首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the cause of growth retardation, 14 cattle with renal tubular dysplasia (RTD) were investigated by determining serum growth hormone (GH) and insulin-like growth factor (IGF)-1 concentrations. Compared with 6 healthy cattle, the baseline, maximum, area under the curve and peak amplitude of serum GH concentrations were higher or tended to be higher. Serum IGF-1 concentrations were lower normal or lower in cattle with RTD than in healthy cattle. Serum IGF-1 concentrations correlated significantly with body weight and chest girth, but not with serum GH and creatinine concentrations. Growth retardation in RTD might be associated partially with GH resistance.  相似文献   

2.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic neuropeptide that stimulates release of growth hormone (GH) from cultured bovine anterior pituitary gland cells, but the role of PACAP on the regulation of in vivo secretion of GH in cattle is not known. To test the hypothesis that PACAP induces secretion of GH in cattle, meal-fed Holstein steers were injected with incremental doses of PACAP (0, 0.1, 0.3, 1, 3, and 10 microg/kg BW) before feeding and concentrations of GH in serum were quantified. Compared with saline, injection of 3 and 10 microg PACAP/kg BW increased peak concentrations of GH in serum from 11.2 ng/ml to 23.7 and 21.8 ng/ml, respectively (P < 0.01). Peak concentrations of GH in serum were similar in steers injected with 3 or 10 microg PACAP/kg BW. Meal-fed Holstein steers were then injected with 3 microg/PACAP/kg BW either 1 hr before feeding or 1 hr after feeding to determine if PACAP-induced secretion of GH was suppressed after feeding. Feeding suppressed basal concentrations of GH in serum. Injection of PACAP before feeding induced greater peak concentrations of GH in serum (19.2 +/- 2.6 vs. 11.7 +/- 2.6 ng/ml) and area under the response curve (391 +/- 47 vs. 255 +/- 52 ng. ml(-1) min) than injection of PACAP after feeding, suggesting somatotropes become refractory to PACAP after feeding similar to that observed by us and others with growth hormone-releasing hormone (GHRH). We concluded that PACAP induces secretion of GH and could play a role in regulating endogenous secretion of GH in cattle, perhaps in concert with GHRH.  相似文献   

3.
We found previously that porcine growth hormone (pGH) causes an increase in growth rate with a concurrent improvement in carcass composition in pigs. The somatomedin, insulin-like growth factor 1 (IGF-1), is though to play a major role in mediating some of the anabolic actions of GH, while the glucocorticoid hormones are potential counter-regulators of these effects. The present study was conducted to determine the temporal and dose-response relationship between GH administration and serum IGF-1 and cortisol concentrations in pigs. Twelve Yorkshire barrows, fitted with femoral artery catheters, were injected (im) with either 0, 10, 100 or 1,000 micrograms/kg pGH. Blood sampling began 40 min prior to pGH injection and was continued for 37 h. Serum GH, IGF-1 and cortisol concentrations were determined by radioimmunoassay. In control animals, serum GH concentrations ranged from 1.6 to 5.7 ng/ml over 37 h. In the animals treated with increasing doses of pGH, peak serum GH concentrations reached 28, 112 and 286 ng/ml and levels remained elevated for 4, 12 and 24 h, respectively. Serum IGF-1 concentrations were elevated by pGH after a lag time of 4 to 6 h. When the IGF-1 concentrations were integrated over time, the response appeared to be dose-dependent, with an ED50 of 710 micrograms/kg body weight (BW). Data for serum cortisol concentrations showed a great deal of individual variation. A transient increase in cortisol was observed, but only in the group treated with 1,000 micrograms pGH/kg BW. Cortisol levels returned to baseline 2 h after pGH injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The relationship between in vitro somatotroph function and growth was examined in piglets demonstrating a continuous range of growth characteristics. Twenty barrows were sacrificed at 3 weeks of age for the collection of pituitary tissue and blood. Pituitary cells from each animal were cultured and exposed to vehicle (culture medium); .1, 1, and 10 nM growth hormone-releasing hormone (GHRH); 2 mM 8-Br-cAMP (cAMP); 100 nM phorbol myristate acetate (PMA); and 59 mM KCl. All secretagogue treatments stimulated growth hormone (GH) secretion (p < .0001). Basal and stimulated GH secretion in culture, intracellular GH content (icGH), and serum insulin-like growth factor-1 (IGF-1) concentrations were all positively correlated with 3-week weight gain (p < .05). Concentrations of GH in the serum sample taken at sacrifice were not related to growth (p < .3). Intracellular GH content was correlated with in vitro GH secretion (p < .01) and serum IGF-1 concentrations (p < .001). Somatotroph function was contrasted in the 7 largest and 7 smallest piglets (large, 8.3 ± .3 kg, n = 7; small, 4.5 ± .2 kg, n = 7). Treatment with GHRH produced a dose-related increase in GH secretion in both experimental groups (p < .0001). No significant size × GHRH interaction was detected (p = .09). When contrasted with the small group, the large group demonstrated elevated GH secretion in culture (p < .01), icGH content (p < .001), and circulating IGF-1 (p < .001). The results of this study raise the possibility of a functional relationship between porcine somatotroph secretory activity and growth, mediated by IGF-1, which may be regulated by the quantity of GH available for release.  相似文献   

5.
6.
Fall born Angus x Hereford heifers were allotted to treatments at 9 mo of age to achieve the following growth rates: 1) fed to gain 1.36 kg/d (n = 10; HGAIN); and 2) fed to gain 0.23 kg/d for 16 wk, then fed to gain 1.36 kg/d (n = 9; LHGAIN). Growth hormone (GH), insulin-like growth factor-1 (IGF-I), insulin, glucose, nonesterified fatty acids (NEFA), and progesterone were quantified in twice weekly blood samples until onset of puberty. Body weight, hip height, and pelvic area were recorded every 28 d. Frequent blood samples (n = 8 heifers/treatment) were collected every 14 d, commencing on day 29 of treatment until onset of puberty to evaluate secretion of luteinizing hormone (LH) and GH. The HGAIN heifers were younger (369 d; P < 0.001), were shorter at the hip (115 cm; P < 0.05) and had smaller pelvic area (140 cm2; P < 0.10), but body weight (321 kg) did not differ at puberty compared with LHGAIN heifers (460 d; 119 cm; 155 cm2; 347 kg, respectively). The HGAIN heifers had greater (P < 0.05) concentrations of LH, IGF-I, and insulin in serum and glucose in plasma during the first 84 d of treatment than LHGAIN heifers, whereas LHGAIN heifers had greater (P < 0.05) concentrations of GH in serum and NEFA in plasma than HGAIN heifers. On Day 68 of treatment, HGAIN heifers had less mean GH (P < 0.01) and greater (P < 0.05) LH pulse frequency than LHGAIN heifers, whereas LH pulse amplitude and mean LH did not differ (P > 0.10) between treatments. Treatment did not influence secretion of LH and GH at 1 and 3 wk before puberty. Mean GH concentrations in serum and GH pulse amplitude in all heifers were greater (P < 0.05) 2 to 9 d (12.9 and 40.7 ng/ml, respectively) than 16 to 23 d (10.4 and 20.0 ng/ml, respectively) before puberty. Nutrient restriction decreased LH pulse frequency and delayed puberty in beef heifers. Furthermore, dramatic changes in mean concentration and amplitude of GH pulses just before puberty in beef heifers may have a role in pubertal development.  相似文献   

7.
The effect of intracerebroventricular administration of IGF-1 on circulating growth hormone (GH) concentrations has been studied in sheep. Twenty sheep were fitted with jugular vein catheters and with indwelling cerebroventricular cannulae. IGF-I was injected into a lateral cerebral ventricle and changes in the circulating concentrations of GH were measured in jugular vein blood samples. Administration of saline had no effect on circulating GH concentrations over a 3-hr period, and administration of IGF-I (at 1, 3 and 10 micrograms/sheep) also had no significant effect on circulating GH concentrations. From these data we surmise that centrally administered IGF-I does not influence GH secretion and it seems probable that cerebrospinal fluid concentrations of IGF-I do not have a role in regulating GH release in sheep.  相似文献   

8.
Fifteen Angus bulls and 15 Angus steers 9 months of age and 275 kg of body weight were bled at 20-min intervals over a 6-hr period and serum GH and IGF-I concentrations were measured by RIA. There were no differences between bulls and steers in the mean GH concentration, pulse frequency and amplitude when analyzed by the computer program PULSAR. Mean IGF-I concentration was not different between the two sex phenotypes, nor was there a significant correlation between the integrated IGF-I and GH concentrations. Subsequently, five bulls and five steers were selected from the 30 animals, full-fed a diet for growth in individual pens for 3 months and bled at 15-min intervals over a 24-hr period. Bulls tended to show a greater weight gain and feed conversion efficiency (P<.10) than steers during the 3-month period. Serum GH concentrations had a pulsatile pattern in all animals with no apparent diurnal rhythm during the 24-hr bleeding. Although mean GH concentration was not different between the two sex phenotypes, bulls tended to have lower baseline levels (P<.10) and greater peak amplitudes than steers. Serum IGF-I concentrations fluctuated within a two-fold concentration range, with no obvious pulsatility similar to that of GH. Mean IGF-I concentrations of each of the 10 animals were correlated with mean peak GH amplitudes (r = .79), but not with mean GH. These results suggest that gonadal hormone(s) modulates the GH secretory pattern and increases IGF-I secretion which may be related to the greater growth rate of bulls compared with steers.  相似文献   

9.
This study's objective was to determine the effects in dogs of oral capromorelin, a ghrelin agonist, at different doses for 7 days on food consumption, body weight and serum concentrations of growth hormone (GH), insulin‐like growth factor 1 (IGF‐1), and cortisol. Adult Beagles (n = 6) were dosed with placebo BID, capromorelin at 3.0 mg/kg SID, 4.5 mg/kg SID, or 3.0 mg/kg BID. Food consumption, body weight, serum capromorelin, GH, IGF‐1, and cortisol were measured at intervals on days 1, 4, 7, and 9. Capromorelin increased food consumption and body weight compared to placebo and caused increased serum GH, which returned to the baseline by 8 h postdose. The magnitude of the GH increase was less on days 4 and 7 compared to Day 1. IGF‐1 concentrations increased on Day 1 in capromorelin‐treated dogs and this increase was sustained through Day 7. Serum cortisol increased postdosing and returned to the baseline concentrations by 8 h. The magnitude of the increase was less on days 4 and 7 compared to Day 1. A dose of 3 mg/kg was chosen for further study in dogs based on this dose causing increased food consumption and sustained IGF‐1 serum concentrations that may increase lean muscle mass when administered over extended periods.  相似文献   

10.
These studies examined responses of serum prolactin (PRL) and growth hormone (GH) to opioid agonist and antagonist administration in heifers. To minimize nonspecific and behavioral effects and to facilitate future studies with specific opioid receptor agonists, a cannula was placed within the third cerebral ventricle of the brain of 4- to 10-mo-old heifers to directly access hypothalamic regions involved in the regulation of PRL and GH secretion. Increasing doses of morphine (M) from 2 to 1,500 micrograms injected into the third cerebral ventricle increased (P less than .001) serum PRL concentrations in a dose-related manner. Growth hormone responses were variable, resulting in elevated (P less than .05) serum concentrations following morphine, but no dose-related effects were apparent. Both PRL and GH responses to 700 micrograms M were absent when an intracerebral ventricle injection of an equimolar dose of naloxone, an opioid receptor antagonist, was administered prior to M. In a replicated 4 x 4 latin square, the effects of intravenous naloxone on PRL and GH responses was tested in young (86 +/- 11 d) and older (234 +/- 6 d) heifers. Naloxone at doses of 1, 2 and 4 mg/kg reduced (P less than .05) serum concentrations of PRL for 45 to 60 min. Mean concentrations of GH tended to be higher (P less than .07) in older heifers All doses of naloxone decreased (P less than .05) serum GH concentrations in older heifers but proved ineffective in younger heifers. There were no differences between doses of naloxone on either PRL or GH. These data suggest that endogenous opioids are involved in the regulation of PRL and GH secretion in heifers.  相似文献   

11.
Eleven Landrace pigs (six boars and five gilts, 50 kg) representing lines selected for three generations for maximum weight at 200 d of age were compared to eight pigs (four boars and four gilts, 50 kg) representing contemporary randomly selected Landrace controls to determine the effect of selection for growth on the metabolic clearance rate (MCR) and plasma concentrations of porcine growth hormone (GH). To estimate MCR of GH, the disappearance of a bolus of porcine GH was monitored over 120 min following its i.v. injection. Blood samples also were collected every 15 min over a 6-h period before injecting GH to determine baseline and overall mean GH concentrations, mean peak amplitude and number of GH secretory episodes. Boars exhibited greater overall mean GH concentrations (4.80 vs 3.11 ng/ml; P less than .05) and had greater maximum GH concentrations associated with secretory episodes (16.11 vs 10.80 ng/ml; P less than .05) than did gilts. There were no differences between boars and pigs exhibited greater baseline GH concentrations (2.04 vs 1.25 ng/ml; P less than .01) than did those from the unselected Landrace line. Selected and control pigs exhibited similar (P greater than .15) overall mean concentrations of GH, frequency of secretory episodes, amplitude of GH peaks and MCR. These data demonstrate that pigs selected for heavier weight at 200 d of age had greater basal plasma GH concentrations than did unselected control pigs.  相似文献   

12.
The control of growth is a complex mechanism regulated by several metabolic hormones including growth hormone (GH) and thyroid hormones. In avian species, as well as in mammals, GH secretion is regulated by hypothalamic hypophysiotropic hormones. Since thyrotropin-releasing hormone (TRH) and growth hormone-releasing factor (GRF) are potent GH secretagogues in poultry, we were interested in determining the influence of daily intravenous administration of either peptide or both simultaneously on circulating GH and IGF-I concentrations and whether an improvement in growth rate or efficiency would be obtained.

Male broiler chicks were injected once daily for a period of 21 days with either GRF (10 μg/kg), TRH (1 μg/kg) or both GRF and TRH (10 and 1 μg/kg respectively) between four and seven weeks of age. On the last day of the experiment, following intravenous injection of TRH, GRF or a combination of GRF and TRH, plasma GH levels were significantly (P<.05) increased to a similar extent in control chicks and in those which had received daily peptide injections for the previous 21 days. Circulating GH levels between 10 and 90 min post-injection were significantly (P<.05) greater and more than additive than GH levels in chicks injected with both GRF and TRH when compared to those injected with either peptide alone. Mean plasma T3 concentrations during that same time period were significantly elevated (P<.05) above saline-injected control chick levels in birds treated with TRH or GRF and TRH respectively, regardless of whether the chicks had received peptide injections for the previous 21 days. There was no evidence of pituitary refractoriness to chronic administration of either TRH or GRF injection in terms of growth or thyroid hormone secretion.

Despite the large elevation in GH concentration each day, growth rate, feed efficiency and circulating IGF-I concentrations were not enhanced. Thus the quantity or secretory pattern of GH secretion induced by TRH or GRF administration was not sufficient to increase plasma IGF-I concentration or growth.  相似文献   


13.
Cyclic gilts (96 +/- 1 kg) were used to determine the effect of active immunization against growth hormone-releasing factor GRF(1-29)-NH2 on concentrations of growth hormone (GH) and insulin-like growth factor 1 (IGF-1). Gilts were immunized against GRF conjugated to human serum albumin (GRF-HSA, n = 5) or HSA alone at 180 d of age (wk 0). Booster doses were administered at wk 9 and 13. Seven days after the second booster (wk 14), blood samples were collected at 15-min intervals for 6 h before feeding and 30, 60, 120, 180 and 240 min after feeding. Eight days after the second booster, all gilts were administered a GRF analog, [desNH2Tyr1,Ala15]-GRF(1-29)-NH2, followed by an opioid agonist, FK33-824. Blood samples were collected at 15-min intervals from -30 to 240 min after injection. Immunization against GRF-HSA resulted in antibody titers, expressed as dilution required to bind 50% of [125I]GRF, ranging from 1:11,000 to 1:60,000 (wk 11 and 14); binding was not detectable or was less than 50% at 1:100 in HSA gilts (P less than .05). Episodic release of GH was abolished by immunization against GRF-HSA (P less than .05). Mean GH was decreased (P less than .07), but basal GH concentrations were not altered (P greater than .15) by immunization against GRF-HSA. Serum concentrations of IGF-1 were similar at wk 0, but concentrations were lower in GRF-HSA than in HSA gilts (P less than .05) at wk 14.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The influence of plane of nutrition, growth hormone (GH) treatment and dietary polyunsaturated fat on serum concentrations of GH and insulin (INS) and binding capacities of GH, INS and prolactin (PRL) in liver, mammary parenchyma and adipose tissue was assessed in prepubertal ewe lambs. Ten lambs were assigned to each of four treatment groups. Treatments included: (A) lambs with ad libitum access to a high-energy ration; (G) lambs fed as group A and treated with bovine GH (.08 mg/kg/d); (R) lambs with feed intake restricted to limit ADG to about 120 g; and (S) lambs with ad libitum access to a ration including formaldehyde-protected sunflower seed. Diets, all approximately isonitrogenous and isocaloric, were fed from about 7 to 22 wk of age. Weekly blood samples were collected during wk 6 to 14 of the trial. Averaged across sampling dates, mean serum concentrations of GH were elevated in G lambs (P less than .05) and INS concentrations differed in the order G greater than A greater than R = S (P less than .05). Crude membranes for binding assays were prepared from liver, mammary parenchyma and adipose tissue. Mean concentrations of GH receptors in liver and PRL receptors in mammary parenchyma were elevated in group S lambs (P less than .01). Dietary polyunsaturated fat increased the number of GH receptors in liver and PRL receptors in mammary parenchyma. Increased availability of receptors may mediate the stimulation of mammary growth observed in lambs fed polyunsaturated fat.  相似文献   

15.
The chemical nature and variations in serum concentrations of growth hormone binding protein (GHBP) from humans, rabbits, and rodents have been reported. To date little is known about the GHBP of domestic animals. Therefore, we initiated these studies to determine whether a serum GHBP was present in domestic animals and to purify the binding protein (BP) from serum of selected species. Using a dextran-coated charcoal separation assay, specific growth hormone (GH) binding was demonstrated in ovine, bovine, chicken, human, goose, porcine, and equine serum (listed in sequence from lowest to highest binding). Variation in BP activity was relatively high, both within and between species. Yearling ewes had higher serum GHBP than either prepubertal (4 mo) or older (5 yr) ewes. The GHBP was partially purified from chicken, ovine, and porcine serum using GH affinity chromatography. These BP had high affinity (Ka = 2 x 10(8) to 2 x 10(9) L/mol, depending on species) and low capacity (2 x 10(-10) to 5 x 10(-11) mol/unit of protein) for human GH but showed lower binding affinity for homologous GH (Ka = 2 x 10(7) L/mol). The porcine GHBP had the highest and ovine GHBP the lowest affinity for human GH. Other heterologous somatotropic hormones, ovine placental lactogen, and ovine GH displayed higher binding affinity to chicken and pig BP than the respective homologous hormones. Further chromatographic purification of the porcine GHBP resulted in an additional 1,000-fold purification. The estimated molecular weight of porcine GHBP is 50,000 to 60,000 Da. These results demonstrate that the serum from all domestic species tested contains a specific GH-binding moiety and that under the conditions described here human GH is a more efficient ligand than the homologous hormone.  相似文献   

16.
The effects of somatostatin immunoneutralization on growth rate, growth hormone (GH) secretion and circulating insulin-like growth factor I (IGF-I) concentrations were investigated in chickens through the use of passive and active immunization techniques. Intravenous bolus injection of goat-antisomatostatin stimulated a significant (P less than .05) increase in plasma GH levels for one hour post-injection in four and six week old male broiler chickens. The GH response to an intravenous bolus injection of hGRF44NH2 was similar in the antisomatostatin treated chicks and normal goat serum treated controls. Despite the presence of circulating somatostatin antisera after 28 hours, plasma GH levels were not different between control and antisomatostatin-treated chicks at that time. Continuous administration of somatostatin antisera by Alzet pump over a two-week period resulted in significant (P less than .05) elevations in plasma GH levels at one week post-implantation and in circulating IGF-I concentrations after two weeks of administration. Chicks which developed antibodies against somatostatin following active immunization exhibited a 7.1% increase in growth rate which was associated with a significant decrease in abdominal fat. However, neither GH nor IGF-I concentrations were elevated in the chicks which developed somatostatin antibodies. Thus, the benefits gained from somatostatin immunoneutralization may be exerted through mechanisms other than GH.  相似文献   

17.
The effects of n-methyl-d,l-aspartate (NMA), a neuroexcitatory amino acid agonist, on luteinizing hormone (LH), prolactin (PRL) and growth hormone (GH) secretion in gilts treated with ovarian steroids was studied. Mature gilts which had displayed one or more estrous cycles of 18 to 22 d were ovariectomized and assigned to one of three treatments administered i.m.: corn oil vehicle (V; n = 6); 10 micrograms estradiol-17 b/kg BW given 33 hr before NMA (E; n = 6); .85 mg progesterone/kg BW given twice daily for 6 d prior to NMA (P4; n = 6). Blood was collected via jugular cannulae every 15 min for 6 hr. Pigs received 10 mg NMA/kg BW i.v. 2 hr after blood collection began and a combined synthetic [Ala15]-h GH releasing factor (1-29)-NH2 (GRF; 1 micrograms/kg BW) and gonadotropin releasing hormone (GnRH; .2 micrograms/kg BW) challenge given i.v. 3 hr after NMA. NMA did not alter LH secretion in E gilts. However, NMA decreased (P < .02) serum LH concentrations in V and P4 gilts. Serum LH concentrations increased (P < .01) after GnRH in all gilts. NMA did not alter PRL secretion in P4 pigs, but increased (P < .01) serum PRL concentrations in V and E animals. Treatment with NMA increased (P < .01) GH secretion in all animals while the GRF challenge increased (P < .01) serum GH concentrations in all animals except in V treated pigs. NMA increased (P < .05) cortisol secretion in all treatment groups. These results indicate that NMA inhibits LH secretion and is a secretagogue of PRL, GH and cortisol secretion with ovarian steroids modulating the LH and PRL response to NMA.  相似文献   

18.
Growth hormone (GH)-releasing factor (GRF) at concentrations of 10−12 through 10−7M for 6 hr linearly increased GH release (b1 = 10.4 ± .3) from bovine anterior pituitary cells in culture. Maximum release of GH (262% above controls) occurred at 10−7M GRF. In contrast, GH release-inhibiting factor (SRIF) at 10−12 through 10−5M had no effect on basal concentrations of GH. In a second experiment, as the proportion of SRIF relative to GRF increased. SRIF suppression of GRF-induced GH release from anterior pituitary cells increased. In a third experiment, anterior pituitary cells cultured in media containing fetal calf serum (FCS) were treated with cortisol (0 or 10 ng/ml media) for 24 hr before exposure to 10−13 through 10−7M GRF. GRF linearly increased GH secretion (b1 = 7.4 ± .3) and cortisol augmented this response (b1 = 10.5 ± .6). However, when cells were cultured in media containing dextran-charcoal treated FCS, cortisol did not alter GRF-induced GH release. Our results demonstrate that GH response of bovine anterior pituitary cells to GRF was modulated negatively by SRIF. However, augmentation of GRF-induced GH release by cortisol was evident only when cells were cultured in media supplemented with untreated FCS.  相似文献   

19.
Yearling ewes (n = 32) were used in a 2x2x2 factorial experiment to determine effects of breed (Targhee vs. Suffolk), energy intake (1x vs. 3x NEm requirements, and physiological status (nonpregnant, nonlactating vs. lactating) on serum GH, insulin, NEFA, glucose, and blood urea nitrogen (BUN) concentrations. Blood collections were made in two periods that began 21 and 32 d after ewes lambed. Lactating ewes had more GH peaks (P<.10), higher (P<.01) mean GH concentration, and greater (P<.01) area under the GH curve (AUC) than nonlactating ewes. The AUC was greater (P<.01) in ewes fed 1x NEm than in ewes fed 3x NEm. Energy intake had no effect on serum GH before feeding (P>.23) when evaluated within physiological statuses. After feeding, GH concentrations were greater (P<.10) for ewes fed 1x NEm than for those fed 3x NEm. Insulin and glucose did not differ (P>.23) between energy intake levels. Insulin and glucose were greater (P<.001) in nonlactating than in lactating ewes when evaluated within breed. Lactating and Targhee ewes fed 1x NEm had greater (P<.001) NEFA concentration than nonlactating and Targhee ewes fed 3x NEm, respectively. Ewes fed 3x NEm and Targhee ewes had greater (P<.005) BUN concentrations than ewes fed 1x NEm and Suffolk ewes, respectively. Physiological status seems to play a more important role in the regulation of GH than does energy intake. Higher BUN concentrations in Targhee than in Suffolk ewes demonstrates one metabolic event that distinguishes a breed's adaptation to the environment in which it originated.  相似文献   

20.
Stimulation of swine growth by porcine growth hormone   总被引:7,自引:0,他引:7  
Highly purified porcine growth hormone (pGH; USDA-B1) was administered by im injection (22 micrograms X kg body weight-1 X d-1) to rapidly growing Yorkshire barrows for 30 d. Growth hormone significantly increased growth rate (10%), feed efficiency (4%), cartilage growth and muscle mass. However, pGH did not affect carcass adipose tissue mass. Intramuscular lipid content of the longissimus was increased 50% by pGH administration. Plasma pGH concentration was elevated (7- to 11-fold) for 3 to 5 h post-injection. Chronic administration of pGH depressed pituitary GH content and concentration approximately 45%. No GH antibodies were detected in the plasma of GH-treated swine. Plasma somatomedin-C concentration was increased 55% by GH treatment 3 h post-injection. Plasma glucose and insulin concentrations were both significantly increased in GH-treated swine, suggesting that the animals had developed a state of insulin resistance. Plasma-free fatty acid concentration tended to be higher in GH-treated animals. Treatment of swine with pGH significantly decreased plasma blood urea nitrogen. Assessment of animal health during the trial and postmortem indicated that pGH administration did not have any adverse effects. In summary, treatment of young, rapidly growing swine with pGH stimulated growth performance without affecting animal health or inducing the production of GH antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号