首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduced the human cytochrome P450 gene CYP2B6 into rice plants (Oryza sativa L. cv. Nipponbare), and the CYP2B6-expressing rice plants became more tolerant to various herbicides than nontransgenic Nipponbare rice plants. In particular, CYP2B6 rice plants grown in soil showed tolerance to the chloroacetanilide herbicides alachlor and metolachlor. We evaluated the degradation of metolachlor by CYP2B6 rice plants to confirm the metabolic activity of the introduced CYP2B6. Although both CYP2B6 and nontransgenic Nipponbare rice plants could decrease the amount of metolachlor in plant tissue and culture medium, CYP2B6 rice plants could remove much greater amounts. In a greenhouse, the ability of CYP2B6 rice plants to remove metolachlor was confirmed in large-scale experiments, in which these plants appeared able to decrease residual quantities of metolachlor in water and soil.  相似文献   

2.
The human cytochrome P450 CYP1A1 gene was introduced into rice plants (Oryza sativa cv. Nipponbare). One-month-old CYP1A1 plants grown in soil clearly showed a healthy growth and tolerance to 8.8 microM atrazine and 50 microM simazine, but nontransgenic plants were completely killed by the herbicides. Although transgenic and nontransgenic plants metabolized the two herbicides into the same sets of compounds, CYP1A1 plants metabolized atrazine and simazine more rapidly than did control plants. In small-scale experiments, residual amounts of atrazine and simazine in the culture medium of CYP1A1 plants were 43.4 and 12.3% of those in control medium; those of nontransgenic Nipponbare were 68.3 and 57.2%, respectively. When cultivated in soil with 2.95 microM atrazine and 3.15 microM simazine for 25 days, CYP1A1 plants eliminated 1.3 times more atrazine and 1.4 times more simazine from the soil than did control plants. Thus, CYP1A1 rice plants make it possible to remove atrazine and simazine more rapidly from the culture medium and soil than can nontransgenic Nipponbare.  相似文献   

3.
The human gene for CYP2B6, a cytochrome P450 monooxygenase that inactivates xenobiotic chemicals, was introduced into Oryza sativa cv. Nipponbare by Agrobacterium-mediated transformation. At germination, R(1) seeds of transgenic rice plants expressing CYP2B6 (CYP2B6 rice) showed a high tolerance to 5 microM metolachlor, a preemergence herbicide that is degraded by CYP2B6. Thin-layer chromatography after culture with (14)C-labeled metolachlor revealed that the amounts of residual metolachlor decreased in plant tissues and the medium of CYP2B6 rice faster than those of untransformed Nipponbare. CYP2B6 rice plants were able to grow in the presence of 13 out of 17 herbicides: five chloroacetamides and mefenacet, pyributicarb, amiprofos-methyl, trifluralin, pendimethalin, norflurazon, and chlorotoluron. These herbicides differ in their modes of action and chemical structures. Transgenic rice expressing a xenobiotic-degrading human CYP2B6, which has broad substrate specificity, should be good not only for developing herbicide tolerant rice but also for reducing the environmental impact of agrochemicals.  相似文献   

4.
5.
Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.  相似文献   

6.
Atrazine and metolachlor are commonly detected in surface water bodies in southern Louisiana. These herbicides are frequently applied in combination to corn, and atrazine to sugarcane, in this region. A study was conducted on the runoff of atrazine and metolachlor from 0.21 ha plots planted to corn on Commerce silt loam, a Mississippi River alluvial soil. The study, carried out over a three-year period characterized by rainfall close to the 30-year average, provided data on persistence in the surface soil (top 2.5 cm layer) and in the runoff active zone of the soil, as measured by decrease in runoff concentrations with time after application. Regression equations were developed that allow an estimate of the runoff extraction coefficients for each herbicide. Atrazine showed soil half-lives in the range 10.5-17.3 days, and metolachlor exhibited half-lives from 15.8-28.0 days. Concentrations in successive runoff events declined much faster than those in the surface soil layer: Atrazine runoff concentrations decreased over successive runoff events with a half-life from 0.6 to 5.7 days, and metolachlor in runoff was characterized by half-lives of 0.6-6.4 days. That is, half-lives of the two herbicides in the runoff-active zone were one-tenth to one-half as long as the respective half-lives in the surface soil layer. Within years, the half-lives of these herbicides in the runoff active zone varied from two-thirds longer for metolachlor in 1996 to one-fifth longer for atrazine in 1995. The equations relating runoff concentrations of atrazine and metolachlor to soil concentrations contain extraction coefficients of 0.009. Losses in runoff for atrazine were 5.2-10.8% of applied, and for metolachlor they were 3.7-8.0%; atrazine losses in runoff were 20-40% higher than those for metolachlor. These relatively high percent of application losses indicate the importance of practices that reduce runoff of these chemicals from alluvial soils of southern Louisiana.  相似文献   

7.
A multiresidue method was developed for the simultaneous determination of low parts per billion (ppb) concentrations of the herbicides alachlor, metolachlor, atrazine, and simazine in water and soil using isotope dilution gas chromatography/mass spectrometry (GC/MS). Known amounts of 15N,13C-alachlor and 2H5-atrazine were added to each sample as internal standards. The samples were then prepared by a solid phase extraction with no further cleanup. A high resolution GC/low resolution MS system with data acquisition in selected ion monitoring mode was used to quantitate herbicides in the extract. The limit of detection was 0.05 ppb for water and 0.5 ppb for soil. Accuracy greater than 80% and precision better than 4% was demonstrated with spiked samples.  相似文献   

8.
A study was carried out in a loamy soil to evaluate the degradation of atrazine and metolachlor under laboratory-controlled and field-variable conditions as a function of temperature and soil moisture content. In laboratory trials, metolachlor showed fast degradation, with half-lives from 100 to 5.7 days in a temperature range from 5 to 35 degrees C at 100% of field capacity, whereas in the same conditions the degradation rate of atrazine was relatively slow, with half-lives from 407 to 23 days. Modeling of laboratory degradation data to predict field persistence was carried out. Field persistence of atrazine and metolachlor was measured in the same soil during the corn growing seasons in 1993, 1994, and 1996. In the three years the mean half-dissipation times for atrazine and metolachlor were 36 and 21 days, respectively. Calculations from model equations gave acceptable prediction of field dissipation of both herbicides. Limitations and perspectives of employed modelization procedure are discussed.  相似文献   

9.
Although herbicides provide effective weed control, some herbicides may pose serious health and environmental threats. Thus the bioefficacy and the persistence of three formulations of a herbicide, anilofos [GR (granules), W/O (water in oil emulsion), and EC (emulsifier concentration)], at 300, 450, and 600 g ha?1 as pre-emergent applications were evaluated in transplanted rice (Oryza sativa L.). All of the formulations enhanced the rice grain yield by 50% over weedy check and the grain yield was greatest in the 30% EC treatment applied at a 450 g ha?1 rate. Phytotoxic symptoms of anilofos were not observed with any of these formulations on the transplanted rice. Terminal residues of anilofos in the soil and mature rice plants were below the maximum residues limit (MRL, 0.05 mg/kg) in the soil, grains, and straw treated with the various formulations of anilofos. Study showed fast degradation of anilofos in the soil and rice plants.  相似文献   

10.
The volatile and soil loss profiles of six agricultural pesticides were measured for 20 days following treatment to freshly tilled soil at the Beltsville Agricultural Research Center. The volatile fluxes were determined using the Theoretical Profile Shape (TPS) method. Polyurethane foam plugs were used to collect the gas-phase levels of the pesticides at the TPS-defined critical height above a treated field. Surface-soil (0-8 cm) samples were collected on each day of air sampling. The order of the volatile flux losses was trifluralin > alpha-endosulfan > chlorpyrifos > metolachlor > atrazine > beta-endosulfan. The magnitude of the losses ranged from 14.1% of nominal applied amounts of trifluralin to 2.5% of beta-endosulfan. The daily loss profiles were typical of those observed by others for volatile flux of pesticides from moist soil. Even though heavy rains occurred from the first to third day after treatment, the majority of the losses took place within 4 days of treatment, that is, 59% of the total applied atrazine and metolachlor and >78% of the other pesticides. Soil losses generally followed pseudo-first-order kinetics; however, leaching due to heavy rainfall caused significant errors in these results. The portion of soil losses that were accounted for by the volatile fluxes was ordered as follows: alpha-endosulfan, 34.5%; trifluralin, 26.5%; chlorpyrifos, 23.3%; beta-endosulfan, 14.5%; metolachlor, 12.4%; and atrazine, 7.5%.  相似文献   

11.
The impact of two tillage systems, plow tillage (PT) and no-tillage (NT), on microbial activity and the fate of pesticides in the 0–5 cm soil layer were studied. The insecticides carbofuran and diazinon, and the herbicides atrazine and metolachlor were used in the study, which included the incubation and leaching of pesticides from untreated soils and soils in which microorganisms had been inhibited. The mineralization of ring14C labeled pesticides was studied. The study differentiated between biotic and abiotic processes that determine the fate of pesticides in the soil. Higher leaching rates of pesticides from PT soils are explaned by the relative importance of each of these processes. In NT soils, higher microbial populations and activity were associated with higher mineralization rates of atrazine, diazinon and carbofuran. Enhanced transformation rates played an important role in minimizing the leaching of metolachlor and carbofuran from NT soils. The role of abiotic adsorption/retention was important in minimizing the leaching of metolachlor, carbofuran and atrazine from NT soils. The role of fungi and bacteria in the biodegradation process was studied by selective inhibition techniques. Synergistic effects between fungi and bacteria in the degradation of atrazine and diazinon were observed. Carbofuran was also degraded in the soils where fungi were selectively inhibited. Possible mechanisms for enhanced biodegradation and decreased mobility of these pesticides in the upper layer of NT soils are discussed.  相似文献   

12.
Many varieties of Italian ryegrass (Lolium multiflorum) show resistance to herbicides; while this ability was frequently attributed to alterations in the target sites of the herbicide's action of the plant or to an efficient oxidative metabolism, little attention has been paid to glutathione S-transferases (GSTs), which are a family of detoxifying enzymes involved in the inactivation of many toxic compounds. To investigate the role of GSTs, seedlings of Italian ryegrass were treated with four herbicides (atrazine, fenoxaprop-ethyl, fluorodifen, metolachlor) and a safener (fenchlorazol-ethyl). All the treatments were well tolerated by the plant, with very low decreases in terms of fresh weight and length of shoots. Regarding GST activity, the chemicals generally determined significant increases in the above enzyme activity toward the model-substrate CDNB. Therefore, the herbicides most GST inducing and the safener were tested themselves as enzyme substrates: constitutive GST activities toward atrazine, fluorodifen and fenchlorazol-ethyl were found, and, in addition, these activities were significantly induced by the safener. Following these results, a HPLC procedure was standardized in order to investigate the persistence of atrazine and fluorodifen in the seedlings of Italian ryegrass and the effect on this of the safener. It was found that the residual amounts of the two herbicides in the shoots were significantly reduced following the safener treatments.  相似文献   

13.
The concentrations of atrazine in the freshly added soils and the soils that had been incubated for 50 days significantly decreased 1 day after the addition of the enzyme atrazine chlorohydrolase or the soil bacterium Pseudomonas sp. strain ADP as compared with those in the uninoculated soils. Atrazine chlorohydrolase or ADP had no effect on the degradation of metolachlor. The half-lives of atrazine in the freshly added soils and in the aged soils after the treatment with atrazine chlorohydrolase or ADP markedly decreased as compared with those in the uninoculated soils. The half-lives of metolachlor in the aged soils were much longer than those of freshly added metolachlor. The percentage atrazine degraded in the freshly treated soils was much higher than that in the aged soils. This indicates that aging significantly decreased the bioavailability of atrazine. Vegetation significantly decreased the concentration of metolachlor. However, vegetation showed no effect on the degradation of atrazine.  相似文献   

14.
Summary This study is concerned with the way alachlor, atrazine and metolachlor interfered with phosphatase activity in a clay loam soil unenriched and enriched with maize residues. Enrichment caused an increase in all phosphatase activities (acid and alkaline phosphomonoesterase, phosphodiesterase, phosphotriesterase) tested. Interference with phosphatase activity following herbicidal treatment was found in both unenriched and enriched soil samples. Statistically significant interference was dependent on soil enrichment, the type of herbicide and its rate of application and the time elapsed since the herbicidal treatment. The observed changes in phosphatase activities are attributed to herbicidal action on phosphatase-producing microorganisms. Among the herbicides tested, the acetanilide derivatives exerted a lesser inhibiting effect than atrazine. Nevertheless, all the altered phosphatase activities showed a tendency, more or less rapid, to reach the levels in the corresponding untreated soil samples.  相似文献   

15.
Humic acids were extracted from ten sources, ranging from a Podzol to brown coal, for the experiments with three herbicides. Prior to the addition of one of the herbicides, the humic acids were placed in a finely divided and suspended state so as to approximate conditions in a soil. The IR-spectra after such additions indicated that s-triazines, ametryne, atrazine and prometryne, are bound to humic acids by electron-donor—acceptor complexes. Moreover, the amounts of herbicides bound to humic acids are inversely proportional to the amounts of phenolic hydroxyls.  相似文献   

16.
There is an increasing interest in agricultural systems in which the use of herbicides is forbidden. Therefore, soils treated with herbicides atrazine and metolachlor for the last 20 years were compared with soil samples from the same field that had never been treated (control soil). We determined the pollution induced community tolerance (PICT) by evaluating the methane oxidation capacity of soil samples after adding increasing amounts of a methane oxidation inhibitor, 2,4‐dichlorophenoxyacetic acid (2,4‐D). Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes assessed whether the soil methanotrophic community differed between the two treatments. Addition of 60 µg 2,4‐D per g soil clearly inhibited methane oxidation in both soils but increased the time needed to oxidize 5% methane in the headspace by 250% for the control soil compared with 175% for the herbicide‐treated soil. This indicates that the soil with a long‐term herbicide history had a greater tolerance to the methane oxidation inhibitor than did the control soil. The DGGE of 16S rRNA genes amplified directly from soil community DNA could also distinguish the two treatments. The banding patterns of the Type I methanotrophs contained fewer bands in the herbicide‐treated soil. It seems that both the PICT approach and DGGE analysis are effective assays to distinguish a long‐term herbicide‐treated soil from an untreated soil.  相似文献   

17.
Atrazine and metolachlor degradation in subsoils   总被引:6,自引:0,他引:6  
Degradation of atrazine [2-chloro-4-etylamino-6-isopropylamino-1,3,5-triazine] and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide] in sterile and non-sterile soil samples collected at two different soil depths (0-20 and 80-110 cm) and incubated under aerobic and anaerobic conditions was studied. Under aerobic conditions, the half-life of atrazine in non-sterile surface soil was 49 days. In non-sterile subsoil, the half-life of atrazine (119 days) was increased by 2.5 times compared in surface soils and was not statistically different from half-lives in sterile soils (115 and 110 days in surface soil and subsoil, respectively). Metolachlor degradation occurred only in non-sterile surface soil, with a half-life of 37 days. Under anaerobic conditions, atrazine degradation was markedly slower than under aerobic conditions, with a half-life of 124 and 407 days in non-sterile surface soil and non-sterile subsoil, respectively. No significant difference was found in atrazine degradation in both sterile surface soil (693 days) and subsoil (770 days). Under anaerobic conditions, degradation of metolachlor was observed only in non-sterile surface soil. Results suggest that atrazine degraded both chemically and biologically, while metolachlor degraded only biologically. In addition, observed Eh values of soil samples incubated under anaerobic conditions suggest a significant involvement of soil microorganisms in the overall degradation process of atrazine under anaerobic conditions.  相似文献   

18.
Herbicides atrazine and metolachlor have been detected in water bodies across the world. The objective of this study was to assess the efficiency of 0‐m, 3‐m, 6‐m and 9‐m grass filter strips to reduce masses of dissolved metolachlor, atrazine and deethylatrazine (a degradation product of atrazine) exported in runoff. For that purpose, 16 uncultivated plots (3‐m wide × 65‐m long) with 0‐m‐, 3‐m‐, 6‐m‐ and 9‐m‐long grass filter strips were setup in a completely randomized block design. During four seasons, masses of dissolved atrazine, metolachlor and deethylatrazine were determined for the first four to five rain events, under natural rain conditions, after atrazine and metolachlor application. Generally, grass filter strips reduced exported herbicide masses by more than 90% and influenced atrazine and metolachlor dissipation kinetics in the field. The 3‐m grass filter strip (area ratio source/strip of 22:1) usually provided a reduction in exported herbicide masses similar to the 6‐ or 9‐m grass filter strips. Therefore, under the present experimental soil and climate conditions, a grass filter strip of 3 m would be a good compromise between environmental protection of surface waters against atrazine and metolachlor contamination and conservation of agricultural land use. Such an approach contributes to the acceptability by producers to implement optimized best management practices such as vegetated filter strips for the preservation of the quality of water resources.  相似文献   

19.
Mobility, extractability, and disappearance of the herbicides diuron, terbuthylazine, metolachlor, and pendimethalin were examined in incubation experiments with two topsoil samples of different natural microbial activity and after sterilization. Soil moisture was held constant at 10, 40, and 60 % WHC. In other variants, the soil water content was changed during the incubation. The four herbicides reveal a fairly different extent of microbial and chemical degradation and immobilization. The herbicide mobility – expressed by coefficients of partition between adsorbed and dissolved herbicide amounts – decreases at a lower rate and extent, when the microbial activity is low or the soil is sterile. With increasing initial soil moisture, also herbicide mobility and extractability increase; but in the course of time, abiotic immobilization occurs to a higher extent. When soil moisture changes during the incubation, formerly non‐extractable herbicide fractions (up to 40 % of the applied amounts) become extractable. Kinetics of herbicide immobilization follow an empirical sigmoidal function, which describes three periods of immobilization. The three‐period shape of the curve and its possible reasons are discussed for the data of the incubation experiments as well as for the results of a long‐term field trial with diuron.  相似文献   

20.
The adsorption kinetics and adsorption parameters of metolachlor, atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA) and hydroxyatrazine (HA) were investigated in a soil profile in a maize field formed from recent alluvial deposits in a river basin in Greece. We used the batch equilibrium method modified to simulate field conditions as closely as possible for the use and practices related to soil applied pre‐emergence herbicides. Pseudo‐equilibrium times, determined by kinetic studies, were achieved after 16, 16, 24, 24 and 48 hours for metolachlor, DIA, DEA, HA and atrazine, respectively. At pseudo‐equilibrium the percentage of the adsorbed amount increased in the order of DEA (10%) < DIA (14%) < atrazine (27%) < metolachlor (43%) ≪ HA (94%) which indicates that more than 57% of all compounds except for HA are in solution and available for transport to deeper soil layers when conditions similar to those simulated in the laboratory exist in the field. Adsorption isotherms of all compounds and in most of the cases correlated well with the Freundlich model and adsorption coefficients (Kf) decreased with increased soil depth. Principal component and multiple regression analyses confirmed the importance of the soil organic carbon content on the adsorption capacity of soils for all compounds except HA in the plough layers (0–40 cm). In the subsurface soils (40–110 cm) variables such as clay content and pH were more important. For HA, the Kf values determined for the plough and subsurface soil layers were better correlated with clay content and pH. Also in the subsurface soils, the variation in organic carbon content was not correlated with the variation of Kf values. Thus calculated Koc‐f‐values misrepresent the adsorptive capacity of these soils towards the compounds studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号