首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A commercial high-methoxy citrus pectin was treated with a purified salt-independent pectin methylesterase (PME) isozyme isolated from Valencia orange peel to prepare a series of deesterified pectins. A series of alkali-deesterified pectins was also prepared at pH 10 under conditions permitting beta-elimination. Analysis of these pectins using high-performance size exclusion chromatography (HPSEC) with on-line multiangle laser light-scattering, differential viscometer, and refractive index (RI) detectors revealed no reduction in weight-average molecular weight (M(w); 150000) in the PME-treated pectin series, whereas a 16% reduction in intrinsic viscosity (IV) occurred below a degree of esterification (DE) of 47%. In contrast, alkali deesterification rapidly reduced both M(w) and IV to less than half of that observed for untreated pectin. PME treatment of a non-calcium-sensitive citrus pectin introduced calcium sensitivity with only a 6% reduction in the DE. Triad blocks of unesterified galacturonic acid were observed in (1)H nuclear magnetic resonance spectra of this calcium-sensitive pectin (CSP). These results demonstrate that the orange salt-independent PME isozyme utilizes a blockwise mode of action. This is the first report of the preparation of a CSP by PME treatment without significant loss of the pectin's M(w) due to depolymerization.  相似文献   

2.
Pectin gels were induced by monovalent salts (0.2 M) concurrently with deesterification of high methoxy pectin using a salt-independent orange pectin methylesterase (PME). Constant pH was maintained during deesterification and gelation. If salt or PME was absent, the pectin did not form a gel. The gel strength was influenced by both pH and species of monovalent cation. At pH 5.0, the pectin gel induced by KCl was significantly stronger than the NaCl-induced gel. In contrast, a much stronger gel was produced in the presence of NaCl as compared to KCl at pH 7.0. LiCl did not induce pectin gelation at either pH. Molecular weights of pectins increased from 1.38 x 10(5) to 2.26 x 10(5) during NaCl-induced gelation at pH 7. One proposal to explain these pectin molecular weight changes is a hypothetical PME transacylation mechanism. However, these pectin molecular weight changes can also be explained by metastable aggregation of the enzymatically deesterified low methoxy pectin. We postulate that gelation was induced by a slow deesterification of pectin under conditions that would normally salt out (precipitate) low methoxy pectin in the absence of PME.  相似文献   

3.
Green labeled pectins were extracted by an environmentally friendly way using proteases and cellulases being able to act on proteins and cellulose present in cell walls. Pectins were isolated from different plant byproducts, i.e., chicory roots, citrus peel, cauliflower florets and leaves, endive, and sugar beet pulps. Enzymatic extraction was performed at 50 degrees C for 4 h, in order to fulfill the conditions required for microbiological safety of extracted products. High methoxy (HM) pectins of high molar mass were extracted with three different enzyme mixtures. These pectins were subsequently demethylated with two pectin methyl esterases (PMEs), either the fungal PME from Aspergillus aculeatus or the orange PME. It was further demonstrated that high molar mass low methoxy (LM) pectins could also be extracted directly from cell walls by adding the fungal PME to the mixture of protease and cellulase. Moreover, health benefit pectic oligosaccharides, the so-called modified hairy regions, were obtained after enzymatic treatment of the residue recovered after pectin extraction. The enzymatic method demonstrates that it is possible to convert vegetable byproducts into high-added value compounds, such as pectins and pectic oligosaccharides, and thus considerably reduce the amount of these residues generated by food industries.  相似文献   

4.
The thermally tolerant pectin methylesterase (TT-PME) was isolated as a monocomponent enzyme from sweet orange fruit (Citrus sinensis var. Valencia). It was also isolated from flower and vegetative tissue. The apparent molecular weight of fruit TT-PME was 40800 by SDS-PAGE and the isoelectric point estimated as pI 9.31 by IEF-PAGE. MALDI-TOF MS identified no tryptic-peptide ions from TT-PME characteristic of previously described citrus PMEs. TT-PME did not absolutely require supplemented salt for activity, but salt activation and pH-dependent activity patterns were intermediate to those of thermolabile PMEs. Treatment of non-calcium-sensitive pectin with TT-PME (reducing the degree of methylesterification by 6%) increased the calcium-sensitive pectin ratio from 0.01 to 0.90, indicating a blockwise mode of action. TT-PME produced a significantly lower end-point degree of methylesterification at pH 7.5 than at pH 4.5. Extensive de-esterification with TT-PME did not reduce the pectin molecular weight or z-average radius of gyration, as determined by HPSEC.  相似文献   

5.
A pectin methylesterase (PME) from sweet orange fruit rag tissue, which does not destabilize citrus juice cloud, has been characterized. It is a salt-dependent PME (type II) and exhibits optimal activity between 0.1 and 0.2 M NaCl at pH 7.5. The pH optimum shifted to a more alkaline range as the salt molarity decreased (pH 8.5-9.5 at 50 mM NaCl). It has an apparent molecular mass of 32.4 kDa as determined by gel filtration chromatography, an apparent molecular mass of 33.5 kDa as determined by denaturing electrophoresis, and a pI of 10.1 and exhibits a single activity band after isoelectric focusing (IEF). It has a K(m) of 0.0487 mg/mL and a V(max) of 4.2378 nkat/mg of protein on 59% DE citrus pectin. Deblocking the N-terminus revealed a partial peptide composed of SVTPNV. De-esterification of non-calcium-sensitive pectin by 6.5% increased the calcium-sensitive pectin ratio (CSPR) from 0.045 +/- 0.011 to 0.829 +/- 0.033 but had little, if any, effect on pectin molecular weight. These properties indicate this enzyme will be useful for studying the PME mode of action as it relates to juice cloud destabilization.  相似文献   

6.
A proteinaceous pectin methylesterase inhibitor (PMEI) was isolated from kiwi fruit (Actinidia chinensiscv. Hayward) and purified by affinity chromatography on a cyanogen bromide (CNBr) Sepharose 4B-orange PME column. The optimal pH of banana PME activity was 7.0, whereas that for carrot and strawberry PME activity was 9.0. The optimal pH for the binding between kiwi fruit PMEI and these PMEs was 7.0. The kiwi fruit PMEI has a different affinity for PME depending on the plant source. The inhibition kinetics of kiwi fruit PMEI to banana and strawberry PME followed a noncompetitive type, whereas that to carrot PME followed a competitive type. The kiwi fruit PMEI was mixed with banana, carrot, and strawberry PME to obtain PMEI-PME complexes, which were then subjected to thermal (40-80 degrees C, atmospheric pressure) or high-pressure (10 degrees C, 100-600 MPa) treatment. Experimental data showed that the PMEI-PME complexes were easily dissociated by both thermal and high-pressure treatments.  相似文献   

7.
A putative thermostable pectinmethylesterase (TSPME) protein of 36 kDa was isolated from heat-treated citrus finisher pulp. After purification and partial sequencing of the protein, a reverse genetic approach was used to obtain the complete genomic sequence of a new pectinmethylesterase (PME) gene, CsPME4, from Citrus sinensis (L.) Osb. cv. Valencia. The CsPME4 gene contained two exons of 1203 and 690 bp interrupted by a single positionally conserved intron of 1230 bp. A full-length CsPME4 cDNA clone amplified from Valencia orange juice vesicles shared 98% identity with the genomic clone. The encoded protein of the full-length CsPME4 cDNA shared 66 and 39% amino acid identity with the full-length encoded proteins of the citrus PME, CsPME1, and CsPME3, respectively, whereas the predicted mature protein of CsPME4 shared 80 and 61% identity with the predicted mature proteins of CsPME1 and CsPME3, respectively. Southern analysis demonstrated that CsPME4 was present in at least two copies in the Valencia orange genome. Northern analysis revealed that CsPME4 mRNA was accumulated mainly in young and developing tissues of Valencia orange. Several approaches to express recombinant CsPME4 in different systems failed to obtain active protein. Further research will be necessary to successfully express the putative TSPME gene CsPME4 for biochemical characterization.  相似文献   

8.
Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.  相似文献   

9.
Pectin methylesterase (PME) from green bell peppers (Capsicum annuum) was extracted and purified by affinity chromatography on a CNBr-Sepharose-PMEI column. A single protein peak with pectin methylesterase activity was observed. For the pepper PME, a biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters for activity and thermostability was performed. The optimum pH for PME activity at 22 degrees C was 7.5, and its optimum temperature at neutral pH was between 52.5 and 55.0 degrees C. The purified pepper PME required the presence of 0.13 M NaCl for optimum activity. Isothermal inactivation of purified pepper PME in 20 mM Tris buffer (pH 7.5) could be described by a fractional conversion model for lower temperatures (55-57 degrees C) and a biphasic model for higher temperatures (58-70 degrees C). The enzyme showed a stable behavior toward high-pressure/temperature treatments.  相似文献   

10.
Pectinmethylesterase (PME) was isolated from Valencia orange pulp and added to reconstituted juice at 1.2 units/mL of juice in the presence or absence of cations at 4.2 or 16.7 mM. The percent transmittance (%T) of control juices with no added PME or cation did not clarify. The %T of juices with added PME and added cation was 45-55% by the second day. Increases in the average particle size was observed with PME- or cation-added juices and preceded increases in %T. Most likely, cations displaced PME from an inactive pectin substrate complex and increased clarification. PME, in the absence of cations, increased particle size but did not affect %T, suggesting a direct interaction of PME with cloud particles.  相似文献   

11.
Methyl ester distribution in pectin homogalacturonan has a major influence on functionality. Enzymatic engineering of the pectin nanostructure for tailoring functionality can expand the role of pectin as a food-formulating agent and the use of in situ modification in prepared foods. We report on the mode of action of a unique citrus thermally tolerant pectin methylesterase (TT-PME) and the nanostructural modifications that it produces. The enzyme was used to produce a controlled demethylesterification series from a model homogalacturonan. Oligogalacturonides released from the resulting demethylesterified blocks introduced by TT-PME using a limited endopolygalacturonase digestion were separated and quantified by high-pressure anion-exchange chromatography (HPAEC) coupled to an evaporative light-scattering detector (ELSD). The results were consistent with the predictions of a numerical simulation, which assumed a multiple-attack mechanism and a degree of processivity ~10, at both pH 4.5 and 7.5. The average demethylesterified block size (0.6-2.8 nm) and number of average-sized blocks per molecule (0.8-1.9) differed, depending upon pH of the enzyme treatment. The mode of action of this enzyme and consequent nanostructural modifications of pectin differ from a previously characterized citrus salt-independent pectin methylesterase (SI-PME).  相似文献   

12.
六种果皮原料果胶的理化及凝胶特性比较   总被引:4,自引:2,他引:2  
为了解不同品种水果的果皮(柚子皮、西番莲皮、脐橙皮、石榴皮、榴莲皮)以及向日葵盘所提取果胶的理化和质构特性,研究了不同原料果胶的得率、色泽、果胶酸含量、甲氧基含量、酯化度、黏度及质构特性,特别是采用高效液相色谱准确测定了各类果胶的分子量。结果表明:柚子皮、向日葵盘和脐橙皮果胶质量分数较高,分别为18.06%、14.61%和14.43%;西番莲皮果胶质量分数为8.76%;而石榴皮及榴莲皮果胶质量分数较低(均<3%)。从分子量看,石榴皮、脐橙皮果胶分子量较大(>1000kDa),向日葵盘果胶分子量最小(483kDa)。此外,几种果胶的溶胶均属低黏度值果胶(<25厘泊),且在pH值为7.0时黏度最大、在pH值为5.0时黏度最小。结合凝胶质构分析表明:石榴皮果胶分子量最大,凝胶强度最大,但为高甲氧基果胶,且得率较低;而向日葵盘果胶分子量最小,但得率较高,且为低甲基果胶,在非糖及含糖体系中均可形成性能优良的凝胶,因此是生产果胶的良好原料。该文为果胶的生产及应用提供参考。  相似文献   

13.
The effect of vacuum infusion on eggplant quality of a commercial fungal (Aspergillus niger) and citrus pectinmethylesterase (PME) with calcium chloride (4000 ppm) was investigated after processing and during storage. Firmness of infused eggplants using fungal or citrus PME was significantly increased compared to controls (fresh noninfused and water-infused control) after processing and during storage for 7 days at 4 degrees C. Activity of fungal PME-infused eggplant increased almost 32 times, whereas activity of eggplant infused with Marsh grapefruit PME increased 2-fold. Degree of esterification of pectin of eggplants infused with fungal or citrus PME decreased slightly. Cryo-SEM showed that samples treated with fungal PME/ CaCl2 displayed more integrity among cells as compared with water-infused control. The change of pectin in the cell wall was visualized using monoclonal antibodies JIM5 (low-esterified pectin) and JIM7 (high-esterified pectin). JIM5 showed more binding than JIM7 with the cell walls of eggplant tissues from fungal PME/ CaCl2 treatment.  相似文献   

14.
Linalool concentrations were determined in juice from three groups of 60 Valencia oranges using pentane:ether extraction and high-resolution capillary GC. The outer peel (flavedo) was removed from one group. The other two groups retained their peel intact. Juice was extricated from the halved fruits of the flavedo-less group and from one of the peel-intact groups using a hand reamer. A peel-cutting/macerating juice extractor was used for the other peel-intact group. Linalool concentrations were 0.004 mg/L in peeled fruit juice and 0.020 and 0.106 mg/L for hand-reamed and mechanically extracted peel-intact juice, respectively. Juice from peeled fruit contained significantly (P < 0.05) less linalool than peel-intact juice. Approximately 80% of the total juice linalool content was associated with peel using reamer design, and 96% was associated with peel-cutting/macerating design. Linalool increased with increasing peel oil levels; however, the increases were not proportionate. Since all commercial juices are mechanically extracted, the vast majority of linalool in commercial orange juice originates from the peel and not from the juice vesicle cytoplasm. Juice from peel-macerated, mechanically extracted fruit increased from 0.106 to 0.134 mg/kg after thermal processing, whereas juice from reamer extraction was essentially unchanged.  相似文献   

15.
The combined high pressure/thermal (HP/T) inactivation of tomato pectin methyl esterase (PME) and polygalacturonase (PG) was investigated as a possible alternative to thermal processing classically used for enzyme inactivation. The temperature and pressure ranges tested were from 60 degrees C to 105 degrees C, and from 0.1 to 800 MPa, respectively. PME, a heat-labile enzyme at ambient pressure, is dramatically stabilized against thermal denaturation at pressures above atmospheric and up to 500-600 MPa. PG, however, is very resistant to thermal denaturation at 0.1 MPa, but quickly and easily inactivated by combinations of moderate temperatures and pressures. Selective inactivation of either PME or PG was achieved by choosing proper combinations of P and T. The inactivation kinetics of these enzymes was measured and described mathematically over the investigated portion of the P/T plane. Whereas medium composition and salinity had little influence on the inactivation rates, PME was found less sensitive to both heat and pressure when pH was raised above its physiological value. PG, on the other hand, became more labile at higher pH values. The results are discussed in terms of isoenzymes and other physicochemical features of PME and PG.  相似文献   

16.
The isolation and utilization of pectin lyase (PL) from commercial pectic enzyme for methanol reduction in wine production was investigated. PL can be separated from pectinesterase (PE) and polygalacturonase (PG) on HM-CL-AIS affinity chromatography at pH 4; however, it is difficult to further distinguish PE from PG. Some desirable physicochemical properties such as transmittance, lightness, redness, and lower total pectin content are found in the external enzyme adding groups (PL, PE and PG, and pectic enzyme groups) in comparison to the control group. Methanol contents in pectic enzyme and the PE and PG groups increase from 628 +/- 13 (control group) to 3103 +/- 16 and 1736 +/- 67 mg/L ethanol in the final products, respectively. Nevertheless, the adding of PL does not cause any increase in methanol content. The results present in this study suggest that the HM-CL-AIS column is a simple, inexpensive, convenient, and effective method for PL purification. Moreover, the partial purified PL is a potential replacement of commercial pectic enzyme for pectin depolymerizing, methanol content reducing, and wine quality improving in wine production.  相似文献   

17.
Effects of pulsed electric fields (PEF) at 35 kV/cm for 59 micros on the quality of orange juice were investigated and compared with those of heat pasteurization at 94.6 degrees C for 30 s. The PEF treatment prevented the growth of microorganisms at 4, 22, and 37 degrees C for 112 days and inactivated 88% of pectin methyl esterase (PME) activity. The PEF-treated orange juice retained greater amounts of vitamin C and the five representative flavor compounds than the heat-pasteurized orange juice during storage at 4 degrees C (p < 0.05). The PEF-treated orange juice had lower browning index, higher whiteness (L), and higher hue angle (theta) values than the heat-pasteurized orange juice during storage at 4 degrees C (p < 0. 05). The PEF-treated orange juice had a smaller particle size than the heat-pasteurized orange juice (p < 0.05). degrees Brix and pH values were not significantly affected by processing methods (p > 0. 05).  相似文献   

18.
The enzyme pectin methylesterase (PME) is present in acerola fruit and was partially purified by gel filtration on Sephadex G-100. The results of gel filtration showed different PME isoforms. The total PME (precipitated by 70% salt saturation) and one of these isoforms (fraction from Sephadex G-100 elution) that showed a molecular mass of 15.5 +/- 1.0 kDa were studied. The optimum pH values of both forms were 9.0. The total and the partially purified PME showed that PME specific activity increases with temperature. The total acerola PME retained 13.5% of its specific activity after 90 min of incubation at 98 degrees C. The partially purified acerola (PME isoform) showed 125.5% of its specific activity after 90 min of incubation at 98 degrees C. The K(m) values of the total PME and the partially purified PME isoform were 0.081 and 0.12 mg/mL, respectively. The V(max) values of the total PME and the partially purified PME were 2.92 and 6.21 micromol/min/mL/mg of protein, respectively.  相似文献   

19.
Thermal inactivation kinetics have been determined for pectin methylesterase (PME), polygalacturonase (PG), and peroxidase (POD) in tomato juice. Two parameters, the inactivation rate constant (k) at a reference temperature and the activation energy for inactivation (E(a)), were determined for each enzyme. For PME and PG, the k and E(a) values reported here do not agree with those in several previously published reports. These differences can be explained either by the differences in pH values used for inactivation determinations or by inadequacies in the heating methods used in some previous studies. POD showed simple first-order inactivation kinetics and was less thermally stable than either PME or PG. When different cultivars of tomatoes were evaluated, there was no difference in the thermal inactivation kinetics of these enzymes.  相似文献   

20.
The kinetics of the pectin methylesterase (PME)-catalyzed de-esterification of pectin was studied at 25 degrees C in the presence of sucrose, fructose, maltodextrin (DE = 16.5-19.5), and carboxymethylcellulose at different concentrations and in the presence of maltodextrin and sucrose at different concentrations in a temperature range between +25 and -4 degrees C in subcooled and frozen states. The objective was to determine whether the reaction is diffusion-controlled, to gain insight about the factors determining the diffusion of the reactants, and to determine the effect of the carbohydrates, low temperature, and freezing on the structural conformation of the enzyme. The results indicate that the PME-catalyzed de-esterification of pectin is diffusion-controlled. Nevertheless, the diffusion is not controlled by the macroviscosity of the reaction medium, but rather by the microviscosity experienced by the diffusants. Low temperature in the temperature range studied does not affect the structural conformation of the enzyme, while freezing seems to have some effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号