首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat stress is one of the major limitations to crop productivity worldwide. Global warming effects are expected to increase the number of hot days and increase the probability and intensity of heat stress events. Short periods (3–5 days) of heat stress with maximum temperatures exceeding 35°C often occur during late spring and early summer in some pyrethrum growing regions of Australia. These heat stress events usually coincide with pyrethrum flowering period. Pyrethrum is a perennial herbaceous plant which is commercially grown for extraction of pyrethrins which accumulate in the achenes of the flowers and are used as a natural insecticide. This experiment was conducted to understand the effects of timing of short periods of heat stress on flower development and pyrethrum yield. Plants were subjected to short periods of high temperature treatments (12 hr at 35–40°C) for three consecutive days at three flower maturity stages (early, mid, late). Control plants were grown at ambient temperature (10–25°C) throughout the flowering period. Exposure of pyrethrum plants to short periods of high temperature during the flowering period caused a significant reduction in the flower and pyrethrin yield. This was associated with the reduction in flower size and accelerated flower senescence. Exposure of pyrethrum plants to heat stress significantly increased the rate of flower development resulting in a shorter flowering period. Overall, plants grown under control treatment showed slower rate of flower development and longer duration flowering period. This resulted in longer duration of pyrethrin accumulation and higher yield of pyrethrins per flower. Timing and duration of heat stress significantly influenced pyrethrin yield per flower. Heat stress caused more severe yield reductions at early flowering than later in the flowering period. Research focusing on agronomic strategies, phenology and breeding for tolerance to heat stress is therefore important to cope with future climate changes and to obtain maximum pyrethrin yield.  相似文献   

2.
Increasing climatic variability is projected to affect large‐scale atmospheric circulation, triggers and exacerbates more extreme weather events, including winter warming and more frequent extreme low temperatures in spring. Historical data from 1961–2000 indicate these temperature fluctuations may seriously affect grain yield of winter wheat crops. In this study, a field air temperature control system (FATC) was used to simulate the winter warming, spring cold and freezing events in the field experiment in 2010–2011 to explore their impacts on growth and yield of winter wheat. Eight elite wheat varieties released during 1961–2000 were included and four temperature scenarios were applied, including late spring freeze alone, winter warming + late spring freeze, early spring cold + late spring freeze and the normal temperature condition as control. Winter warming combined with late spring freeze significantly decreased tiller survival rate, leaf photosynthetic rate and leaf growth in wheat plants, and reduced the spike number and kernel number per spike, and the final grain yield. In contrast, the wheat plants experienced early spring cold had higher tiller survival rate, leaf photosynthetic capacity and sugar accumulation and improved tolerance to the late spring freeze, resulting in less yield loss, as compared with those without experiencing early spring cold. Both the meta‐analyses and the field experimental data demonstrated that the effects of later spring freeze stress on wheat yield were exacerbated by winter warming but were extenuated by early spring cold events. Therefore, it is important to consider the characteristics of temperature fluctuations during winter to spring for precise evaluation of climate change effects on wheat production.  相似文献   

3.
Abstract It is a challenge to obtain the appropriate protein concentration in cereals for the intended end‐use. This study examined ambient temperature effects on two spring malting barley cultivars (Henley and Tipple) grown in soil or in solution culture with controlled nitrogen supply in daylight chambers with low temperature (day 18 °C, night 12 °C), and high temperature (23 °C/17 °C) to/after anthesis. In soil‐grown plants, high temperature to anthesis resulted in higher grain nitrogen amount (GNA), grain nitrogen concentration (GNC) and straw nitrogen concentration (SNC). In plants grown in solution, high temperature to anthesis resulted in lower GNA and higher GNC. A temperature rise of 1 °C during the growing period in solution cultivation increased GNC, root nitrogen concentration (RNC) and SNC, by 1.20, 1.35 and 0.33 mg g?1, respectively. In solution culture, GNC was positively correlated with RNC and SNC (P < 0.01). Cv. Henley had higher GNC but lower SNC than cv. Tipple. Cv. Henley was more stable in grain size and cv. Tipple in GNC. The results showed that temperature has a direct effect on GNC. Accounting for temperature fluctuations up to the latest possible nitrogen fertilisation occasion can therefore help when deciding appropriate nitrogen supply for intended end‐use.  相似文献   

4.
Increase in soil temperature together with decrease in soil moisture during anthesis of spring wheat (Triticum aestivum L) crops is predicted to occur more frequently in a future climate in Denmark. The objective of this study was to investigate the responses of two Danish spring wheat varieties (Trappe and Alora) to soil warming (H), drought (D) and both (HD) during anthesis. The plants were grown in pots in a climate‐controlled glasshouse. In H, the soil temperature was increased by 3 °C compared with the control (C). In both D and HD treatments, the plants were drought‐stressed by withholding irrigation until all of the transpirable soil water had been depleted in the pots. Results showed that, particularly under D treatment, Alora depleted soil water faster than Trappe. In both varieties, flag leaf relative water content (RWC) was significantly lowered, while spikelet abscisic acid (ABA) concentration was significantly increased by D and HD treatments. Compared with the C plants, D and HD treatments significantly reduced ear number, ear to tiller ratio, shoot biomass, grain yield, harvest index and seed set but hardly affected tiller number and 1000‐kernel weight, whereas H treatment alone only decreased shoot biomass and reduced seed set. When analysed across the varieties and the treatments, it was found that the reduction in seed set was closely correlated with the increase in spikelet ABA concentration, indicating that D and HD treatments induced greater spikelet ABA concentrations might have caused seed abortion. It was concluded that the grain yield reduction under D and HD treatments during anthesis in spring wheat is ascribed mainly to a lowered seed set and wheat varieties (i.e. Alora) with more dramatic increase in spikelet ABA concentration are more susceptible to D and HD treatment.  相似文献   

5.
Autumn‐sown winter‐type faba bean (Vicia faba L.) has been shown to have a yield advantage over spring sowing. Still, adoption of this overwintered pulse crop remains limited in temperate locations, due to inadequate winter hardiness. This research sought to understand how the prevailing temperature during emergence and seedling development, that is pre‐acclimation, influences freezing tolerance. Seedlings grown under a controlled “warm” 17/12°C (day/night) pre‐acclimation environment were initially less freezing tolerant than those grown under a “cold” 12/5°C temperature treatment. Stem and particularly root tissues were primarily responsible for slower cold acclimation, and there was a genotype specific response of above‐ground tissues to pre‐acclimation treatment. Both above and below‐ground tissues should be tested across a range of pre‐acclimation temperatures when screening faba bean germplasm for freezing tolerance.  相似文献   

6.
A rapid warming of 2.8–5.3 °C by the end of this century is expected in South Korea. Considering the current temperature during the spring potato growing season (emergence to harvest; ca. 18 °C), which is near the upper limit of the optimum temperature for potato yield, the anticipated warming will adversely affect potato production in South Korea. The present study assessed the impact of high temperature on the marketable tuber yield and related traits of cv. Superior (which makes up 71% of the annual potato production in South Korea) in four temperature-controlled plastic houses and an outdoor field (37.27°N, 126.99°E) during 2015–2016. The target temperatures of the four plastic houses were set to ambient (AT), AT+1.5 °C, AT+3.0 °C, and AT+5.0 °C. The marketable tuber yield was significantly reduced by 11% per 1 °C increase over a temperature range of 19.1–27.7 °C. The negative impact of high temperature was associated not only with the yield loss of total tubers, which was mostly explained by the slower tuber bulking rate, but also the reduced marketable tuber ratio under temperatures above 23 °C, which was mainly attributed to the reduced number of marketable tubers (r = 0.79***). Under moderate temperatures below 23 °C, the source limited the number of marketable tubers without reducing the marketable tuber ratio. In contrast, the number of marketable tubers was limited by the marketable tuber set at the early growth stage rather than the source under the higher temperatures, which resulted in the reduction in the marketable tuber ratio below 56%. These results suggest that the objectives of breeding and agronomic management for adapting to the rapid warming in South Korea should include maintaining the ability to form tubers at the early growth stage under high temperatures, as well as the photosynthetic capacity and sink strength of the tubers.  相似文献   

7.
Statistical models predict that global warming will have a negative impact in crop yields in the next decades. Especially vulnerable are winter crops such as kales or cabbages (Brassica oleracea L.). We evaluated the impact of high temperatures in morphological and biochemical traits of a B. oleracea core collection during early development. When grown at 30 °C, plants showed a reduction in chlorophyll content, early vigour and biomass compared with values observed on plants grown at 20 °C. Likewise, the total content of glucosinolates shows a reduction at high temperatures. The alboglabra group showed the best general performance at 30 °C for both morphological traits and glucosinolate content. Based on a cluster analysis, we selected four populations (MBG0072, MBG0464, MBG0535 and HRIGRU5555) as the most promising to be used in further breeding programs for heat tolerance.  相似文献   

8.
Autumn sown sugar beets (winter beets) are expected to yield markedly higher than spring sown beets. This requires a continuous growth during an extended growing period. So far, bolting‐resistant sugar beet varieties are not available to test winter beets under field conditions in Central Europe. The objective of this study was therefore to analyse yield formation and sugar storage of sugar beet plants during an extended growing period to estimate whether sugar beet has the potential to generate the theoretically expected yield increase. From 2008 to 2012, pot experiments were carried out in the glasshouse with 11 sowing dates spread over the years with sequential harvests. The oldest plants were grown for 859 days (14 242 °Cd). Root fresh matter yield continuously increased till the latest harvest. In contrast, the sugar concentration reached an optimum value between 3400 and 5000 °Cd and then decreased with time. Despite longer growing periods, the number of cambium rings, which are regarded as essential for sugar storage, did not change. This points to an early and genetically fixed determination of the formation of cambium rings. Additionally, the rate of photosynthesis decreased concomitantly with the sugar concentration. In conclusion, there is some evidence that the sugar concentration of the storage root is limited by the sink capacity, which in turn controls the source activity by a feedback regulation of photosynthesis and leaf formation. The dry matter composition of the storage root changed towards lower sugar concentration and concurrent higher concentration of cell wall compounds (marc). The sugar yield still increased beyond a thermal time at which winter beets will probably be harvested in practice. Hence, the theoretical yield increase in autumn sown sugar beets can be realized, provided that the plants show sufficient winter hardiness and bolting resistance.  相似文献   

9.
Experiments were conducted over 2 years to quantify the response of faba bean (Vicia faba L.) to heat stress. Potted winter faba bean plants (cv. Wizard) were exposed to temperature treatments (18/10; 22/14; 26/18; 30/22; 34/26 °C day/night) for 5 days during floral development and anthesis. Developmental stages of all flowers were scored prior to stress, plants were grown in exclusion from insect pollinators to prevent pollen movement between flowers, and yield was harvested at an individual pod scale, enabling effects of heat stress to be investigated at a high resolution. Susceptibility to stress differed between floral stages; flowers were most affected during initial green‐bud stages. Yield and pollen germination of flowers present before stress showed threshold relationships to stress, with lethal temperatures (t50) ?28 °C and ~32 °C, while whole plant yield showed a linear negative relationship to stress with high plasticity in yield allocation, such that yield lost at lower nodes was partially compensated at higher nodal positions. Faba bean has many beneficial attributes for sustainable modern cropping systems but these results suggest that yield will be limited by projected climate change, necessitating the development of heat tolerant cultivars, or improved resilience by other mechanisms such as earlier flowering times.  相似文献   

10.
Future climate change accompanied by global warming is expected to change rice growth environments and causes detrimental effects on yield formation processes, leading to reduction of rice yield and quality in many regions. This study was performed to evaluate the grain-filling responses to elevated air temperature above ambient during the grain-filling period after heading in a temperate region (37.27 °N, 126.99 °E; Suwon, South Korea). Six rice cultivars differing in maturity were grown under ambient air temperature conditions before being transferred at the initial heading stage to the plastic houses which were temperature controlled to the targets of ambient temperature (AT), AT + 1.5 °C, AT + 3.0 °C, and AT + 5.0°C.  相似文献   

11.
High temperature (HT) stress is one of the major environmental factors influencing yield of soybean (Glycine max L. Merr.) in the semi‐arid regions. Experiments were conducted in controlled environments to study the effects of HT stress on anatomical changes of pollen and their relationship to pollen function in soybean genotype K 03‐2897. Objectives of this study were to (a) quantify the effect of HT stress during flowering on pollen function and pod set and (b) observe the anatomical changes in pollen grains of soybean plants grown under HT stress. Plants were exposed to HT (38/28 °C) or optimum temperature (OT, 28/18 °C) for 14 days at flowering stage. HT stress significantly decreased in vitro pollen germination by 22.7 % compared to OT. Pollen from HT stress was deformed; it had a thicker exine wall and a disintegrated tapetum layer. HT stress decreased pod set percentage (35.2 %) compared to OT. This study showed that decreases in pollen in vitro germination by HT stress were caused by anatomical changes in pollen, leading to decreased pod set percentage under HT stress.  相似文献   

12.
Combined effects of temperature and light quality on plants have received little attention. We investigated the single and interactive effects of temperature and light quality on growth and physiological characteristics of four canola (Brassica napus) cultivars – Clearfield 46A76 (cv1), Clearfield 45H72 (cv2), Roundup Ready 45H24 (cv3) and Roundup Ready 45H21 (cv4). Plants were grown under lower (24°/20 °C) and higher (30°/26 °C) temperature regimes at low red/far‐red (R/FR), normal R/FR and high R/FR light ratios in environment‐controlled growth chambers (16 h light/8 h dark). Higher temperature reduced stem height and diameter; leaf number and area; dry matter of all plant parts; and specific leaf weight, but increased leaf area ratio; and chlorophyll (Chl) fluorescence (Y). Low R/FR increased stem height; Y; and ethylene, but decreased stem diameter; Fv/Fm; Chl a; Chl b; and carotenoids. Among cultivars, plants from cv4 were tallest with thickest stems and greatest dry matter. None of the main factors affected gas exchange. Higher temperature at high R/FR caused cv3 to be shortest, whereas lower temperature at low R/FR caused cv4 to be tallest. We conclude that heat and other stress factors will adversely affect sensitive crops, but tolerant genotypes should perform well under future climate.  相似文献   

13.
High temperature is a major environmental factor that limits wheat (Triticum aestivum L.) productivity. Climate models predict greater increases in night‐time temperature than in daytime temperature. The objective of this research was to compare the effects of high daytime and high night‐time temperatures during anthesis on physiological (chlorophyll fluorescence, chlorophyll concentration, leaf level photosynthesis, and membrane damage), biochemical (reactive oxygen species (ROS) concentration and antioxidant capacity in leaves), growth and yield traits of wheat genotypes. Winter wheat genotypes (Ventnor and Karl 92) were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of anthesis. Thereafter, plants were exposed to high night‐time (HN, 25/24 °C), high daytime (HD, 35/15 °C), high daytime and night‐time (HDN, 35/24 °C) or optimum temperatures for 7 days. Compared with optimum temperature, HN, HD and HDN increased ROS concentration and membrane damage and decreased antioxidant capacity, photochemical efficiency, leaf level photosynthesis, seed set, grain number and grain yield per spike. Impact of HN and HD was similar on all traits. Greater impact on seed set, grain number and grain yield per spike was observed at HDN compared with HN and HD. These results suggest that HN and HD during anthesis cause damage of a similar magnitude to winter wheat.  相似文献   

14.
Saponin-free quinoa genotypes were evaluated in summer and autumn–winter sowings, for phenotypic traits and yield stability. They were obtained by single plant-progeny selection from hybrids, as part of the breeding efforts in adapting the crop to the Brazilian Savannah environments. The soils (Ferralsols) were limed and fertilized prior to cultivation. The experiment was sown in two dates: 20th December 2006 (summer), and 30th April 2007 (autumn–winter), at 15°39′ and 16°14′ S latitude, 47°27′ and 47°44′ W longitude, with altitudes of 976 and 1,110 m, respectively. The mean temperature and rainfall for the summer sowing were 23.0°C and 723 mm. In autumn–winter, under controlled irrigation, the mean temperature was 2.9°C lower than in summer, when plants were exposed to water logging spells. The treatments consisted of fourteen selected genotypes and the varieties Kancolla, BRS Piabiru and Q4.5, used as controls. Comparisons were based on plant height, biomass and grain yield, harvest index (HI) and 1,000 seed weight. The experimental design was a complete randomized bloc, with three replications. Analysis of variance was performed for each sowing and jointly. Statistical differences for the environments were evident only for grain size and plant height. The performance of selected genotypes in each sowing date and in the joint analysis, allows saying that populations Q0779, Q0780 and Q0782 are potentially useful in the acquisition of stable genotypes for the Brazilian Savannahs.  相似文献   

15.
We investigated heat tolerance at the reproductive stage in six spring‐type B. rapa accessions and one B. juncea accession as a control. Plants were subjected to two temperature treatments for seven days in controlled environmental rooms, beginning one day before the first open flower on the main stem inflorescence. The high‐temperature treatment ranged from 25 °C to 35 °C during 16 h light and 25 °C during 8 h dark. The control temperature treatment was set at 23 °C during 16 h light and 15 °C during 8 h dark. Soil moisture was maintained at close to field capacity to avoid drought stress. Main stem buds that emerged during the treatment period were tagged, and pod and seed production was recorded at each reproductive node. Leaf temperature depression and leaf conductance increased in the high‐temperature treatment which indicated that plants were not drought stressed. A leafy vegetable type of B. rapa from Indonesia was the most tolerant to high temperature, as defined by its ability to set seed equally well in the control and high‐temperature treatments, followed by an oilseed type from Pakistan. Pollen viability remained above 87 % in all accessions and treatments. We conclude that bud number and length, and pod number produced under high temperatures, might provide a useful preliminary screen for high‐temperature tolerance and that B. rapa may be a valuable source of heat tolerance in canola (B. napus).  相似文献   

16.
Heat stress adversely affects wheat production in many regions of the world and is particularly detrimental during reproductive development and grain-filling. The objective of this study was to identify quantitative trait loci (QTL) associated with heat susceptibility index (HSI) of yield components in response to a short-term heat shock during early grain-filling in wheat. The HSI was used as an indicator of yield stability and a proxy for heat tolerance. A recombinant inbred line (RIL) population derived from the heat tolerant cultivar ‘Halberd’ and heat sensitive cultivar ‘Cutter’ was evaluated for heat tolerance over 2 years in a controlled environment. The RILs and parental lines were grown in the greenhouse and at 10 days after pollination (DAP) half the plants for each RIL received a three-day heat stress treatment at 38°C/18°C day/night, while half were kept at control conditions of 20°C/18°C day/night. At maturity, the main spike was harvested and used to determine yield components. A significant treatment effect was observed for most yield components and a HSI was calculated for individual components and used for QTL mapping. QTL analysis identified 15 and 12 QTL associated with HSI in 2005 and 2006, respectively. Five QTL regions were detected in both years, including QTL on chromosomes 1A, 2A, 2B, and 3B. These same regions were commonly associated with QTL for flag leaf length, width, and visual wax content, but not with days to flowering. Pleiotropic trade-offs between the maintenance of kernel number versus increasing single kernel weight under heat stress were present at some QTL regions. The results of this study validate the use of the main spike for detection of QTL for heat tolerance and identify genomic regions associated with improved heat tolerance that can be targeted for future studies.  相似文献   

17.
With the changing climatic scenario and increasing global mean temperature, heat stress became a major limiting factor for today's agriculture. To identify the underlying mechanism associated with heat tolerance in peanut, two experiments (field and growth chamber) were conducted with four genotypes (ICGS 44, GG 7, AK 159 and DRG 1) having differential high temperature stress sensitivity. Field grown plants under three different temperature (D1, D2 and D3) regimes simulated three temperature treatment effects with a variability of 3–4/4–5°C in mean day/night temperature, respectively. In growth chamber, imposition of heat shock (10°C above ambient inside growth chamber) revealed not only rapid induction (within 0.5 hr) of HSPs, especially small HSPs (HSP 17, HSP 40) in tolerant genotypes, but also its sustenance for longer duration (2 hr), which might help them to have better physiological adaptation strategies under high temperature stress. This was evident from significant advancement in phenophases observed with increase in temperature by 15–18 days at physiological maturity, while pollen viability and membrane stability reduced below 50% and 41%, respectively in DRG 1 with increase in mean day/night temperature. Maintenance of higher photosynthesis and transpiration rate and stomatal conductance helped the tolerant genotype ICGS 44 to keep relatively cooler canopy and higher photosynthates, ensuring better physiological condition in this genotype under heat stress. Significant increase (~2.5‐fold) in inositol and hexoses (glucose and fructose) content and reduction (>50%) in sucrose content in leaf tissues indicated degradation of storage carbohydrates for improved osmotic adjustment especially in tolerant genotypes under elevated temperature.  相似文献   

18.
Nitrogen Partitioning in Entire Plants of Different Spring Wheat Cultivars   总被引:1,自引:0,他引:1  
The aim of this study was to investigate nitrogen partitioning in entire plants, including roots, of spring wheat in two temperature regimes during grain filling. Six cultivars, genetically different and with varying grain protein concentration, were grown in solution culture to full maturity. After anthesis, half the plants were grown in high temperature (23/17 °C, day/night) and half in low temperature (18/12 °C). Root nitrogen concentration was genetically influenced. The roots had ability to redistribute nitrogen to aboveground plant parts. At maturity the roots contained 10–20 % of the total nitrogen amount in the plants. Harvest index (HI) and harvest index for the entire plant (HItot) for cv. Heta were significantly higher at low temperature than at high. Cv. Heta had a rapid development rate from planting to maturity. Due to slow senescence at low temperature, cv. Kärn II showed lower HI and nitrogen harvest index (NHI) at low, compared with high, temperature. Cvs Kärn II and Sport showed higher nitrogen amount in the roots and shoots at low, compared with high, temperature. A negative correlation was found between NHI and NHItot vs. root weight, total shoot weight and root N amount. Because of the latter correlation, breeding for low root N concentration is suggested.  相似文献   

19.
High night temperature (HNT) can induce ethylene‐triggered reactive oxygen species production, which can cause premature leaf senescence and membrane damage, thereby affecting production, consumption and transfer of photosyn‐thates, and yield. The 1‐methylcyclopropene (1‐MCP) can competitively bind with ethylene receptors and decrease ethylene effects. The objective was to determine the effects of HNT and 1‐MCP on leaf photosynthetic rate (PN), chlorophyll fluorescence, total chlorophyll (TC), respiration, membrane damage, pollen germination, spikelet fertility (SF) and yield of rice hybrid ‘XL723’. Plants were grown under ambient night temperature (ANT) (25 °C) or HNT (30 °C) with or without 1‐MCP treatment. Application of 1‐MCP was at the boot stage. The decrease in yield (11 %) under HNT was associated with decreased PN (4 %), stomatal conductance (8 %), quantum yield (11 %) TC (23 %) and SF (5 %) and increased respiration (74 %), Fo/Fm (increase in thylakoid membrane damage; 11 %) and membrane damage (leaf electrolytic leakage; 57 %). The 1‐MCP‐treated plants grown under HNT showed increased yield (17 %), which was associated with increased PN (10 %), stomatal conductance (30 %), quantum yield (9 %), TC (37 %) and SF (11 %) and decreased respiration (39 %), Fo/Fm (5 %) and membrane damage (18 %). Plants grown under HNT showed increased grain chalkiness (154 %) compared with plants grown under ANT.  相似文献   

20.
Limited knowledge about genetic and physiological traits associated with drought and low temperature stresses and narrow genetic diversity in Upland cotton (Gossypium hirsutum L.) are serious impediments in its genetic improvement. The objectives of this research were to determine the genetic and physiological traits associated with drought and low temperature effects and to identify chromosomal effects on these traits using chromosome substitution (CS) lines from three alien species of Gossypium, G. barbadense, G. tomentosum, and G. mustelinum, respectively. Two experiments were conducted to study low temperature and drought stress effects during seedling emergence and early growth stages in 21 cotton CS-lines with parent, Texas Marker (TM)-1. In Experiment I, plants were grown at optimum (30/22 °C) and low (22/14 °C) temperature conditions under optimum water and nutrient conditions. In Experiment II, plants were grown at optimum water (soil moisture content of 0.167 m3 m?3) and in drought (soil moisture content 0.105 m3 m?3) conditions under optimum temperature conditions. Above- and below-ground growth traits including several root traits of the CS lines were assessed at 25 days after sowing. The findings suggest which substituted chromosome or chromosome segment from the alien species likely harbors one or more genes for higher and lower tolerance to low temperature, respectively. CS-T04 and CSB08sh showed higher and lower tolerance to low temperature, respectively and CS-T04 and CS-B22sh showed higher and lower tolerance, respectively, to drought. CS lines are valuable analytical tool and useful genetic resources for targeted exploitation of beneficial genes for drought and low temperature stresses in Upland cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号