首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 399 毫秒
1.
单螺杆挤压机对农产品加工因素的优化   总被引:17,自引:1,他引:17  
朱曾 《农业工程学报》1995,11(3):162-166
在农产品和食品挤压机加工过程中,由于各种因素的变化,对产品的膨化质量有很大影响。通过挤压机螺杆与螺套之间的间隙、螺杆转速和物料含水率的变化,对产品的膨化指数,挤压机的生产率和功耗进行测定,分析在不同工况下挤压的工作情况以及产品特性。试验结果表明,影响试验指标的主要因素是螺杆与螺套之间的间隙,试验因素主次排列为间隙,含水率和转速,其较优组合为螺杆螺套之间的间隙0.75mm,螺杆转速300r/min,物料含水率18%。  相似文献   

2.
亚麻籽挤压膨化脱毒的工艺优化   总被引:2,自引:1,他引:2  
采用SLG67-18.5双螺杆挤压机优化亚麻籽脱毒工艺。通过二次正交旋转组合设计试验,研究了温度、含水率、螺杆转速、喂料速度对亚麻籽中氰华氢(HCN)去除率的影响。单因素分析表明,亚麻籽中HCN去除率随温度升高、含水率增加、螺杆转速提高而升高;随喂料速度增加呈抛物线,中等喂料速度脱毒效果更好。利用频数分析法进行优化,得到亚麻籽中HCN去除率有95%的可能高于90%的参数范围,即膨化温度为147~153℃,亚麻籽含水率为13.8%~17.6%,螺杆转速为186~211 r/min,喂料速度为61.7~74.0 kg/h,从而为亚麻籽脱毒和开发利用及现有挤压膨化机的操作和调整提供了理论依据。  相似文献   

3.
水产沉性颗粒饲料挤压蒸煮工艺对其理化特性的影响   总被引:3,自引:2,他引:1  
为了规模化生产出低污染、高转化率的环保型水产沉性颗粒饲料,选用双螺杆挤压机对水产全价配合原料进行挤压熟化研究。以沉性水产硬颗粒饲料理化特性(膨化度、近似密度、糊化度、耐久性和水中稳定性)为重要指标,采用表面响应分析法研究了物料含水率(22%~38%)、套筒温度(70~170℃)和螺杆转速(73~107?r/min)对其挤压工艺和饲料理化特性的影响规律,SEM分析其微观结构。结果表明:物料含水率、套筒温度和螺杆转速均显著影响饲料的理化特性。中高物料含水率和套筒温度及低螺杆转速时,才能获得理想的沉性高熟化水产颗粒饲料,其理化特性具有低膨化度(1.14),高近似密度(757.6?g/L)、糊化度(879.5?g/kg)、耐久性(96.6%)和水中稳定性(88.7%)。SEM分析显示优化条件(物料含水率31%,套筒温度126℃,螺杆转速78?r/min)下生产的颗粒饲料结构光滑质密。该研究可为发展高效、低耗、低碳高品质沉性水产饲料研究和生产提供参考。  相似文献   

4.
选用双螺杆挤压机对水产全价配合原料进行挤压熟化,以沉性水产硬颗粒饲料理化特性(膨化度、堆积密度、糊化度、耐久性和水中稳定性)为重要指标,采用表面响应分析法研究了物料水分含量(25~35%)、套筒温度(90~150℃)和螺杆转速(80~100 r/min)对其挤压工艺和饲料理化特性的影响规律,SEM分析其微观结构。结果表明:物料水分、套筒温度和螺杆转速均显著影响饲料的理化特性。中高物料水分和套筒温度及低螺杆转速时,才能获得理想的沉性高熟化水产颗粒饲料,其理化特性具有低膨化度(1.15),高堆积密度(754.7 g/L)、糊化度(882.3 g/kg)、耐久性(96.6%)和水中稳定性(89.1%)。SEM分析显示优化条件(物料水分30%,套筒温度120℃,螺杆转速80 r/min)下生产的颗粒饲料结构光滑质密。  相似文献   

5.
棉籽粕双螺杆挤压脱毒中几个工艺参数的研究   总被引:1,自引:1,他引:0  
利用自行开发的双螺杆食品挤压机对棉籽粕进行挤压脱棉酚试验,考察了含水率、螺杆转速和喂料速度等参数对脱毒效果与挤出产量的影响。实验中采用响应表面法进行实验方案设计和数据分析。结果表明:减低含水率、喂料速度,提高螺杆转速可使脱毒效果改善。喂料速度是影响挤出产量的主要因素。喂料速度越大,产量越大,因而实际中脱毒效果与产量间存在如何均衡的问题。文中相应给出了本实验条件下的几个响应模型,用以评价各加工变量的影响。实验结果还表明本研究所用的双螺杆挤压机的结构参数在棉籽粕挤压脱毒方面是卓有成效的。  相似文献   

6.
该文通过4因素5水平二次正交旋转组合试验,研究了用于浸油的玉米胚挤压膨化预处理过程中的挤压系统参数(套筒温度、模孔孔径、物料含水率、螺杆转速)对考察指标(残油率、剪切强度、密度)的影响规律。得到最佳挤压工艺参数:模孔直径9 mm,物料出口温度93℃,喂入物料含水率13.3%,螺杆转速238 r/min,在此条件下得出残油率最优值为0.40%。和传统工艺相比,浸提时间缩短一半,膨化物的密度与轧坯和预轧样相比分别增加29.3%和13.8%。只要参数选择合适,可使原设备的浸出能力提高60%~120%。  相似文献   

7.
香菇双螺杆挤压膨化机的设计与试验   总被引:1,自引:0,他引:1  
针对现有双螺杆挤压膨化设备生产香菇膨化产品时存在物料堵塞、预熟度低、作业参数缺失等问题而导致生产的产品膨化率低、吸水性差、硬度高等缺陷,该研究设计了一种香菇双螺杆挤压膨化设备,并对设备中的关键部件喂料搅拌防堵装置、预熟调质装置与双螺杆结构参数进行了设计与确定。同时,为探究设备中的作业参数对产品膨化性能的影响,研究了设备的螺杆转速、膨化温度、物料含水率对产品的膨化率、硬度、脆度、吸水性的影响。结果表明:影响膨化率的显著性顺序依次为螺杆转速、物料含水率、膨化温度;影响硬度的显著性顺序依次为螺杆转速、膨化温度、物料含水率;影响脆度的显著性顺序依次为膨化温度、物料含水率、螺杆转速;影响吸水性的显著性顺序依次为膨化温度、物料含水率、螺杆转速。其次,结合各因素交互作用的影响规律与目标优化结果,得出设备的最佳作业参数为:螺杆转速167.23r/min,膨化温度151.68℃,物料含水率16.83%,此时,产品的膨化率、硬度、脆度、吸水性分别为4.04%、18.61N、-8.46mm/cm^2、313.86%。将优化后的参数值在设备中进行了生产性应用,得到生产值与优化值的误差均小于4%,最大生产率为165 kg/h。与扬州大学机械工程学院实验室内的现有设备相比,在提高物料送料的连续性与调质熟化度的基础上,膨化率提高了25.00%,硬度降低了48.21%、脆度提升了40.55%、吸水性提高了62.35%。因此,该机的设计可为香菇膨化产品的开发提供了一种较为成熟的技术装备。  相似文献   

8.
食品加工用三螺杆挤压机   总被引:5,自引:1,他引:5       下载免费PDF全文
发展挤压食品巨大的市场空间推动了中国螺杆类食品挤压机械的不断创新。结合作者对食品加工用螺杆类挤压机的研究实践及食品加工的特点,就“一”字排列的和三角形排布的两种三螺杆挤压机的几何设计构型,论述了凭借三螺杆挤压机成倍增多的啮合区,以小直径、小长径比的多螺杆组合,使食品的挤压蒸煮作用及产量得到有效提高,说明了三螺杆挤压机在食品加工技术经济上的优越性。  相似文献   

9.
挤压加工参数对重组米生产过程及产品膨胀度的影响   总被引:3,自引:1,他引:2  
为了考察重组米生产过程中挤压加工变量对几种系统参数与产品膨胀度的影响,试验以杂交籼米(9?718品种)为原料,利用响应面模型,以螺杆转速、进料速度、进料含水率以及末端机筒温度为输入变量,以挤压系统参数(物料温度、模头压强、扭矩、比机械能和产品含水率)和重组米膨胀度为响应变量,探索在重组米生产过程中加工变量与系统参数及产品膨胀度的关系。结果表明,压强、比机械能和产品膨胀度都受到4个挤压变量的显著影响,但是物料温度受进料速度影响不显著,马达扭矩受末端机筒温度影响不显著,产品含水率仅受进料含水率的显著影响。比机械能与螺杆转速正相关,与进料速度、进料含水率和末端机筒温度负相关。所得二次回归模型均拟合良好,建立的挤压数学模型可应用于重组米生产,为重组米工业化生产的过程预测和产品性质预测提供参考。  相似文献   

10.
试验以杂交籼米为原料,利用响应面模型,研究双螺杆挤压生产重组米过程中螺杆转速(60-180rpm)、进料速度(20-60g/min)、物料水分含量(22-42%)以及末端机筒温度(80-100℃)对挤压系统参数和重组米膨胀度的影响。结果表明,压强、比机械能和产品膨胀度都受到四个挤压变量的显著影响,但是物料温度受进料速度影响不显著,马达扭矩受末端机筒温度影响不显著,产品水分含量仅受进料水分含量的显著影响。比机械能与螺杆转速正相关,与进料速度、物料水分含量和末端机筒温度负相关。所得二次回归模型均拟合情况良好,,达到设计要求。可以认为本文建立的挤压数学模型可以应用于重组米生产领域,为重组米工业化生产的过程预测和产品性质预测提供一定帮助参考。  相似文献   

11.
Mean residence time of rice flour in a twin‐screw extruder was determined using a blue tracer. Variables studied included moisture content, screw speed, barrel temperature, and screw configuration. Mean residence time increased with the increase of the barrel temperature and with the addition of reverse and kneading elements. Mean residence time was significantly related to screw speed, moisture content, die pressure, and screw configuration (P < 0.05). An empirical model was developed to predict mean residence time with the ability to reflect the changes of the barrel temperature and screw configuration. The effects of different extrusion operating conditions including screw speed, moisture content, barrel temperature, and screw geometry on the mean residence time were considered in the model. The validity of the developed model was extensively evaluated and verified using different screw geometries and other processing variables. The mean residence times predicted by the developed model are in good agreement with the experimental data.  相似文献   

12.
An in‐line slit‐die viscometer (SDV) was used to measure the viscosity of a melt extrudate independently of the extruder operating conditions. The melt produced by extrusion of the corn grits followed a power law rheological model. The viscosity of the melt and extrusion parameters such as specific mechanical energy (SME), torque, and die pressure decreased with increasing moisture content. The degree of starch gelatinization increased when barrel temperature increased from 90 to 130°C. At temperatures higher than 130°C, most of the starch had gelatinized. The increase in barrel temperature, however, resulted in small changes in the apparent viscosity of the melt, until a maximum of ≈130°C. At a constant feed rate, SME increased and torque decreased when screw speed increased due to the shear thinning behavior of the melt. At a constant screw speed, the torque increased and SME decreased with increasing feed rate. This was due to a decrease in apparent viscosity of the melt at higher feed rates. SME is not an independent extrusion variable and should be used with caution either when predicting the effect of thermomechanical treatment of the product or as the key and only variable for controlling the food extrusion process.  相似文献   

13.
The effects of added calcium hydroxide (0.0, 0.15, 0.25, and 0.35%) and processing conditions, feed moisture content (mc) (16, 18, and 20%) and barrel temperature (130 and 150°C) on characteristics of corn meal extrudates were studied. Extruder screw speed was maintained at 130 rpm. Corn meal was extruded with a single-screw extruder (Brabender model GNF 1014/2) with a screw compression ratio of 3:1. The highest values (P < 0.05) for radial expansion and the lowest values for density and breaking force of extrudates were found for the treatment with 0.00% calcium hydroxide extruded at 16% feed mc and 130°C barrel temperature. This treatment was statistically different from the other treatments. Best values for radial expansion of samples extruded with added calcium hydroxide were for the samples with 0.15% calcium hydroxide at 18% feed mc and 130°C barrel temperature, followed by the sample with 0.35% calcium hydroxide at 16% feed mc and 130°C barrel temperature. Water absorption index and water solubility index were affected by calcium hydroxide and extrusion conditions evaluated. Extrudates had large numbers of flattened and sheared granules. Increases in calcium hydroxide increased extrudate yellowness. The combined action of calcium hydroxide and extrusion conditions completely modified the organized structure of the starch and suggest the formation of a starch-calcium complex (crystalline region). The texture of the extruded products was crispy after puffing.  相似文献   

14.
Z. Pan  S. Zhang  J. Jane 《Cereal Chemistry》1998,75(4):541-546
The effects of extrusion variables (moisture, screw speed, and temperature) and chemicals (urea and sodium bicarbonate) on the properties of starch-based binders (water absorption, bulk density, binder yield, expansion ratio, solubility, pH) and processing conditions (die temperature and pressure, feed rate, and specific mechanical energy) were studied using a central composite design. All quadratic regression models, except the models for bulk density and pH, were significant at the P ≤ 0.06 level. These models can predict the binder properties and processing conditions when extrusion variables and the chemical concentrations are known. Optimum combinations of the chemical concentrations (g/100 g of starch) and extrusion variables to achieve high water absorption in the binders were 15–20 g of urea /100 g of starch, 0–4 g of sodium bicarbonate/100 g of starch, 35–40 g of moisture/100 g of starch, 100–120 rpm screw speed, and 185–215°C barrel temperature. The molecular degradation of the starch occurred during extrusion, especially when the moisture content of starch was <30 g/100 g of starch.  相似文献   

15.
Gluten-glycerol dough was extruded under a variety of processing conditions using a corotating self-wiping twin-screw extruder. Influence of feed rate, screw speed, and barrel temperature on processing parameters (die pressure, product temperature, residence time, specific energy) were examined. Use of flow modeling was successful for describing the evolution of the main flow parameters during processing. Rheological properties of extruded samples exhibited network-like behavior and were characterized and modeled by Cole-Cole distributions. Changes in molecular sizes of proteins during extrusion were measured by chromatography and appeared to be correlated to molecular size between network strands, as derived from the rheological properties of the materials obtained. Depending on operating conditions, extrudates presented very different surface aspects, ranging from very smooth-surfaced extrudates with high swell to completely broken extrudates. The results indicated that extrudate breakup was caused by increasing network density, and some gliadins may have acted as cross-linking agents. Increasing network density resulted in decreasing mobility of polymeric chains, and “protein melt” may no longer have been able to support the strain experienced during extrusion through the die. Increasing network density was reflected in increased plateau modulus and molecular size of protein aggregates. Increasing network structure appeared to be induced by the severity of the thermomechanical treatment, as indicated by specific mechanical energy input and maximum temperature reached.  相似文献   

16.
A model was developed for the influence of particle size on the extrusion of a fish feed and the physical characteristics of the extrudates evaluated. The study was conducted using factorial experiments in a fractional replication design for four variables with three levels, and one‐third of the replicates (34 factorial in 27 units) were examined in a laboratory extruder. The torque‐screw speed measurement was used to develop a viscosity model equation that considered different shear rates, product temperature, initial moisture content, and particle size. When particle size decreased, the apparent viscosity became smaller. The barrel pressure was important in producing extrudate with a uniform volume over the range of processing conditions tested because it had a strong correlation with the volumetric expansion. The material with lower moisture and larger particles caused the specific mechanical energy to increase. The viscosity model developed in this study can be applied to the development of large‐scale extrusion models that determine the effect of particle size on the feed material extrudates.  相似文献   

17.
无导向片旋风分离清选系统的试验分析(简报)   总被引:5,自引:4,他引:1  
为简化微型小麦联合收割机旋风分离清选系统的结构,便于推广应用,进一步满足微型小麦联合收割机清选性能要求,该文运用正交试验、通用旋转组合试验和优化设计,找到了分离筒内无导向片的旋风分离清选系统各部分的结构参数和运动参数的最优组合.试验结果表明,吸杂风机转速、扬谷器转速和分离筒上锥角对籽粒清洁率和清选损失率影响均显著,但简体高度对籽粒清洁率和清选损失率影响不显著.当吸杂风机的转速为2399 r/min,扬谷器的转速为1097 r/min,所得到的清洁率可达到99.15%,损失率为0.295%.  相似文献   

18.
The effects of moisture, screw speed, and barrel temperature on pasting behavior of refabricated rice grains were investigated in a corotating twin‐screw extruder with response surface methodology. The rice flour obtained from broken rice (≤1/8 of actual kernel size) of PR‐116 variety was used in the study. The screw speed was set at five levels between 49 and 150 rpm, barrel temperature between 59 and 110°C, and feed moisture between 31 and 45%. All pasting properties of refabricated grains evaluated—peak viscosity, hold viscosity, breakdown viscosity, final viscosity, and setback viscosity—were significantly (P < 0.01) affected by the three process variables. Barrel temperature was the most significant variable, with quadratic effect on all viscosity parameters. Response surface regression models were established to correlate the viscosity profile of refabricated rice grains to the process variables. The optimum moisture content, screw speed, and barrel temperature estimated by a response surface of desirability function for the production of refabricated rice were 36%, 130 rpm, and 89.5°C, respectively. Scanning electron microscopy also revealed that intermediate moisture and temperature along with high screw speed during extrusion could create a more realistic appearance of refabricated rice with less rupture of starch granules.  相似文献   

19.
Stability of isoflavones during extrusion processing of corn/soy mixture   总被引:3,自引:0,他引:3  
The influence of extrusion processing in the presence of corn on the quantity and quality of genistein, daidzein, and their respective beta-glucoside, acetyl glucoside, and malonyl glucoside derivatives was evaluated. Products of 100% soy (textured) and a blend of 20% soy protein concentrate (SPC) and 80% corn meal (direct-expanded) were extruded, with evaluations before and after extrusion. In addition, a 3 x (3 x 3) split-plot factorial experiment investigated the influence of barrel temperature (110, 130, 150 degrees C), moisture content (22, 24, 26%), and relative residence time (1, 0.8, 0.6) on extruder response and isoflavone profile. The extrusion barrel temperature had the most influence on isoflavone profile, especially decarboxylation of the malonyl beta-glucoside, followed by the moisture content. The amount of extractable isoflavones decreased after extrusion for both the SPC and SPC/corn meal blend when extracted with 80% aqueous methanol but remained approximately the same when first hydrated with water before extraction. However, initially hydrating with water produced enzymatic glycolysis in the unextruded samples, increasing the aglycons dramatically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号