首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium moisture content (EMC) of six wood species under desorption conditions of 20°C and 100% 0% relative humidity (RH), and the rate of adsorption at various depths of three wood species blocks under 98% RH at 22.5°C were studied. There were no significant differences among the EMC values for these six wood species over the RH range 40% 0%, but there were highly significant differences over the RH range 100% 50% at constant 20°C. The amount of moisture absorbed in the wood decreased curvilinearly with the increase of depth in the specimens as sorption time increased, and their relation could be represented by a semilogarithmic equation. Time-dependent adsorption behavior at various depths of the wood specimens could be represented by an exponential equation as a function of the product of the difference between moisture contents at equilibrium and initial conditions and the term (1 – e–t/). The value of of various wood species was found to increase linearly with the increased depth of the specimen and showed the following trend: hard maple (Acer sp.) > China fir (Cunninghamia lanceolata) > Japanese cedar (Cryptomeria japonica D. Don).Part of this report was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997.  相似文献   

2.
Moisture sorption tests and compression tangential tests at 25°C were carried out on specimens of mahogany (Swietenia macrophylla King) wood from Peru. The tests were performed over seven adsorption and five desorption moisture conditions, and differences in strength between adsorption and desorption curves at a given equilibrium moisture content were evaluated. The results showed that second-order effects in mahogany wood were not discernible in either the tangential compliance coefficient or for the stress at the proportional limit in tangential compression.  相似文献   

3.
Physical and mechanical properties of wood after moisture conditioning   总被引:1,自引:0,他引:1  
Some properties of wood (hinoki:Chamaecyparis obtusa) moisture-conditioned by an adsorption process from a dry state and by two desorption processes (from a water-saturated state and from a state with a moisture content slightly below the fiber saturation point) were investigated. The moisture contents of wood conditioned by the adsorption process and by the desorption process continued to approach to one another for the moisture-conditioning period of over 50 weeks. Accordingly, sorption hysteresis should be regarded as a transitional phenomenon that occurs during the process of approaching the true equilibrium, which requires a long time. The wood conditioned by the desorption process beginning from a water-saturated state showed slightly smaller dimensions than those conditioned by the adsorption process with the same moisture content; however, the wood conditioned by the desorption process from a moisture content below the fiber saturation point showed slightly larger dimensions than those conditioned by the adsorption process. The wood conditioned by the adsorption process from a dry state showed a higher modulus of elasticity and modulus of rupture than did the wood conditioned from a water-saturated state with the same moisture content. The mechanical properties of the wood also varied based on the states at which the desorption process was started. This is a notable characteristic of the relation between the drying condition and the mechanical properties of wood.  相似文献   

4.
Abstract

The moisture sorption and swelling of spruce specimens impregnated with linseed oil and unimpregnated controls were studied in two sorption experiments: from 0 to 55% relative humidity (RH) and from 55% RH to water saturation. Sorption isotherms were also determined using a sorption balance. The impregnated specimens had lower rates of both moisture sorption and swelling than the unimpregnated controls; however, there was no significant difference in final moisture contents. In addition, the linseed oil impregnation did not improve the dimensional stability of the wood; in most cases the specimens impregnated with linseed oil swelled more than the unimpregnated controls. For the impregnated specimens, reductions in swelling rates were in most cases seen without corresponding reductions in final swelling. The moisture sorption rate was reduced for the impregnated specimens but there were generally no reductions in equilibrium moisture content.  相似文献   

5.
Abstract

Two Malaysian hardwoods, acacia (Acacia mangium) and sesendok (Endospermum malaccense), that had been subjected to oleo-thermal modification were studied to determine their sorption isotherm behaviour using a dynamic vapour sorption apparatus. All the specimens were thermally modified using palm oil at three different temperatures (180, 200 and 220°C) and three different times (1, 2 and 3 h). The results showed that there was a reduction in equilibrium moisture content at each target relative humidity due to the heat treatment, but that the two wood species showed different behaviour in this respect. The adsorption isotherms were analysed using the Hailwood and Horrobin model, with excellent fits to the experimental data. The monolayer water and polylayer water were both reduced at a range of relative humidity values of the treated samples, although behaviour between the two wood species differed. Heat treatment resulted in an increase in hysteresis ratio, which was probably due to the increase in matrix stiffness of the cell walls.  相似文献   

6.
Changes in the modulus of elasticity (MOE), modulus of rupture (MOR), and stress relaxation in the radial direction of wood (hinoki:Chamaecyparis obtusa) moisture-conditioned by the adsorption process from a dry state and by the desorption process from a moisture content slightly below the fiber saturation point were investigated. The MOE and MOR of wood conditioned by the adsorption process showed significant increases during the later stages of conditioning when the moisture content scarcely changed. However, with the desorption process they did not increase as much during later stages of conditioning, though they increased during early stages of conditioning when the moisture content greatly decreased. The stress relaxation of wood decreased with an increase in the conditioning period with both the adsorption and desorption processes. These results suggest that wood in an unstable state, caused by the existing state of moisture differed from that in a true equilibrium state shows lower elasticity and strength and higher fluidity than wood in a true equilibrium state. Furthermore, the present study demonstrates that the unstable states of wood induced during the course of drying, desorption, and possibly adsorption of moisture are slowly modified as wood approaches a true equilibrium state.  相似文献   

7.
ABSTRACT

Acetylated wood is now commercially available and designed to be used in certain outdoor applications as an alternative to preservative-treated wood. Fastener corrosion can be a concern in preservative treated wood when the wood remains wet for long periods. However, little data on the corrosiveness of acetylated wood exists beyond the product literature. Here we examine the corrosiveness of commercially obtained acetylated wood and compare it against unmodified (untreated) southern pine (Pinus spp.). Corrosion rates of plain carbon steel, hot dip galvanized steel, and stainless steel were calculated gravimetrically after a one year exposed in the wood. Four different moisture conditions were examined: 90% relative humidity (RH), 95% RH, 100% RH, and a fully water saturated condition. When compared to literature data on the corrosion of fasteners in preservative treated wood at 100% RH, the acetylated wood had much lower steel corrosion rates than all preservatives examined; the measured corrosion rates for galvanized steel were lower than all preservatives except chromated copper arsenate. These measured corrosion rates across a range of moisture conditions can be used to inform the selection of appropriate corrosion resistant fasteners when building with acetylated wood.  相似文献   

8.
Summary Two types of machines, a conventional planer, and a fixed-knife pressure-bar planer were used to prepare matched specimens of sugar maple wood. After adsorption and desorption, both experiments at 21 °C, the EMC, swelling in all principal directions as well as compliance coefficient in radial compression were measured. Two specimen sizes were used for these expe‐riments. For a given equilibrium moisture content, tangential and radial dimensions were greater after desorption than after adsorption, as previously described. When equilibrium was reached by gaining moisture, the wood was stiffer in radial compression compared to when the equilibrium was reached after losing moisture. The magnitude of this phenomenon, second-order effects of moisture sorption, was slightly affected by the type of planing. These effects on swelling were greater for large specimens prepared by conventional planing compared to fixed-knife pressure-bar planing. Small specimens showed similar magnitudes of this phenomenon with both planing methods. No differences between planing methods were found for the radial compliance coefficient measured on either specimen size. Therefore, the second-order effects of moisture sorption appeared to be a bulk phenomenon and not restricted to the superficial layers of wood. Received 9 December 1997  相似文献   

9.
The influence of the porous structure on moisture desorption of two temperate and five tropical hardwoods was studied. Two experimental techniques were used to perform moisture desorption tests from full saturation at 25°C. The first one was the saturated salt solutions [between 33% and 90% relative humidity (RH)] and the second one was the pressure membrane method (above 96% RH). More emphasis was given to results obtained at high RH, given that sorption in that case is mainly governed by the capillary forces. The porous structure of these hardwoods was characterized by mercury intrusion porosimetry (MIP) and by quantitative anatomical analysis. The results showed that desorption of liquid water was very different among the hardwood species. The MIP technique appeared as an important tool to evaluate the fluid paths within wood, which permitted the prediction of water behavior in wood during drainage from full saturation at high RH. Quantitative anatomical results were very useful for explaining the first steps of drainage and mercury penetration in wood.  相似文献   

10.
ABSTRACT

The effects of a fire-retardant treatment (FRT) and wood grain on three-dimensional changes of aircraft sandwich panels were evaluated. Unvarnished and varnished panels having the outer decorative layer made with bubinga (Guibourtia spp.) were studied. Half of the samples from each type of panel received an FRT (phosphate-based) on all three layers of the decorative plywood. The other half had the two inner layers treated and the outer layer untreated. Three different figures formed by the rotary cutting and grain orientation were identified and separately studied on veneer surfaces. Samples pre-conditioned to 20°C and 40% relative humidity (RH) underwent an adsorption (25°C, 90% RH) and then a desorption (25°C, 40% RH) treatments. Changes in moisture content (MC), swelling, shrinkage, roughness, and waviness were measured after each moisture exposure condition. The results showed that the FRT increased significantly MC, swelling, and shrinkage of unvarnished and varnished panels. This treatment as well as the type of wood figure affected roughness and waviness variations of unvarnished panels. However, the effects of these two factors were not noticeable once panels were varnished.  相似文献   

11.
Abstract

The influence of the porous structure on moisture desorption of two temperate and five tropical hardwoods was studied. Two experimental techniques were used to perform moisture desorption tests from full saturation at 25°C. The first one was the saturated salt solutions [between 33% and 90% relative humidity (RH)] and the second one was the pressure membrane method (above 96% RH). More emphasis was given to results obtained at high RH, given that sorption in that case is mainly governed by the capillary forces. The porous structure of these hardwoods was characterized by mercury intrusion porosimetry (MIP) and by quantitative anatomical analysis. The results showed that desorption of liquid water was very different among the hardwood species. The MIP technique appeared as an important tool to evaluate the fluid paths within wood, which permitted the prediction of water behavior in wood during drainage from full saturation at high RH. Quantitative anatomical results were very useful for explaining the first steps of drainage and mercury penetration in wood.  相似文献   

12.
Hygroexpansion of wood during moisture adsorption and desorption processes   总被引:1,自引:0,他引:1  
In order to investigate the shrinking and swelling behavior of wood at a non-equilibrium state, the moisture sorptlon processes of wood under constant and changing conditions were studied. For the static sorption experiment, Chinese fir (Cunninghamia lanceolata) specimens were subjected to the adsorption processes at 25℃, 10 different relative humidity environments and the moisture contents were measured at distinct time intervals of adsorption processes. For the dynamic sorption experiment, the specimens were exposed to periodically and linearly varying relative humidity between 45% and 75% at 25℃. Moisture content as well as radial and tangential dimensional changes in response to the changing relative humidity were measured. The main results from the experiments indicated that: the moisture sorption isotherms of Chinese fir at equilibrium state and different stages of adsorption processes could be characterized by S-shape curves. From the non-equilibrium state to the equilibrium state, the sigmoid moisture sorption isotherms changed from smooth, gradually increasing values to a steep rise at 100% humidity. Furthermore, under dynamic conditions with a constant temperature and a linearly and periodically varying relative humidity, the moisture content as well as radial and tangential dimensional changes of the specimens generally waved but lagged behind the relative humidity change.  相似文献   

13.
高鑫  周凡  周永东 《林业科学》2019,(7):119-127
【目的】研究高温热处理对人工林樟子松、杉木、美洲黑杨木材平衡含水率和吸湿特性的影响,为科学评价热处理木材吸湿特性提供理论基础,为人工林木材高附加值利用和实际高温热处理木材生产提供参考。【方法】以水蒸气为保护介质,设定180、200和220 ℃3个温度进行高温热处理,采用双室温、湿度控制法,在25 ℃环境中以8种不同类型饱和盐溶液精确控制水蒸气相对湿度进行等温吸附试验,运用Hailwood-Horrobin模型拟合等温吸附曲线,分析高温热处理对木材水蒸气等温吸附曲线线形、平衡含水率、单层分子吸附水和多层分子吸附水的影响。【结果】 180、200和220 ℃处理后,试样吸湿平衡含水率均值相当于素材含水率均值的80%、70%和50%左右;3个树种素材试样和高温热处理材试样均表现为第2类等温吸附曲线形态特征,Hailwood-Horrobin模型能够较好拟合不同树种素材和高温热处理材等温吸附曲线,不同热处理条件试样等温吸附曲线的拟合度均高于0.980 0,处理温度越高,等温吸附曲线越接近直线;高温热处理后代表含有单位摩尔数吸附位的绝干木材质量参数( W )显著增加,不同相对湿度下高温热处理材的单层分子吸附水和多层分子吸附水含量也随之降低;180、200和 220 ℃处理后,木材试样单层分子吸附水含量相较于素材下降20%、30%和50%左右,高温热处理对多层分子吸附水含量影响规律与之相近;高温热处理后单层分子吸附水、多层分子吸附水和吸附水总量的最大值相较于素材明显下降,且处理温度越高,下降幅度越大。【结论】高温热处理可明显降低3个树种试样的吸湿平衡含水率,且处理温度越高,平衡含水率下降幅度越大;高温热处理会一定程度影响木材等温吸附曲线线形,Hailwood-Horrobin模型可用于描述高温热处理材等温吸附曲线,且拟合度较高;高温热处理可明显降低3个树种试样等温吸附过程单层分子吸附水和多层分子吸附水含量,且处理温度越高影响越明显,单层分子吸附水和多层分子吸附水最大含量均明显降低,进而影响吸附水总量最大值。  相似文献   

14.
Summary Diffusion analysis can be used to estimate the time required to dry lumber. However, more accurate calculations require additional information on the relationship between the diffusion coefficient as a function of moisture content and on the effects of temperature, equilibrium moisture content, board thickness, and air velocity on drying time and moisture gradients. The primary objectives of this study were (1) to determine the diffusion coefficient of northern red oak (Quercus rubra) as a function of moisture content and (2) to compare experimentally determined sorption times and moisture content gradients with those calculated by the diffusion model. The diffusion coefficient was found to increase approximately exponentially with moisture content over a range of 6 to 30 percent at 43°C. This relationship was similar in both adsorption and desorption tests. Experimental adsorption and desorption times and desorption moisture content gradients were compared with finite difference solutions to the diffusion equation. Practical uses of solutions to the diffusion equation are illustrated for kiln drying wood that has first been predried to below the fiber saturation point. Drying time is also related to variable kiln conditions and board thickness.This research was partially funded under the U. S. Department of Agriculture Competitive Grant programThe Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time  相似文献   

15.
The water vapour sorption properties of Sitka spruce (Picea abies) have been investigated over a range of temperatures (14.2–43.8°C) using a dynamic vapour sorption apparatus. The sorption kinetics behaviour was evaluated using the parallel exponential kinetics model which has been found to give very accurate fits to the data in studies of foodstuffs or plant fibres, but has not been previously applied to sorption studies with wood. Both the adsorption and desorption kinetics curve can be deconvoluted into a fast and slow exponential process. Under conditions of adsorption, the fast process appears to be associated with the formation of monolayer water (determined using the Hailwood Horrobin model) up to a relative humidity of 20%. Under desorption, there is no clear differentiation between fast and slow processes. The area bounded by the sorption hysteresis loop reduced as the temperature at which the isotherm was measured increased, due to movement of the desorption curve only, with the adsorption curve remaining the same at all temperatures. This behaviour is consistent with sorption processes taking place on nanoporous glassy solids below the glass transition temperature. The heat of wetting was determined from the temperature dependence of the desorption isotherms by using the Clausius–Clapeyron equation, yielding results that are consistent with literature values. However, doubts are raised in this paper as to the applicability of using the Clausius–Clapeyron equation for analyses of this type.  相似文献   

16.
The present study examines the three-dimensional hygric and mechanical behavior of oak wood. The moisture equilibrium state, characterized by the sorption isotherms, was obtained from measurements taken during adsorption and desorption cycles. Sorption behavior was analyzed with the Dent theory and compared considering the sorption direction (adsorption/desorption cycle). Sorption parameters were provided for possible numerical applications in hygric material models. The corresponding swelling and shrinkage behavior was examined and characterized by the moisture expansion parameters for all anatomical directions. Orthotropic mechanical material behavior was characterized by determining the elastic engineering (Young's moduli, shear moduli, and Poisson's ratios) and the bending, compressive and compressive shear strength material parameters. Influence of moisture content (MC) on the mechanical material properties was studied using Young's moduli, Poisson's ratios, and the investigated strength parameters. A significant difference between the sorption behavior in adsorption and desorption, known as the hysteresis effect, could be proved. Furthermore, swelling and shrinkage behavior did not show any dependency on the adsorption/desorption cycle. The results confirm the significant influence of MC on the Young's moduli and the strength properties, however, did not validate an influence on the Poisson's ratios.  相似文献   

17.
A new method of wood moisture sorption analysis is presented using sorption isotherms of a series of mildly heat-treated specimens with varied and known elemental composition. This method allows the determination of the occupancy of accessible sorption sites in wood as a function of relative humidity h, θ(h) ≈ h, found in agreement with the literature data on the non-freezing water occupancy of hydroxyl groups for h < 0.9. Complementary sorption isotherm shape analysis identifies an empirical power law occupancy function, θ(h) = h α , α ≈ 0.73, which is close to the former two determinations in the same humidity range. The validity of widely accepted surface sorption theories for wood with a strongly bound primary layer and loosely bound secondary layers is disproven. To explain the found occupancy function, θ(h) ≈ h, a near-ideal liquid mixture of moisture and polar dynamic microvoids in the cell wall substance is postulated. The power law occupancy function is used to calculate the humidity-dependent number of sorption sites in adsorption/desorption isotherms to show that (1) the number of sorption sites from the adsorption line monotonically increases with increasing humidity—argued to represent the equilibrium number of sorption sites at each humidity, and (2) the number of sorption sites from the desorption line fails to fully return to that of the (equilibrium) adsorption line. Hysteresis is quantitatively explained as the result of non-equilibrium excess sorption sites being occupied according to the occupancy law. The relaxation of non-equilibrium excess sorption sites is satisfactorily modeled by a first-order rate equation. Applying the analysis to study mild thermal modification of moisture sorption isotherms revealed that (1) moisture contents decrease directly linear to the removed amount of sorption sites at all humidity <0.95, and (2) the absolute hysteresis is nearly unaffected as a result of counter-acting effects of the reduced number of sorption sites and reduced amount of relaxation.  相似文献   

18.
Summary Samples of nine tropical hardwoods from Peru and sugar maple wood from Quebec were selected to perform moisture sorption tests associated with swelling tests at 25 °C. The results demonstrate that, for a given equilibrium moisture content, tangential and radial dimensions, and hence the volume of wood, are greater after desorption than after adsorption. The importance of these differences, so-called second-order effects of moisture sorption, varied with the species and with the direction of swelling. These effects are proportionally greater in the tangential direction of wood than in its radial axis. Finally, two types of samples showed similar swellings for three equilibrium moisture contents.The author wishes to thank Professor M. Goulet for his support and help. This research was supported by the Canadian International Development Agency and the Natural Sciences and Engineering Research Council of Canada  相似文献   

19.
The aim of this study was to evaluate the chemical composition and the dynamic water vapour sorption properties of Eucalyptus pellita wood thermally modified in vacuum. For this purpose, wood samples were thermally modified in a vacuum oven at 160–240 °C for 4 h. Chemical composition were investigated by wet chemical analysis, elemental analysis, as well as Fourier transform infrared (FTIR) analysis, and dynamic water vapour sorption properties were evaluated by dynamic vapour sorption apparatus. The results showed that holocellulose and alpha-cellulose contents decreased and lignin and extractives contents relatively increased during the heat process. Elemental analysis showed a reduction in hydrogen content and an increase in carbon content. FTIR analysis indicated that the degradation of hemicellulose and condensation reactions of lignin occurred. In addition, the thermo-vacuum resulted in a reduction in the equilibrium moisture content of wood during the adsorption or desorption process. And the sorption hysteresis had a decreasing trend with increasing treatment temperature. The development of the hygroscopicity was related to the increase in the relative content of lignin, the degradation of the carbonyl groups in xylan and the loss of carbonyl group linked to the aromatic skeleton in lignin after heat treatment.  相似文献   

20.
This paper deals with an adsorption/desorption model in order to predict evolutions of boundary conditions during the mass transfer process versus time in timber elements. This model is derived from a thermodynamic balance between the free water and its saturated vapor pressure, and is generalized for the bound water phase. It allows describing a realistic adsorption and desorption phenomena characterized by a moisture content hysteresis induced by cyclic variations of the relative humidity and the temperature. The sorption isotherm explains the equilibrium between the bound water phase in wood and the vapor pressure in the environment. The model includes different latent heats for the adsorption and desorption process. An analytic explanation allows to model partial variations in terms of relative humidity domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号