking increased total tract digestion of OM (11%, P < 0.05), starch (16%, P < 0.01), and N (8.4%, P < 0.05) but decreased total tract ADF digestion (26.7%, P < 0.01). With DR, total tract starch digestion was lower for V65 (cubic effect, P < 0.10) than for the other hybrids. With SF, total tract starch digestion was not affected (P > or = 0.15) by vitreousness. Fecal starch and total tract starch digestion were inversely related (starch digestion, % = 101 - 0.65 x fecal starch, %; r2 = 0.94, P < 0.01). Ruminal pH was greater for steers fed DR than for steers fed SF corn (6.03 vs. 5.62, P < 0.05). Steam flaking decreased (P < 0.01) the ruminal molar proportion of acetate (24%), acetate:propionate molar ratio (55%), estimated methane production (37.5%), and butyrate (11.3%, P < 0.05). There was a vitreousness x processing interaction (P < 0.01) for acetate:propionate. For DR, acetate:propionate tended to increase (linear effect; P < 0.10) with increasing vitreousness. With SF, acetate:propionate was greater (cubic effect, P < 0.01) for V65. Starch from more vitreous corn grain was less digested when corn grain was DR, but this adverse effect of vitreousness on digestion was negated when the corn grain was SF. Of the 19% advantage in energetic efficiency associated with flaked over rolled corn grain, about 3/4 can be attributed to increased OM digestibility, with the remaining 1/4 ascribed to reduced methane loss.  相似文献   

11.
Two experiments were conducted to evaluate wheat middlings as a supplement for cattle consuming dormant bluestem-range forage. Effects of supplement type and amount were evaluated in Exp. 1, which consisted of feeding supplements of soybean meal:grain sorghum (22:78) or two different amounts of wheat middlings. Sixteen ruminally fistulated steers were blocked by weight (BW = 374 +/- 8.3 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) soybean meal:grain sorghum (SBM/GS) formulated to contain the same CP concentration (21%) and fed to provide a similar energy level (3.5 Mcal of ME/d); 3) a supplement of 100% wheat middlings fed at a low level (LWM); and 4) 100% wheat middlings fed at twice the amount of LWM (7 Mcal of ME/d; HWM). The influence of different supplemental CP concentrations in a wheat middlings-based supplement was evaluated in Exp. 2. Sixteen ruminally fistulated steers were blocked by weight (BW = 422 +/- 8.1 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) 15% CP; 3) 20% CP; and 4) 25% CP supplements. These supplements consisted of 60% wheat middlings and various ratios of soybean meal and grain sorghum to achieve the desired CP concentration. In Exp. 1, SBM/GS and HWM supplements increased (P less than .10) and LWM tended to increase (P = .16) forage DMI compared with NS. All supplements in Exp. 1 increased (P less than .10) DM digestibility, ruminal DM fill, and ruminal indigestible ADF (IADF) passage rate compared with NS, although the greatest response in fill and passage was observed with HWM. In Exp. 2, forage DMI, DM digestibility, NDF digestibility, ruminal DM and IADF fill, IADF passage rate, and fluid dilution rate were increased (P less than .01) by supplementation. Forage DMI, ruminal IADF passage rate, and fluid dilution rate increased quadratically (P less than .10), and NDF digestibility, ruminal DM and IADF fill increased linearly (P less than .10) with increased supplemental CP concentration. These experiments indicate that wheat middlings performed similarly to a SBM/GS supplement of equal CP concentration, when both were fed to provide a similar amount of energy daily. Additionally, use of poor-quality range forage was enhanced when wheat middlings-based supplements were formulated to contain a CP concentration of 20% or greater.  相似文献   

12.
Feed intake, digestion and digesta characteristics of cattle fed bermudagrass (BG) or orchardgrass (OG) alone or with supplemental ground corn or barley were determined in two 6 x 6 latin squares with 2 x 3 factorial treatment arrangements. In Exp. 1, beef cows (Hereford, Angus and Hereford-Angus; 452 kg) cannulated in the rumen and duodenum were fed BG (7.9% CP, 79% NDF and 8.7% ADL) or OG (9.8% CP, 79% NDF and 7.2% ADL) hays at 1.2% of BW per day either alone or with added ground barley (.64% BW) or ground corn (.60% BW daily). The increase in microbial OM flow with corn was greater for OG than for BG; corn elevated microbial OM flow more than did barley with OG but less than with BG (forage type x grain source interaction; P less than .10). The increase in total tract OM digestion with grain was greater for BG than for OG (supplementation effect and forage type x supplementation interaction; P less than 05). In Exp. 2, Holstein steers (228 kg) were fed BG and OG hays ad libitum either alone or with addition of either 1.07% of BW per day of barley or 1.00% BW of corn. Total DM intake was 2.19, 3.03 and 2.82% BW for BG and 2.14, 2.80 and 2.52% BW for OG alone or with barley or corn supplements, respectively, being affected by forage type, grain supplementation, grain type and a forage type x grain supplementation interaction (P less than .05). Organic matter digested daily (g/d) was higher for OG than for BG, higher with than without grain and higher for barley than for corn (P less than .05).  相似文献   

13.
Associative effects of sorghum silage and sorghum grain diets   总被引:5,自引:0,他引:5  
A metabolism trial was conducted to quantitate associative effects between sorghum silage and sorghum grain, and to identify responsible factors. Diets were formulated by mixing ground sorghum grain (0, 15, 30, 45 and 60% of diet dry matter) with sorghum silage and were adjusted to 15.0% crude protein with soybean meal. Cannulated Beefmaster-cross steers (300 kg) were adapted to diets for 14 d followed by 5 d of fecal collection during which digestibility of components was determined. Intake of digestible dry matter and digestibilities of dry matter and neutral detergent fiber increased with increases in diet grain content (linear effect: P less than .01, P less than .01, P less than .05, respectively; quadratic effect: P less than .05, P less than .005, P less than .06, respectively). Digestibilities of starch, crude protein and hemicellulose were not significantly affected by grain level. Ruminal pH averaged 6.0 and was not significantly affected by grain level or time of sampling. Ruminal in situ digestion of neutral detergent fiber and acid detergent fiber at 48 h decreased (linear contrast, P less than .001) with increasing grain content. Rate of passage of liquid digesta was not affected by grain level in the diet. The rate of passage of particulate digesta decreased linearly (P less than .005, orthogonal contrast) with increasing levels of grain. Low levels of sorghum grain (15 and 30%) improved digestibility and intake of digestible dry matter of sorghum silage-based diets, whereas higher rates of grain supplementation (45 and 60%) did not result in further improvement.  相似文献   

14.
Two trials were conducted to evaluate the effects of corn in protein supplements fed to cattle receiving low-quality forages. In Trial 1, four ruminally cannulated steers (avg BW 500 kg) and four intact steers (avg BW 270 kg) were used in a replicated latin square to determine intake and digestibility fo a low-quality meadow hay (4.3% CP) when fed no supplement (NS), 1.12 g CP/kg BW (PS), 1.12 g CP/kg BW with corn supplying 1.98 g starch/kg BW (PLC) or 1.12 g CP/kg BW with corn supplying 3.96 g starch/kg BW (PHC). Hay DMI decreased (P = .001) and total diet DMI increased (P = .001) quadratically as supplemental corn increased. Diet DM digestibility increased (P = .004) and forage DM and hemicellulose digestibility decreased (P less than or equal to .018) quadratically as level of corn in the diet increased. In Trial 2, 135 cows received either ear corn (1.16 kg TDN and 127 g CP.hd(-1).d(-1), ear corn plus protein (1.16 kg TDN) and 290 g CP g CP.hd(-1).d(-1) or protein (.72 kg TDN and 290 g CP.hd(-1.d(-1) while grazing native Sandhills winter range for 112 d and while receiving hay (10% CP) during the following 60-d calving period. Cows that received ear corn lost (P less than .001) more weight than cows fed ear corn plus protein supplement, which lost more weight than cows fed only protein supplement (-54, -18 and 6 kg, respectively) during the 112-d winter grazing period. Cows that received ear corn and ear corn plus protein gained more (P less than .001) weight during calving and summer grazing (after supplement wa withdrawn) than protein-supplemented cows. Reproductive performance was not affected (P greater than .705) by treatments.  相似文献   

15.
Interactions among grain type (grain sorghum, corn or wheat), roughage level and monensin level were studied in four feedlot trials using pen-fed crossbred yearling cattle. In Trial 1, cattle fed high-moisture corn (HMC) were more efficient (.1537 vs .1406 for gain/feed; P less than .01) than cattle fed dry-rolled grain sorghum (DRGS). As level (0, 3, 6, 9%) of dietary roughage was increased, feed efficiency (gain/feed) decreased (.1566, .1461, .1479, .1382; linear, P less than .01). In Trial 2, a grain type (DRGS; dry-rolled corn, DRC; dry-rolled wheat, DRW) x roughage level interaction was observed for daily gain and feed efficiency. Feed efficiency (gain/feed) was decreased when roughage was added to diets containing DRC (.1608 vs .1750) or DRGS (.1674 vs .1465), but not to the diet containing DRW (.1664 vs .1607). In trial 3, a grain type x roughage level x monensin level interaction (P less than .08) was observed for feed efficiency. The addition of 27.5 mg of monensin per kilogram of the 0% roughage-DRC diet tended to improve feed efficiency (.1633 vs .1531), but the addition of monensin to the 7.5% roughage-DRC diet tended to depress feed efficiency (.1476 vs .1575). The addition of either roughage (.1493 vs .1420) or monensin (.1500 vs .1413) to the DRW diet improved feed efficiency. In Trial 4, cattle fed a combination of 75% DRW and 25% DRC were more efficient (.1618 vs .1591; P less than .06) than cattle fed DRC. As level of roughage (0, 3.75, 7.5%) increased, feed efficiency decreased linearly (.1645, .1599, .1569; P less than .0001). Monensin had no effect on feed efficiency. The value of feeding roughage and monensin was variable both across grain types and within similar grain types.  相似文献   

16.
One hundred forty British x Exotic crossbred, yearling steers (370 kg) were used in a 2 x 2 factorial experiment to evaluate main effects and the interaction of grain type (steam-flaked sorghum grain [SFSG] or steam-flaked corn [SFC]) and level of supplemental far (0 or 4% yellow grease [YG]) on feedlot performance, diet NE concentration, carcass traits, and chemical composition and sensory properties of longissimus muscle. Steer performance and estimated dietary NEm and NEg values were not different between SFSG and SFC. Supplemental YG improved (P less than or equal to .05) gain/feed and estimated NEm and NEg of both SFSG and SFC diets. Compared with steers fed SFSG, steers fed SFC had a more yellow (P less than .05) subcutaneous fat color. Supplemental YG had an additive effect (P less than .025) on yellow color of subcutaneous fat but improved (P less than .08) the lean color of longissimus muscle. Grain type or supplemental YG had no effect on sensory properties or mechanical shear of longissimus muscle. Longissimus muscle cholesterol content was elevated (P less than .05) by supplemental YG (.49 vs .52 mg/g of wet tissue for 0 vs 4% YG, respectively); however, the biological significance of this result is questionable. Similarly, effects of YG on increased (P less than .05) stearic acid concentration and a higher concentration (P less than .05) of linoleic acid measured in longissimus muscle of steers fed SFSG vs SFC were small in magnitude. These data indicate that under the conditions of this experiment, NE contents of SFSG and SFC were similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of several flake densities (FD) of steam-processed sorghum grain on performance, and site and extent of nutrient digestibilities by steers fed growing and finishing diets was determined. The effectiveness of common laboratory methods of starch availability (enzymatic hydrolysis or gelatinization) to provide target specifications for quality control of steam-flaked grains was also measured. In vitro starch availability of the processed grains increased (P < .05) linearly in response to decreased FD. Flake density was more highly correlated with enzymatic measures than with percentage gelatinization (R2 = .87 to .93 vs .36). Using 140 crossbred beef steers (181 kg initial weight), feedlot performance was determined for 112 d with a growing diet (50% grain), followed by 119 d with a finishing diet (78% grain). Each FD treatment (412, 360, 309, and 257 g/L or 32, 28, 24, and 20 lb/bu) was randomly assigned to five pens of seven steers each. Intake of DM by steers decreased linearly (P < .05) as FD decreased (7 and 13%, respectively, for growing and finishing diets). Decreasing FD reduced linearly (P < .05) ADG in the finishing phase and for the entire 231-d trial. With the growing diet only, feed efficiency and estimated diet NEm and NEg responses to decreasing FD were curvilinear (P < .05), with the 360 g/L (28 lb/bu) flake being most efficient. Electrical energy requirements for processing increased linearly (P < .05) as FD decreased. Using four multi-cannulated crossbred steers (275 kg), starch digestibility increased linearly (P < .05) in the rumen (82 to 91%) and total tract (98.2 to 99.2%) as FD decreased. Digestibilities within the small (74%) and large intestines (62%) were not altered by FD. Decreasing FD increased (P < .05) total CP digestibility, but did not consistently alter fiber digestibility or DE content of the diets. In conclusion, enzymatic laboratory methods to evaluate starch availability in processed grains can be used satisfactorily to establish FD criteria for quality control of the steam-flaking process. The greatest improvements in efficiency, estimated diet NE, and starch and protein digestibilities usually occurred when FD was decreased from 412 to 360 g/L (32 to 28 lb/bu). Based on these measures and processing costs, the optimal FD was 360 g/L (28 lb/bu).  相似文献   

18.
To compare the effects of sorghum grain hybrids on site and extent of digestion, two yellow (Y1 and Y2), two cream (C1 and C2), and two hetero-yellow (HY1 and HY2) sorghum grains were fed (1.85% BW, DM basis) in an 81% dry-rolled grain diet to steers (342 kg BW) equipped with ruminal, duodenal, and ileal cannulas within a 6 X 6 Latin square. Yellow (YEL) hybrids had a homozygous yellow endosperm and a yellow seed coat; cream (CREAM) and hetero-yellow (HET-YEL) hybrids had a heterozygous (partial) yellow endosperm, with white or red seed coats, respectively. Total tract starch digestibility (percentage) was greater (P less than .10) for CREAM and HET-YEL (82.3) than for YEL (78.9), primarily because of greater (P less than .05) starch digestion in the large intestine. Ruminal starch digestibility (percentage) was greater (P less than .10) for HET-YEL (73.2) than for CREAM (66.3) and was a larger proportion of total tract digestion for HET-YEL (90.6) than for CREAM (80.1). Ruminal starch digestion was correlated negatively (r = -.46; P less than .08) with ruminal escape of feed N. Prececal starch digestibility (average 76.2%) was more strongly correlated with ruminal digestibility (r = .69; P less than .01) than with digestion in the small intestine (r = .41; P = .12). Total tract nonammonia N (NAN) digestibility (percentage) was greater (P less than .10) for CREAM than for HET-YEL, greater for Y1 (P less than .10) than for Y2, greater for C2 (P less than .05) than for C1, and greater for HY2 (P less than .05) than for HY1. Flow of NAN to the duodenum was correlated negatively (r = -.55; P less than .05) with prececal starch digestion. Small intestinal NAN disappearance (g/d) was greater (P less than .01) for HY1 (76.0) than for HY2 (52.2). Microbial N flow (r = .88; P less than .01), but not feed N flow (r = .17; P = .52), to the duodenum was correlated with partial NAN digestibility in the small intestine. Hybrids differed in site and extent of digestion. Differences were generally larger for N than for starch.  相似文献   

19.
Five trials were conducted to evaluate the energy value of corn wet milling by-products in finishing diets. In trials 1 (45 finishing lambs, 34 kg) and 2 (70 digestion wethers, 32 kg), Rambouillet X Suffolk lambs fed corn gained faster (P less than .10), more efficiently (P less than .10) and had higher (P less than .01) digestibilities of neutral and acid detergent fiber (NDF, ADF) and starch than lambs fed dry corn gluten feed (DCGF). Lambs fed wet corn gluten feed (WCGF) consumed less feed (trial 1, P less than .05; trial 2, P less than .01), were more efficient (P less than .01) NDF and ADF digestibilities than lambs fed DCGF. Starch, NDF and ADF digestion were higher (P less than .01) for lambs fed WCGF vs wet corn bran (WCB). Lambs fed WCGF gained faster (P less than .10) and consumed more (trial 1, P = .12; trial 2, P less than .10) feed than lambs fed WCB. Dried corn bran increased (trial 1, P less than .05; trial 2, P less than .01) intake and increased (P less than .01) dry matter digestion (DMD) compared with WCB. In trial 3, rates of in vitro dry matter and NDF disappearance were similar among by-product feeds. In trial 4 (50 individually fed Shorthorn-Hereford-Angus steers, 316 kg), steers fed WCGF tended to consume more (P = .14) feed than steers fed DCGF. Corn gluten feed (CGF) replacing 0 to 46% corn decreased gain (linear, P less than .05) and DMD (linear, P less than .10), while starch digestion was highest for 23% CGF (quadratic, P less than .01). A level X CGF type interaction (P = .15) occurred for efficiency due to the lower gain of steers fed 46% DCGF. The efficiency of CGF utilization was 97% that of corn when WCGF replaced 23 or 46% corn or DCGF replaced 23% corn. Dry CGF replacing 46% corn had 87% the value of corn. In trial 5 (186 Hereford-Angus cattle, 310 kg), DCGF replacing 25 and 50% corn had 97 to 100% the efficiency of corn, while intake and gain were not affected. Dry CGF replacing 25 and 50% corn silage increased (linear, P less than .05) intake 11.3% and gain 13.8%. In ruminants, CGF is highly digestible and feed efficiency is similar to corn when WCGF is fed up to 50% of the grain component or when DCGF is fed up to 25% of the grain component.  相似文献   

20.
Three trials were conducted to evaluate the effects of degree of barley and corn processing on performance and digestion characteristics of steers fed growing diets. Trial 1 used 14 (328 +/- 43 kg initial BW) Holstein steers fitted with ruminal, duodenal, and ileal cannulas in a completely randomized design to evaluate intake, site of digestion, and ruminal fermentation. Treatments consisted of coarsely rolled barley (2,770 microm), moderately rolled barley (2,127 microm), and finely rolled barley (1,385 microm). Trial 2 used 141 crossbred beef steers (319 +/- 5.5 kg initial BW; 441 +/- 5.5 kg final BW) fed for 84 d in a 2 x 2 factorial arrangement to evaluate the effects of grain source (barley or corn) and extent of processing (coarse or fine) on steer performance. Trial 3 investigated four degrees of grain processing in barley-based growing diets and used 143 crossbred steers (277 +/- 19 kg initial BW; 396 +/- 19 kg final BW) fed for 93 d. Treatments were coarsely, moderately, and finely rolled barley and a mixture of coarsely and finely rolled barley to approximate moderately rolled barley. In Trial 1, total tract digestibilities of OM, CP, NDF, and ADF were not affected (P > or = 0.10) by barley processing; however, total tract starch digestibility increased linearly (P < 0.05), and fecal starch output decreased linearly (P < 0.05) with finer barley processing. In situ DM, CP, starch disappearance rate, starch soluble fraction, and extent of starch digestion increased linearly (P < 0.05) with finer processing. In Trial 2, final BW and ADG were not affected by degree of processing or type of grain (P > or = 0.13). Steers fed corn had greater DMI (P = 0.05) than those fed barley. In Trial 3, DMI decreased linearly with finer degree of processing (P = 0.003). Gain efficiency, apparent dietary NEm, and apparent dietary NEg increased (P < 0.001) with increased degree of processing. Finer processing of barley improved characteristics of starch digestion and feed efficiency, but finer processing of corn did not improve animal performance in medium-concentrate, growing diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号