首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
The dyeability of poly(lactic acid) [PLA] with a range of commercial disperse dye was examined and compared to that of poly(ethylene terephthalate) [PET] in addition to the colour and fastness of the resultant dyeings. A screening exercise in which twenty dyes of differing energy types and chemical classes were applied to PLA revealed a substantial variation between the dyes in terms of dye uptake (12–88 % at 4 %o.w.f.). Nine dyes exhausted above 70 % and were selected for further study, which involved comparison of shade and fastness of PLA dyeings with those of the corresponding PET dyeings. Differences in shade depended on hue while wet fastness of each of the PLA dyeings was either the same or 0.5–1.0 point lower than its PET counterpart. In all but one case, dye photostability in PLA was found to be very similar to that in PET. Dye build-up profiles on PLA were also investigated and from these results mixtures of compatible dyes identified.  相似文献   

2.
In Part 1 of this study, the dyeability, color shade, wash, light fastness and compatibility of homogeneous disperse dyes on PLA fabric and PET fabric were reported. The present paper (Part 2) focuses on the application of commercial disperse dyes to PLA fabric. Specific areas of investigation are the coloration properties of dyes originally intended for the production of high lightfastness polyester fabrics or for application to cellulose diacetate. The compatibility of the eight members of the dye set was investigated. In terms of lightfastness, the ratings were higher than that of conventional disperse dyes. In addition, the use of dye combinations to achieve synergistic uptake on PLA was explored leading to the pronounced synergism with a mixture of CI Disperse Blue 374 and 284.  相似文献   

3.
Six nano disperse dyes were prepared using corresponding O/W nanoemulsions which were obtained with sodium laurylsulphate and caprylic triglyceride. The average particle size of the dyes prepared were in the range of 110–130 nm. Exhaust dyeing using nano dyes resulted in low exhaustion yields of 17–26 % on regular polyester fiber and 28–38 % on ultramicrofiber polyester. The observed low exhaustion yields of nano disperse dye can be explained by the solubilization of dye particles into surfactant micelles as well as the high stability of the nanoemulsions, these might reduce the capacity of dye uptake onto the fibers. However, higher K/S values of dyeings with nano dyes on ultramicrofiber sites compared to those on regular polyester sites suggested their potential to be more efficient dyes for finer denier microfiber polyesters.  相似文献   

4.
Due to compact structure of meta-aramid fiber caused by the intermolecular hydrogen bondings of amide groups, the degree of crystallinity increased, thus its poor dyeing properties arises. Among commercial dyes used in many previous researches, the basic dyes showed comparatively higher exhaustion yields as comparing to those of disperse dyes and acid dyes. The anthraquinone moiety was adopted for good performances of light fastness on meta-aramid fiber. In this study, eight of anthraquinone dye was synthesized. The three of them were obtained from chloro-anthraquinone, by Ullmann reactions with the corresponding heterocylic residues such as morpholine and one of them was obtained from lueco quinizarine by condensation with the corresponding heterocylic residues. The others were prepared by quaternization from dyes above. The synthesized disperse and cationic dyes were dyed on meta-aramid fibers and investigated for their build-up dyeing properties and wash fastness.  相似文献   

5.
Nine disperse dyes have been synthesized by diazotization of 2-amino-4-(p-nitrophenyl)-5-nitrothiazole and coupled to substituted N-alkylanilines. Spectral properties in the IR and visible range of the dyes obtained were investigated. The dyeing performance of these dyes was assessed on nylon and polyester fibers. These dyes were found to give reddish brown to bluish violet shades on dyeing with very good depth, brightness and levelness on nylon and polyester fibers. The dyed fibers showed fairly good light fastness, very good to excellent fastness to wash, rubbing, perspiration and excellent fastness to sublimation. The dyebath exhaustion and fixation on the fiber were found to be very good.  相似文献   

6.
The dyeability of poly(lactic acid) (PLA) fiber strongly depends on disperse dye structure due to the low dyeing temperature and the short dyeing time. Thus, the dye uptake value of PLA fiber is low for some disperse dyes and is needed to be improved. In the current study, the dyeability of PLA fiber is improved with the addition of N-Phenylaminopropyl polyhedral oligomeric silsesquioxane (AP-POSS) during melt spinning process. The effects of dyeing conditions including dyeing temperature and time, disperse dye type and AP-POSS concentrations are investigated on the dyeability properties of PLA fiber samples. The tensile, thermal and morphological properties of fiber samples are also characterized by tensile testing, differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). As the added amount of AP-POSS increases, the percent crystallinity increases and the tensile strength reduces. According to the dyeing results, AP-POSS is very effective for increasing the dyeability of PLA fiber especially for disperse dyes with low dye uptake values.  相似文献   

7.
Poly(lactic acid) (PLA) is known for environmentally friendly material as it is derived from annually renewable crops and biodegradable. Dispersant-free dyeing of PLA fabric with three temporarily solubilized azo disperse dyes which contain β-sulfatoethylsulfonyl group was investigated and their dyeing and fastness properties were compared with those of commercial disperse dyes. The temporarily solubilized azo disperse dyes were successfully applied to PLA fabric without the use of dispersant. The color yield on PLA fabric was dependent on dyebath pH and dyeing temperature as well. The optimum results were obtained at pH 7-8 and 110 °C. The dyes showed markedly higher color yield on PLA fabric when compared to commercial disperse dyes. Wash fastness was very poor to poor but light fastness was good. The COD levels of the dyeing effluent from the temporarily solubilized disperse dyes were considerably lower than those from commercial disperse dyes.  相似文献   

8.
Dyeing characteristics and fastness of 100 % m-aramid fiber with some commercial dyes were investigated on various dyeing conditions, such as using a swelling agent and electrolyte as auxiliaries. Among commercial dyes used, the basic dyes showed comparatively higher exhaustion yield comparing to those of disperse dyes and acid dyes. Under acidic conditions in the range pH 3 to 5, preferably between pH 3 and 4, the stability of cationic dyes could be enhanced leading to higher adsorption. Dye exhaustions of trichromatic dyes were increased proportionally to concentration of swelling agents ranging from 1 to 4 g/l. The addition of electrolyte provided increased K/S values after washing process compared with those of blank dyeings, where the greatest effect was observed with NaNO3.  相似文献   

9.
Research and development of nano fiber products is very active over the world. Physical characteristics and dyeing properties of nylon 66 nano fiber were investigated in this study. X-ray diffraction, DSC, analysis of amino end group, and water absorption were performed to get information concerning physical properties of nano fiber. Nylon 66 nano fiber was dyed with high molecular mass acid dyes. Effects of dyeing temperature, pH of dyeing solution, and concentration of acid dyes on dyeing properties such as rate of dyeing and the extent of exhaustion, were examined and compared to those of regular fiber. It was found that nano fiber adsorbed acid dyes at lower temperature, got rapidly dyed, and its extents of exhaustion at specific dyeing temperature were higher than regular fiber. It was also observed that nano fiber could adsorb a large amount of acid dye without a significant loss in the extent of exhaustion. Washing fastness of the dyed nano fiber was lower by 1/2∼1 grade, light fastness by 1 grade than the dyed regular fiber.  相似文献   

10.
The structures of disperse dyes and their intermolecular interactions have important impacts on dyeing and printing performances for polyester fabrics. The fluorine dyes show some unique molecular stability and photochemical properties. The dyeing property of the azo dye containing trifluoromethyl group for polyester fabrics, 4'-(N-acetoxyethyl-Nethyl)- amino-2-bromine-4-nitro-6-trifluoromethylazo- benzene (D1), was investigated and compared with the similar structure disperse dye. The results show that the high color yield and good exhaustion of the dyed PET fabrics could be obtained. The polyester fabrics dyed with D1 had excellent light fastness. Its single crystal was prepared and the supramolecular interactions were solved by X-ray diffraction. Dye D1 formed triclinic crystals in a trimeric packing mode. The C-F bond distances of CF3 are 1.2730 Å, 1.2240 Å and 1.2900 Å, respectively. The two benzene rings linked azo unit (-N=N-) are obviously twist. The dihedral angle of the two benzene rings is 50.23 o. There are six weak hydrogen bonds around trifluoromethyl group in the intramolecule and intermolecule. The excellent light stability of the dye should be attributed to its unique supramolecular structure.  相似文献   

11.
Azohydroxypyridone disperse dyes containing a fluorosulfonyl group were dyed on PET/cotton blends and their dyeing and fastness properties were investigated. Specially, the azohydroxypyridone dyes containing a nitro group in place of the fluorosulfonyl group in the para position to azo group were synthesized in order to compare their dyeing and fastness properties on PET/cotton blends with those of fluorosulfonyl-substituted analogues. As these dyes can be alkali cleared in the same bath, a one-bath dyeing method was used and the results were compared with that of a conventional two-bath dyeing method. In particular, the cross-staining of cotton was studied in order to assess their suitability for the one-bath dyeing of PET/cotton blends.  相似文献   

12.
Azo disperse dyes (D1-D13) were prepared by various diazotized aryl amines coupled with N-(phenyl)-2-[(4-phenyl-1,3-thiazol-2-yl)amino] acetamide. All the azo disperse dyes have been characterized by their percentage yield, UV-VIS spectroscopy, elemental analysis, IR spectroscopy, 1H-NMR spectroscopy, and dyeing performance on polyester fiber. These dyes were applied to polyester fabric by HTHP method and their fastness properties were evaluated. All the dyes gave moderate to excellent fastness properties on polyester fiber. The main focus was to synthesize azo disperse dyes that give good dyeing property along with pharmacological activity. Therefore, the synthesized compounds were examined for their antimicrobial activity at various concentrations using well-known Kirby-Bauer disk diffusion method.  相似文献   

13.
Dyeing and color fastness properties of a reactive disperse dye containing an acetoxyethylsulphone group on PET, Nylon, silk and N/P fabrics were examined. The reactive disperse dye exhibited almost the same dyeing properties on PET fabric as a conventional disperse dye except the level of dye uptake. The most appropriate pH and dyeing temperature for the dyeing of Nylon fabric were 7 and 100°C respectively. The build-up on Nylon fabric was good and various color fastnesses were good to excellent due to the formation of the covalent bond. Application of the reactive disperse dye on silk fabric at pH 9 and 80°C yielded optimum color strength. The rate of dyeing on Nylon fabric was faster than that on PET fabric when both fabrics were dyed simultaneously in a dye bath, accordingly color strength of the dyed Nylon was higher. The reactive disperse dye can be applied for one-step and one-bath dyeing of N/P mixture fabric with good color fastness.  相似文献   

14.
The dyeing and color fastness properties of two reactive-disperse dyes containing a sulfatoethylsulfone group on nylon, PET and N/P mixture fabrics were examined. The rate of dyeing on nylon fabric was greatly dependent upon dye bath pH. The final dye uptakes at all pH, however, were as high as 97 %. Color strength of the dyed nylon fabric linearly increased up to 0.5 %owf and then slowed down over 1 %owf dyeing. Washing and rubbing fastness of the dyed nylon fabric were excellent, but grade of light fastness was moderate. Dyeability of the reactive-disperse dyes on PET fabric was not much affected by pH, and K/S values of PET fabric dyed at pH 5–8 were lower than those of nylon fabric at all pH examined. Buildup and color fastnesses properties on PET fabric showed the same tendency with nylon fabric. The rate of dyeing of the reactive-disperse dyes on nylon fabric was faster than on PET fabric when both fabrics were dyed simultaneously in the same dye pot, resulting in higher color strength of nylon than PET. The reactive-disperse dyes were found to be adequate to the one-bath, one-step dyeing of N/P mixture fabric when applied at pH 5 and 120 °C.  相似文献   

15.
A series of monoazo disperse dyes based on 2-amino-4-phenylthiazole was prepared using variousN,N-dialkylaniline derivatives as the coupling component. The dyes were characterized by IR spectral studies, visible absorption spectroscopy and elemental analysis. The dyeing performance of these dyes was assessed on cellulose triacetate and nylon fibers. These dyes were found to give a wide range of colour shades varying from bright red to royal blue with very good depth, brightness and levelness on fibers. The dyed fibers showed good to very good light fastness and very good to excellent fastness to washing, perspiration, rubbing and sublimation. The dyebath exhaustion and fixation on the fibers were found to be very good.  相似文献   

16.
To dye poly(lactic acid) (PLA) fiber with natural dyes has gained importance in recent years due to the production of the fully eco-friendly textile products. In this study, pure and modified PLA fibers with two different POSS nanoparticles, namely N-phenyl aminopropyl POSS (AP-POSS) and octa (aminophenyl) polyhedral oligomeric silsesquioxane (OAPPOSS), are dyed with three different natural dyes including alizarin, lawsone and indigo. The effects of the dyeing conditions including dyeing temperature and time, POSS nanoparticle concentration, natural dye types and concentrations are investigated on the dyeability properties of the PLA fiber samples. The wash and light fastness of the fiber samples are also investigated. According to the dyeability results, it is concluded that POSS nanoparticles are effective for increasing the dyeability of the PLA fiber with all natural dyes used in this study. As the added amount of the POSS nanoparticle increases, the dyeability of the PLA fiber increases. When the performances of the POSS nanoparticles are compared, it is seen that OAP-POSS is more effective than the AP-POSS nanoparticle.  相似文献   

17.
The several disazo dyes having different alkyl substituents were synthesized to dye unmodified polypropylene fiber. The affinity of the dyes onto unmodified polypropylene was increased with the increase of the length of alkyl substituents. Therefore, the heptyl-substituted dye having the longest alkyl group in this experiment showed very high color strength of dyeings with K/S value of over 24 at maximum absorption wavelength. The color fastnesses to washing, rubbing and light were also improved significantly for the longer alkyl substituted dyes, so that the heptyl-substituted dye exhibited a rating of 4∼5 for all kinds of fastnesses.  相似文献   

18.
Treatment of polyacrylonitrile (PAN) onto m-aramid fabric was carried out by pad-dry-cure method using dimethylformamide (DMF) dissolved acrylic fiber solution. The obtained PAN treated m-aramid fabric was dyed using exhaustion method with basic dyes. The effect of PAN treatment on fabric stiffness property was acceptable with acrylic fiber solutions ranging from 1 wt% to 4 wt%. Whilst, more than 4 wt% PAN treated fabrics exhibited undesirable stiffness. The dyeing results showed that PAN treated m-aramid fabrics exhibited a significant increase in color strength when compared to untreated fabric, arising from an increase in anionic dye sites (styrene SO3 ? group). Wash fastness was comparable to that of untreated fabric, indicating the strong interaction between dye molecules and the PAN. Rubbing fastness of treated fabrics was not affected by treatments with PAN concentrations lower than 4 wt%. Further increase in PAN concentration led to poorer rubbing fastness property due to the problem of surface dyeing. For light fastness, the PAN treatment failed to improve the light fastness property which is the main disadvantage of basic dyeing of aramid fabric. Finally, in case of PAN treatments with the range of 1 wt% to 4 wt%, the flame retardancy property of PAN treated m-aramid fabrics was found not affected by the percent add-on. However, above 4 wt% PAN treatment, the flame retardancy performance became deteriorated.  相似文献   

19.
A series of new monoazo yellow dyes having different alkyl substituents was synthesized to dye unmodified polypropylene fiber. Color hue of the dyes exhibited light yellow with very high chroma enough to use as yellow primary color dyes. The affinity of the dyes onto unmodified polypropylene was increased with the increase of the length of alkyl substituents. Therefore, the hexyl-substituted dye having the longest alkyl group in this experiment showed very high color strength of dyeings with K/S value of over 26 at maximum absorption wavelength. The color fastnesses to washing, rubbing and light were also improved significantly for the longer alkyl substituted dyes, so that the hexyl-substituted dye exhibited a rating higher than 4∼5 for all kinds of fastnesses.  相似文献   

20.
Following the previous studies regarding blue and yellow dyes, a series of new red dyes having different length of alkyl substituents on the same chromophore were synthesized in order to dye unmodified polypropylene fiber. The affinity of the dyes onto unmodified polypropylene fiber was increased with the increase of the length of alkyl substituents. Therefore, the longest hexyl-substituted dye showed very deep shade of dyeing with K/S value of around 30 at maximum absorption wavelength. Within the range below 2 % o.w.f., the exhaustion (%) showed more than 80 %. The color fastnesses to washing, rubbing, and light of the dyeings were also improved greater for the dyes having longer alkyl substituents than the shorter ones. Since color hue of the dyes exhibited very strong red, they could be considered to be used as the primary red color dyes for unmodified polypropylene fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号