首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is a major disease constraint to cabbage production by smallholder farmers in Africa. Variability exists within the pathogen, and yet differentiation of Xcc strains from other closely-related xanthomonads attacking crucifers is often difficult. The Biolog system, fatty acid methyl ester analysis using microbial identification system (MIS), rep-PCR and pathogenicity tests were used to identify and characterise Xcc strains from Tanzania. Great diversity was observed among Xcc strains in their Biolog and rep-PCR profiles. Specific rep-PCR genomic fingerprints were linked to some geographical areas in the country. Most of the Xcc strains were clustered in two groups based on their fatty acid profiles and symptom expression in cabbage although some deviant strains were found. Each of the methods allowed a degree of identification from species, pathovar to the strain level. Biolog and MIS identified all Xcc strains at least to the genus level. Additionally, Biolog identified 47% of Xcc strains to the pathovar and 43% to strain level, whereas MIS identified 43% of the strains to pathovar level. In the absence of a database, the utility of rep-PCR for routine diagnosis of strains was limited, although the procedure was good for delineation of Xcc to the strain level. These findings indicate the existence of Xcc strains in Tanzania that are distinct from those included in Biolog and MIS databases. The limitations noticed warrant continued improvement of databases and inclusion of pathogenicity testing, using universally susceptible cultivars, as an integral part of strain identification.  相似文献   

2.
Imported tomato seed lots of different cultivars were assayed for the presence of seed-borne bacterial pathogens. The liquid assay method was used for detection of the bacteria, and seed extracts were plated on different semi-selective media. Pseudomonas corrugata and Xanthomonas campestris pv. vesicatoria were detected in 14.7% and 12% of the seed samples tested respectively. These pathogens were identified by means of biochemical, physiological and pathogenicity tests as well as the Biolog GN Microplate System for X. campestris pv. vesicatoria. Both P. corrugata and X. campestris pv. vesicatoria were more easily identified on Tween B and CKTM media than on other media. This is the first report of the occurrence of these important pathogens on tomato seeds in Egypt.  相似文献   

3.
CABIQ is a specific computer‐assisted identification system for the reliable and rapid identification of the main regulated phytopathogenic bacteria. It is based on phenotypic and genomic properties of bacteria. About 500 reference strains have been used to initiate the database, including conventional phenotypic tests and the Biotype 100 (BioMérieux) galleries. The CABIQ system, with its database and reference matrices, is a guide on the tests to be done when identifying new isolates. The modules dealing with phenotypic and Biotype100 characteristics are already finalized. Results on repetitive PCR will soon be added to the system. This opens interesting perspectives for improving the reliability of computer‐assisted identification.  相似文献   

4.
利用BIOLOG鉴定系统快速鉴定菜豆萎蔫病菌的研究   总被引:3,自引:1,他引:3  
 本研究利用美国Biolog公司生产的MicroStationTM V3.5系统对我国一类危险性病害菜豆萎蔫病菌及其相关菌进行了快速鉴定研究。研究结果表明,来自不同国家和寄主的24株菜豆萎蔫病菌及其相关致病变种,23株准确鉴定至种水平,其中13株鉴定至致病变种水平,种水平的鉴定准确率为95.8%,另外1株至属水平。同时2株苜蓿萎蔫病菌和2株番茄溃疡病菌均鉴定至致病变种水平。经聚类分析研究,结果支持了对格兰氏阳性植病细菌在属、种水平的分类。本研究是首次使用该系统对格兰氏阳性植病细菌进行鉴定研究,试验证明Biolog鉴定系统用于快速鉴定菜豆萎蔫病菌是一个很有用的工具,且由于其标准化程度高、快速准确,符合我国口岸植物检疫的要求。  相似文献   

5.
一株几丁质酶产生菌的分离鉴定及其灭蝗增效作用   总被引:4,自引:0,他引:4  
从土壤中分离到一株几丁质酶活性较高的细菌,其48 h发酵液的酶活力达到110 U/mL。Biolog MicroStation全自动细菌鉴定系统鉴定确认,该菌为粘质沙雷氏菌(Serratia marcescens)的一个亚种。该菌与类产碱假单胞菌(Pseudomonas pseudoaligenes)等量混合制成一种新的混合型生物灭蝗剂在防治蝗虫上比其单一菌株有明显的增效作用,对蝗虫平均死亡率达93.33%。  相似文献   

6.
秦岭山区无机磷细菌筛选及其Biolog和分子生物学鉴定   总被引:2,自引:0,他引:2  
为获得具有高解磷活性,可用于微生物肥料研制和生产的无机磷细菌菌株资源,采用平板溶磷圈法,从秦岭山区植物根际土壤样品中筛选获得3株高效无机磷细菌,命名为NO.9、NO.15、NO.17,根据钼锑抗比色法,培养5 d后,检测菌株发酵液,确定3株细菌的可溶性磷含量分别为98.12、80.37 mg/L和104.91 mg/L,微生物量磷含量分别为62.85、53.61、36.59 mg/L。生理生化特征、Biolog和16S rDNA鉴定结果表明,3株细菌均属于革兰氏阴性非肠道菌,NO.9菌株为Inquilinus ginsengisoli,NO.15菌株为醋酸钙不动杆菌(Acinetobacter calcoaceticus),NO.17菌株为荧光假单胞菌(Pseudomonas fluorescens)。  相似文献   

7.
Huanglongbing (HLB) is a systemic disease of citrus caused by phloem‐limited bacteria ‘Candidatus Liberibacter’ spp. with ‘Ca. Liberibacter asiaticus’ (Las) the most widespread. Phloem‐limited bacteria such as liberibacters and phytoplasmas are emerging as major pathogens of woody and herbaceous plants. Little is known about their systemic movement within a plant and the disease process in these tissues. Las movement after initial infection was monitored in leaves and roots of greenhouse trees. Root density, storage starch content, and vascular system anatomy in relation to Las presence in field and greenhouse trees, both with and without symptoms, showed the importance of root infection in disease development. Las preferentially colonized roots before leaves, where it multiplied and quickly invaded leaves when new foliar flush became a sink tissue for phloem flow. This led to the discovery that roots were damaged by root infection prior to development of visible foliar symptoms and was not associated with carbohydrate starvation caused by phloem‐plugging as previously hypothesized. The role of root infection in systemic insect‐vectored bacterial pathogens has been underestimated. These findings demonstrate the significance of early root infection to tree health and suggest a model for phloem‐limited bacterial movement from the initial insect feeding site to the roots where it replicates, damages the host root system, and then spreads to the rest of the canopy during subsequent leaf flushes. This model provides a framework for testing movement of phloem‐limited bacteria to gain greater understanding of how these pathogens cause disease and spread.  相似文献   

8.
Clavibacter michiganensis subsp. sepedonicus causes potato ring rot disease. The identification process for this bacterium is complex and long. This work demonstrates that the stable low-molecular-weight (LMW) RNA profiles allow their rapid identification. Staircase electrophoresis in polyacrylamide gels was used to analyze the LMW RNA profiles of 54 strains of C. michiganensis subsp. sepedonicus from different geographic origins. The profiles of several strains of other subspecies of C. michiganensis and other pathogens of potatoes were also analyzed. All the strains of C. michiganensis subsp. sepedonicus had the same LMW RNA profile. They had a band in class 2 of tRNA that was absent in the other subspecies of the species C. michiganensis. Also, the LMW RNA of C. michiganensis subsp. sepedonicus was different with respect to the LMW RNA profiles of other pathogens of potato. The results indicate the possible utilization of LMW RNA profiles in identification of the bacteria causing potato ring rot disease.  相似文献   

9.
Bacterial speck caused byPseudomonas syringae pv.tomato is an emerging disease of tomato in Tanzania. Following reports of outbreaks of the disease in many locations in Tanzania, 56 isolates ofP. syringae pv.tomato were collected from four tomato- producing areas and characterized using pathogenicity assays on tomato, carbon source utilization by the Biolog Microplate system, polymerase chain reaction and restriction fragment length polymorphism (RFLP) analysis. All theP. syringae pv.tomato isolates produced bacterial speck symptoms on susceptible tomato (cv. ‘Tanya’) seedlings. Metabolic fingerprinting profiles revealed diversity among the isolates, forming several clusters. Some geographic differentiation was observed in principal component analysis, with isolates from Arusha region being more diverse than those from Iringa and Morogoro regions. The Biolog system was efficient in the identification of the isolates to the species level, as 53 of the 56 (94.6%) isolates ofP. syringae pv.tomato were identified asPseudomonas syringae. However, only 23 isolates out of the 56 (41.1%) were identified asPseudomonas syringae pv.tomato. The results of this work indicate the existence ofP. syringae pv.tomato isolates in Tanzania that differ significantly from those used to create the Biolog database. RFLP analysis showed that the isolates were highly conserved in theirhrpZ gene. The low level of genomic diversity within the pathogen in Tanzania shows that there is a possibility to use resistant tomato varieties as part of an effective integrated bacterial speck management plan. http://www.phytoparasitica.org posting August 8, 2008.  相似文献   

10.
Ralstonia solanacearum “species complex” (RSSC) represents soil-borne plant pathogenic bacteria, consisting of diverse and widespread strains that cause bacterial wilt on a wide range of host plants. A recent polyphasic taxonomic study has divided the RSSC into three bacterial species; Ralstonia pseudosolanacearum (phylotypes I and III), Ralstonia solanacearum (phylotype II) and Ralstonia syzygii (phylotype IV). Currently, standard identification of RSSC in plant health laboratories mainly relies on performance of two tests that are based on a different principle. However, these tests are inadequate to precisely discriminate among the three bacterial species in the RSSC. The accurate identification of each of the three bacterial species in the RSSC requires additional molecular tests, including a phylotype determination. These methodologies are labor-intensive, time consuming and rather impractical for routine identification purposes in a plant health laboratory. We explored the potential for an accurate identification of R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II) in RSSC, upon implementation of the MALDI-TOF MS tool, and after the creation and validation of an in-house database supplementing the commercial database and covering the entire known genetic diversity in RSSC. MALDI-TOF MS is an emerging approach for identification of bacterial plant pathogens and has been shown to be robust and reproducible. Additionally, when compared to the conventional microbial identification methods it is shown to be less laborious and less expensive. Validation data demonstrated that our in-house database (Mass Spectra Profiles, MSPs) was very specific resulting in the rapid and accurate identification of Ralstonia solanacearum (phylotype II), and Ralstonia pseudosolanacearum (phylotypes I and III). Additionally, no false positive results were obtained with our in-house database for other related Ralstonia sp., such as the R. picketii isolate PD 3286, or for the Pseudomonas syringae and Pseudomonas spp. isolates.  相似文献   

11.
Microarrays offer virtually unlimited diagnostics capability, and have already been developed into diagnostic chips for many different plant pests. The full capacity of such chips, however, has lagged far behind their full potential. The main reason for this is that current chip design relies on a priori genetic information for target organisms and on a consensus on the genetic sequences to be used in particular organism groups. Such information is often unavailable and laborious to obtain. Thus, broad-application diagnostic microarrays have been limited to narrow organism groups focused on Genera of pests/pathogens or those affecting individual host crops, without applicability for simultaneous detection of diverse pests affecting many crops. This paper describes the development of a diagnostic microarray platform that has universal application based on genomic fingerprinting of any organism without a need for a priori sequence information. Taxon-specific hybridization patterns are obtained by unique hybridisation of genomic DNA to 100s–1000s of short random oligonucleotide probes. Taxon identification is then achieved by comparison of hybridisation patterns from an unknown sample against a reference-pattern database. Using bacteria as a model pathogen group, these methods deliver highly reproducible hybridisation patterns with high resolution power and enable discrimination at the species and subspecies level.  相似文献   

12.
13.
14.
Asian prunus viruses (APV 1, APV 2 and APV 3), Plum bark necrosis stem pitting associated virus (PBNSPaV) and Peach latent mosaic viroid (PLMVd) are pathogens that infect Prunus species. A single-tube multiplex, TaqMan real-time RT-PCR assay was developed for the simultaneous detection and identification of these pathogens. The protocol includes amplification and detection of a fluorogenic cytochrome oxidase gene (COX) as an internal control. The results of the multiplex TaqMan RT-PCR assay correlated with those from conventional RT-PCR, with a 10-fold increase in sensitivity in the multiplex real-time format. The efficiency and accuracy of the assay was evaluated by testing stone fruit trees from positive control collections and several orchard locations. Several mixed infections of target pathogens were detected in peach orchard samples. This assay is simple, rapid and cost-effective and can be used by quarantine and certification programs where numerous stone fruit trees need to be tested for these pathogens.  相似文献   

15.
为有效防治烟草棒孢霉叶斑病,采用Biolog全自动微生物鉴定系统鉴定了本实验室前期工作中筛选得到的生防菌株YC2140,进一步对其进行了16S rRNA和gyr B序列分子鉴定,并选取生产上常用的5种杀菌剂和YC2140菌株进行了盆栽和田间防效试验。结果显示,经Biolog鉴定和分子鉴定,YC2140菌株为荧光假单胞菌Pseudomonas fluorescens。盆栽试验结果表明,在药剂推荐施用剂量(449.78 mL/hm2或449.78 g/hm2)下,对烟草棒孢霉叶斑病的防治效果由高到低依次为500 g/L氟啶胺悬浮剂(防治效果78.77%)、450 g/L咪鲜胺水乳剂(77.85%)、430 g/L戊唑醇悬浮剂(67.12%)、1×108 cfu/mL YC2140发酵液(61.64%)和50%啶酰菌胺水分散粒剂(46.12%)。相同施药剂量下的田间试验结果表明,防治效果由高到低依次为450 g/L咪鲜胺水乳剂(43.33%)、500 g/L氟啶胺悬浮剂(40.97%)、430 g/L戊唑醇悬浮剂(27.94%...  相似文献   

16.
A healthy soil is often defined as a stable soil system with high levels of biological diversity and activity, internal nutrient cycling, and resilience to disturbance. This implies that microbial fluctuations after a disturbance would dampen more quickly in a healthy than in a chronically damaged and biologically impoverished soil. Soil could be disturbed by various processes, for example addition of a nutrient source, tillage, or drying-rewetting. As a result of any disturbance, the numbers of heterotrophic bacteria and of individual species start to oscillate, both in time and space. The oscillations appear as moving waves along the path of a moving nutrient source such as a root tip. The phase and period for different trophic groups and species of bacteria may be shifted indicating that succession occurs. DGGE, Biolog and FAME analysis of subsequent populations in oscillation have confirmed that there is a cyclic succession in microbial communities. Microbial diversity oscillates in opposite direction from oscillations in microbial populations. In a healthy soil, the amplitudes of these oscillations will be small, but the background levels of microbial diversity and activity are high, so that soil-borne diseases will face more competitors and antagonists. However, soil-borne pathogens and antagonists alike will fluctuate in time and space as a result of growing plant roots and other disturbances, and the periods and phases of the oscillations may vary. As a consequence, biological control by members of a single trophic group or species may never be complete, as pathogens will encounter varying populations of the biocontrol agent on the root surface. A mixture of different trophic groups may provide more complete biological control because peaks of different trophic groups occur at subsequent locations along a root. Alternatively, regular addition of soil organic matter may increase background levels of microbial activity, increase nutrient cycling, lower the concentrations of easily available nutrient sources, increase microbial diversity, and enhance natural disease suppression.  相似文献   

17.
Several plant species are infected by different species of the genus Agrobacterium. One problem is that no rapid and sensitive method is available for the identification of isolates of Agrobacterium at the species level. The usefulness of LMW RNA profiles for the identification of Agrobacterium species was examined. The profiles of strains belonging to the proposed species were identical to those of the type strain of each species except in two cases. In A. radiobacter, two groups of strains with different tRNA profiles were detected and in A. rhizogenes two groups with different 5S rRNA zones were found. Nevertheless, with the LMW RNA profiles it was possible to assign any isolate to one of each group within these species. The results obtained showed that all isolates studied here can be assigned to a species of Agrobacterium and hence that LMW RNA profiles offer a suitable method for the identification of tumor-inducing bacteria.  相似文献   

18.
The Biolog phenotype microarrays (PM) system offers a simple and cheap tool to rapidly provide a high throughput of information about the phenotypes of fungal isolates in a short time. In order to improve the use of the PM system in fungal ecology studies, the present work proposes a new statistical protocol based on two approaches, that is, a functional principal components analysis to describe similarity patterns of growth curves, and a Bayesian generalized additive model (GAM) to allow inferences on specific growth features, in order to analyse nutrient fungal utilization in a model system including four causal agents of Fusarium head blight, the natural competitor Fusarium oxysporum, and the beneficial isolate Trichoderma gamsii T6085. Analysis of data collected by the Biolog PM in our biological system showed a different nutritional competitive potential of the four pathogens, as well as an intermediate behaviour of the natural competitor and of our biocontrol agent. This protocol, applicable to different fungal phenotypical studies at both isolate and community level, allows a full exploitation of data obtained by the PM system and provides important information about the nutritional pattern of a single isolate compared to those of other fungi, a key factor to be exploited in biocontrol strategies.  相似文献   

19.
Reliable detection and identification of plant pathogens are essential for disease control strategies. Diagnostic methods commonly used to detect plant pathogens have limitations such as requirement of prior knowledge of the genome sequence, low sensitivity and a restricted ability to detect several pathogens simultaneously. The development of advanced DNA sequencing technologies has enabled determination of total nucleic acid content in biological samples. The possibility of using the single-molecule sequencing platform of Oxford Nanopore as a general method for diagnosis of plant diseases was examined. It was tested by sequencing DNA or RNA isolated from tissues with symptoms from plants of several families inoculated with known pathogens (e.g. bacteria, viruses, fungi, phytoplasma). Additionally, samples of groups of 200 seeds containing one infected seed of each of two or three pathogens, as well as samples with symptoms but unidentified pathogens were tested. Sequencing results were analysed with Nanopore data analysis tools. In all the inoculated plants, pathogens were identified in real time within 1–2 h of running the Nanopore sequencer and were classified to the species or genus level. DNA sequencing or direct RNA sequencing of samples with unidentified disease agents were validated by conventional diagnostic procedures (e.g. PCR, ELISA, Koch test), which supported the results obtained by Nanopore sequencing. The advantages of this technology include: long read lengths, fast run times, portability, low cost and the possibility of use in every laboratory. This study indicates that adoption of the Nanopore platform will be greatly advantageous for routine laboratory diagnosis.  相似文献   

20.
ABSTRACT During the 1995 wet season, harvested rice seed was collected from farmers' fields at different locations in Iloilo, Philippines. Bacterial isolations from crushed seed yielded 428 isolates. The isolates were characterized by BOX-polymerase chain reaction fingerprinting of total genomic DNA and represented 151 fingerprint types (FPT). Most FPTs were found on a single occasion, although matching fingerprints for isolates from different samples also were found. Identifications were made by cellular fatty acid methyl ester analysis and additional use of Biolog GN/GP MicroPlates and API 20E/50CHE systems. The predominant bacteria were Enterobacteriaceae (25%), Bacillus spp. (22%), and Pseu-domonas spp. (14%). Other bacteria regularly present were identified as Xanthomonas spp., Cellulomonas flavigena, and Clavibacter michiganense. Of the total number of isolated bacteria, 4% exhibited in vitro antifungal activity against Rhizoctonia solani or Pyricularia grisea. Two percent of isolates were pathogens identified as Burkholderia glumae and Burkholderia gladioli. Five percent of isolates induced sheath necrosis on only 50 to 90% of inoculated plants and were related to Bacillus pumilus, Paenibacillus spp., Pseudomonas spp., and Pantoea spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号