首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precommercial thinning is regarded as one of the most important measures for influencing timber quality in stands of Scots pine (Pinus sylvestris L.). The present study considers the influence of both thinning intensity and tree height at the time of thinning on diameter of the thickest branch and crown ratio. A total of 115 plots (either naturally regenerated, planted or sown, and either thinned down to 528–8000 stems?ha?1 or untreated) included in 20 sites in southern Sweden were analysed. The average tree height after thinning varied from 1.2 to 8.3?m. An increasing number of remaining stems resulted in a reduction in branch diameter, although the reduction appeared to be only minor if the number of stems after thinning was more than 3000 stems?ha?1. It was found that late thinning reduced the diameter of the thickest branch. The crown ratio decreased with stand height, number of stems after thinning and average height at thinning. The results were consistent for all trees and for the 500 thickest trees per hectare.  相似文献   

2.
We used manual cutting to manipulate trembling aspen (Populus tremuloides Michx.) density and spatial arrangement in relation to crop lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Engelm.) on two sites in contrasting dry, cool to cold ecosystems of south-central British Columbia. In the dry, cool interior Douglas-fir ecosystem (IDFdk3), we reduced the density of tall aspen (aspen at least as tall as target pine) to 0 (broadcast removal), 1000, 2500, or 4000 stems/ha when the planted lodgepole pine was 6 years old. Eight years later, pine height/diameter ratio (HDR) was significantly lower in the broadcast removal and 1000 stem/ha treatments than in the control. There were no other significant growth responses and pine survival and vigour were good regardless of treatment. In contrast, in a dry, cold sub-boreal pine spruce ecosystem (SBPSxc) where treatments were applied at a stand age of 11 years, naturally regenerated lodgepole pine stem diameter increased significantly in the broadcast removal treatment relative to the untreated control within 2 years. After 4 years, HDR had declined significantly relative to the control where tall aspen density was ≤1000 stems/ha. There were no significant pine responses where 2500 tall aspen stems/ha were retained or where tall aspen were removed only within a 1-m radius around pine. The greater difference in height (height differential) between aspen and pine at the SBPSxc than the IDFdk3 site may partly explain the differing response of lodgepole pine to treatment. Trends of decreasing sucker density with increasing aspen retention were evident at both sites, but differences were significant (p ≤ 0.05) only at the SBPSxc site.  相似文献   

3.
The influence of woody and herbaceous plant competition, either alone or in combination, on microclimate and growth of planted eastern white pine (Pinus strobus L.) seedlings was examined over four consecutive growing seasons in a central Ontario clearcut. Treatments that manipulated the comparative abundance of these two plant functional groups significantly affected light availability, soil moisture, and air and soil temperature regimes. These microclimate alterations, coupled with the relative competitiveness of herbaceous and woody vegetation, corresponded to temporal changes in vegetation cover and dominance. The more rapid colonization and growth of the herbaceous plant community, dominated by bracken fern (Pteridium aquilinum) and ericaceous shrubs (Kalmia sp., Vaccinium sp.), resulted in this form of vegetation being a comparatively important early competitor for soil moisture. As the woody plant community, dominated by naturally regenerated trembling aspen (Populus tremuloides Michx.), grew in height and leaf area, it became a comparatively strong competitor for both light and soil moisture. For all vegetation treatments combined, white pine seedling growth responses were strongly correlated with total cover of competing vegetation and its relative influence on above- and belowground microclimatic variables. Higher total cover of competing vegetation was generally associated with lower light and soil moisture availability and cooler soil temperatures. Multiple regression analyses indicated that pine seedling relative height growth increased with soil moisture content and growing season soil heat sum, while seedling relative diameter and relative volume growth increased with light availability.  相似文献   

4.
  • ? Several techniques were used to investigate the threshold minimum temperature inducing severe frost damage during winter in Scots pine (Pinus sylvestris L.) needles and stems from southern provenances in the Iberian Peninsula.
  • ? Chlorophyll (Chl) fluorescence, electrolyte leakage (EL), visual scoring (VS), and the normalized difference vegetation index (NDVI) were compared.
  • ? Chl fluorescence, and in particular the maximum potential photosystem II (PSII) efficiency — estimated through the dark-acclimated FV/FM ratio-, was found to be a simple, non-destructive indicator of freezing tolerance in needles, as expected.
  • ? Moreover, the existence of a Chl-containing tissue, the cortical bark chlorenchyma, allowed us the use of Chl fluorescence as a new non-destructive indicator of frost damage in live tissues of Pinus sylvestris L. stems.
  • ? Freezing tolerance values of southern provenances are compared with those found by other authors in the northern distribution limit of the species.
  •   相似文献   

    5.
    Productivities of monoclonal plots and clonal mixtures of 10 radiata pine (Pinus radiata D. Don.) clones were compared in a trial established in 1993 at Dalethorpe, Canterbury, New Zealand. Ten monoclonal and one mixture of the 10 clones were planted in a complete randomised block design with three replications using 40-tree plots (un-thinned, pruned to 2.5 m, stocking of 1250 stems per hectare). The study was conducted to determine if mode of deployment (monoclonal versus clonal mixture) affected overall productivity and how or if each clone was affected by mode of deployment.  相似文献   

    6.
    This study aimed to determine the response of native plant species to changed growing conditions, especially increased shade, following establishment of exotic Pinus radiata plantation on cleared native eucalypt forest. In the Northern Hemisphere, species tolerant to shading are typically herbaceous perennials, with large seeds, no obvious mechanism of seed dispersal, and spread by clonal means. We investigated whether life form, mode of seed dispersal, leaf area, specific leaf area (SLA), nutrient uptake strategy, seed mass, fire response, plant height, and clonal spread differed between understorey species of pine plantation and native forest. Further, we asked whether plant functional traits that confer tolerance to stress through shading differ from those in other floras. The study was conducted on the Delatite Peninsula in north-eastern Victoria, Australia. Vegetation of adjacent native forest and pine plantation were surveyed using eight 7 m × 7 m plots per site, randomly located within five paired sites. Differences in plant traits between land-use types were tested by Non-metric Multi-dimensional Scaling (NMDS), analysis of similarity (ANOSIM) and paired t-tests. Cluster analysis of the nine plant traits was used to define emergent groups, with differences between land-use types examined by ANOSIM and indicator species analysis. There was a significant change in the composition of understorey vegetation following conversion to pine plantation that included a decline in the richness of native species. NMDS of plant attributes showed a clear separation of native forest from pine plantation with land use strongly correlated in ordination space (r2 = 0.611). Cluster analysis produced seven emergent groups of plant functional traits for 78 identified plant species. Phanerophytes split into two groups (myrmecochorous trees and shrubs; myrmecochorous shrubs), perennial herbs into four groups (upright herbs, myrmecochorous herbs, barochorous herbs, flat rosette herbs) with one group representing therophytes and anemochorous perennials. Perennial herbs with intermediate SLA and clonal spread were tolerant of the shaded conditions in pine plantation while the two groups of phanerophytes and the myrmecochorous herbs were largely excluded. Shared traits of excluded emergent groups included those that provided an over-riding adaptation to mineral nutrient stress, including myrmecochory, low SLA, ectomycorrhizal and ericoid mycorrhizal associations and N2-fixation. These plant traits could not provide tolerance to stress through shading, which is better explained by the open canopied nature of the native forest.  相似文献   

    7.
    In many second-rotation Pinus radiata forest planta-tions, there has been a steady trend towards wider tree spacing and an increased rate of application of P fertiliser. Under these regimes, the potential for understory growth is expected to in-crease through increased light and greater nutrient resources. Therefore, understory vegetation could become a more signifi-cant component of P cycling in P. radiata forests than under closely-spaced stands. Studies have shown that growth rates and survival of trees is reduced in the presence of understory vegeta-tion due to the competition of understory vegetation with trees. Other studies have suggested that understory vegetation might have beneficial effects on nutrient cycling and conservation within forest stands. This review discusses the significance of understory vegetation in radiata pine forest stands, especially their role in enhancing or reducing P availability to forest trees.  相似文献   

    8.
    The phenolic composition of pine bark from a variety of Pinus species was estimated by measuring Klason lignin, acid-soluble lignin, and a 1% NaOH extract. Polyphenol contents of hot water extracts from pine bark were determined by the Folin-Ciocalteu assay and the vanillin-H2SO4 assay. Among the pine bark varieties investigated, Pinus radiata bark showed the highest polyphenol content and potent antioxidant activity. Pinus rigida bark was also a usable polyphenol-rich source, whereas Pinus densiflora bark had a low yield (5.1%) of hot water extract, although it showed potent antioxidant activity. Correlations between proanthocyanidin content in pine bark and antioxidant activity were observed. The results suggested that proanthocyanidin was the crucial contributor to potent antioxidant activity in pine bark. The publication of this article was made possible by an Emachu Research Fund. The authors are grateful for the fund.  相似文献   

    9.
    Although partial cross sections from live trees have been utilized in the development of fire history studies, few efforts have been made to examine the effects of this method on the individual trees that were sampled. We examined 115 red pine (Pinus resinosa Ait.), eastern white pine (Pinus strobus L.), and jack pine (Pinus banksiana Lamb.) trees from which partial cross sections had been removed 2 years earlier, and 209 similarly sized neighboring red pine and eastern white pine trees. Two years following the removal of partial cross sections, 22 sampled trees (19%) had died. When compared with neighboring trees, removing a partial cross section did not appear to increase the mortality rate for a given tree (t-test; P = 0.150). However, when we compared the characteristics of the trees with partial cross sections removed, we did observe some trends; i.e., those trees that died were primarily killed by wind-induced breakage at the level of the partial cross section. Almost all stems where partial cross sections were collected from a catface edge or had >30% of the total area removed were more susceptible to stem breakage and experienced an increased likelihood of mortality. While these results suggest that the collection of partial cross sections from live trees may be an effective method for fire-history sampling, the negative impacts of the sampling on individual trees may be reduced by ensuring that samples are collected from the center, rather than the catface edge, and <25% of the total stem area is removed.  相似文献   

    10.
    Because the growth of Pinus radiata (D. Don) plantations on podzolized sandy soils can be increased by improving the content of organic matter and nitrogen in soil, the potential for improving these by intercropping with annual lupins (Lupinus angustifolius) in young plantations on first and second rotation sites was examined.Lupins can be grown as an intercrop along with transplanted pine seedlings without causing detrimental effects on the water relations of pines. Because the lupins self-seed, two to three crops can be grown before being shaded out by the pines. Lupins increased the amount of organic matter and concentrations of total nitrogen and mineral nitrogen in the soil, and increased the concentrations of nitrogen in pine needles. The benefit of lupins to tree growth was substantial (16–32% increase in stem growth) and nearly equaled that achieved by repeated additions of nitrogen fertilizer.The choice and management of legume intercrop should be based on an understandig of how site resources (especially water) are shared between young trees and the leguminous plant.  相似文献   

    11.
    We investigated the effects of herbaceous and woody vegetation control on the survival and growth of planted eastern white pine (Pinus strobus L.) seedlings through six growing seasons. Herbaceous vegetation control involved the suppression of grasses, forbs, ferns, and low-shrubs, and was maintained for 0, 2, or 4 years after white pine seedlings were planted. Woody control involved the removal of all tall-shrub and deciduous trees, and was conducted at the time of planting, at the end of the second or fifth growing seasons, or not at all. Seedling height and basal diameter responded positively and proportionally to duration of herbaceous vegetation control. Gains associated with woody control were generally not significant unless some degree of herbaceous vegetation control was also conducted. Only herbaceous control increased pine crown closure and rate of crown closure. Herbaceous control and the presence of 5000–15,000 stems per ha of young overtopping aspen were associated with reduced weevil (Pissodes strobi Peck.) injury and increased pine height growth. The study suggests that white pine restoration strategies on clearcut sites should focus on the proactive, early management of understory vegetation and the gradual reduction of overtopping cover from woody vegetation to create a seedling light environment that supports acceptable growth with minimal weevil damage.  相似文献   

    12.
    Historical logging, fire suppression, and an invasive pathogen, Cronartium ribicola, the cause of white pine blister rust (WPBR), are assumed to have dramatically affected sugar pine (Pinus lambertiana) populations in the Lake Tahoe Basin. We examined population- and genetic-level consequences of these disturbances within 10 sugar pine populations by assessing current population structure and trends for 1129 individuals, genetic diversity for 250 individuals, and frequency of WPBR-resistance for 102 families. Logging had occurred in 9 of 10 sites and fire suppression was evident in all stands. High density of white fir (Abies concolor) is often an indicator of fire suppression and we found a negative relationship between sugar pine survivorship and white fir basal area (r2 = 0.31). C. ribicola was present in 90% of stands (incidence range: 0-48%) and we found a significant relationship between mean host survivorship and disease incidence (r2 = 0.46). We estimated population growth rates (λ) from size-based transition matrices. For six of 10 sugar pine populations λ was ?1.0, indicating that these populations appear to be stable; for four populations, λ was <1.0, indicating populations that may be in decline. A population specific drift parameter, ci, which is a measure of genetic differentiation in allele frequencies relative to an ancestral population, ranged from 0.009 to 0.048. Higher values of ci indicate greater genetic drift, possibly due to a bottleneck caused by historical logging, other agents of mortality or much older events affecting population sizes. Effects of drift are known to be greater in small populations and we found a negative relationship between sugar pine density and ci (r2 = 0.36). Allele frequency of the Cr1 gene, responsible for WPBR-resistance in sugar pine, averaged 0.068 for all populations sampled; no WPBR infection was found in one population in which the Cr1 frequency was 0.112. Historical disturbances and their interactions have likely influenced the population biology of sugar pine in the Tahoe Basin; for some populations this has meant reduced population size, higher genetic drift, and poor survival of small- and intermediate-sized individuals. Possible management strategies include restoring population numbers, deploying WPBR-resistance, treating stands to promote natural sugar pine regeneration, and enhancing genetic diversity.  相似文献   

    13.
    The distribution and movement of N, P, K, Na, Mg, and Ca were studied in southeastern Australia in a 37—year-old Pinus radiata plantation and in a nearby Eucalyptus obliqua — Eucalyptus dives forest of the same age and of the same type as that which had been replaced by the P. radiata plantation. The soil beneath the P. radiata plantation contained significantly less total N and exchangeable K, Mg, and Ca than that beneath the eucalypt forest. No large accumulation of nutrients was found in either the litter or the trees in the P. radiata plantation relative to that in the eucalypt forest. However, there was a slightly greater accumulation of N and K in the P. radiata biomass than in the eucalypt biomass. The annual soil nutrient balance obtained by subtracting outputs (mineral soil leachate + biomass incorporation) from inputs (precipitation + mineral weathering) indicated a more favourable balance for each nutrient in the soil beneath the eucalypts than in the soil beneath the pines. Calculations suggested that these balances could only partially account for the differences in soil nutrient quantities between eucalypt and pine ecosystems. It was hypothesized that these differences are also partially explainable in terms of the nutrient losses accompanying two fires which had occurred in the pine plantation area. Nitrogen balances in this study were incomplete because several potentially important fluxes were not measured.  相似文献   

    14.
  • ? Juvenile wood quality in Pinus radiata is affected by factors such as low density, stiffness, and high microfibril angle, spiral grain, and shrinkage. Adverse genetic correlations between growth and wood quality traits remain as one of the main constraints in radiata pine advanced generation selection breeding program.
  • ? Juvenile wood property data for this study were available from two progeny tests aged 7 and 6 y. We estimated the genetic correlations between stiffness, density, microfibril angle, spiral grain, shrinkage in the juvenile core and DBH growth in radiata pine, and) to evaluated various selection scenarios to deal with multiple objective traits.
  • ? Negative genetic correlations were found for modulus of elasticity (MoE) and density with microfibril angle, spiral grain, shrinkage, and DBH. We observed low to moderate unfavourable genetic correlations between all wood quality traits and DBH growth.
  • ? These low to moderate genetic correlations suggest that there may be some genotypes which have high DBH growth performance while also having high wood stiffness and density, and that the adverse correlation between DBH and MoE may not entirely prohibit the improvement of both traits. Results indicate that, in the short term, the optimal strategy is index selection using economic weights for breeding objective traits (MAI and stiffness) in radiata pine.
  • ? In the long-term, simultaneously purging of the adverse genetic correlation and optimizing index selection may be the best selection strategy in multiple-trait selection breeding programs with adverse genetic correlations.
  •   相似文献   

    15.
    Seedlings of different provenances of Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta Dougl., var. latifolia Engelm.) and Norway spruce (Picea abies (L.) Karst.) were planted in three Scots pine shelterwoods (125, 65 and 43 stems ha−1) and a clear-cut, all in northern Sweden. The sites were mounded and planting took place during 2 consecutive years (1988 and 1989). The solar radiation experienced by the individual seedlings was determined using a simulation model. Height development of the seedlings was examined during their first 6 years after planting. During the final 3 years of the study, height growth of Norway spruce was relatively poor, both in the shelterwoods and the clear-cut area. Height growth of lodgepole pine was significantly greater than that of Scots pine, both in the shelterwoods and the clear-cut. In contrast to Norway spruce, Scots pine and lodgepole pine displayed significantly greater height growth in the clear-cut than in the shelterwoods. For all three species in the shelterwoods, regression analyses showed that height growth was more strongly correlated with the distance to the nearest tree than with the amount of radiation reaching the ground, i.e. growth was reduced in the vicinity of shelter trees. Therefore, we conclude that the significant reduction in height growth of seedlings of Scots pine and lodgepole pine in Scots pine shelterwoods was partially caused by factors associated with the distance to the nearest shelter tree. Because the substrate was a nitrogen-poor sandy soil, we suggest that root competition for mineral nutrients, especially nitrogen, accounts for the reduction in height growth.  相似文献   

    16.
    In the province of Québec, Canada, the majority of planted jack pine (Pinus banksiana Lamb.) seedlings are produced in rigid wall containers. More than 95% of them exhibit deformations of the root system which may induce stem instability. Studies of the root architecture of planted jack pine have been limited to a 30 cm radius from the stem, as barely any studies have been devoted to naturally regenerated stands. Moreover, only a few researches have focused on temporal evolution of root systems. The aim of the present study was to characterize the architectural, spatial, and temporal development of jack pine roots in natural and planted stands. Study sites were located in the continuous boreal forest of Quebec. The plantation was done in 1987, so that the trees were 15 years old at the time of sampling. Trees from natural stand had regenerated after a fire in 1983 and were 13–16 years old. The root systems of 14 jack pine trees per site were manually excavated up to a <5 mm diameter, without regard to their distance from the stem. The number, length, diameter, and the spatial and temporal development of roots were analyzed according to three scales of root architecture: the root system, axes, and segments. Overall, the numbers and lengths of roots were higher with planted pines. However, naturally regenerated trees displayed a better distribution of their roots around the stem and at depth, combined with more rapid length growth during the first years. In natural stands, all the trees had a taproot and 30% of the main roots originated at a depth of more than 20 cm, and they are regularly distributed around the stems. Planted trees did not present a taproot and 97% of the main roots originated in the first 20 cm beneath the soil surface. Moreover, 50% of root length was located in one-third of the area surrounding the stems, an area that corresponded to the furrow. Finally, the annual development of lateral roots in planted stand displayed a 5-year delay when compared with natural stand, which also affected maximum growth length and development of the branching pattern. Root distribution and temporal development are known to play a major role in the stability of aerial parts. Seedling production methods, container type, site preparation and planting techniques need to be examined in greater detail in order to assess their effect throughout the development of the root system. It is necessary to compare different sylvicultural practices and with natural/planted stands to gain a clearer understanding of this problem.  相似文献   

    17.
    Large areas of northern coniferous forests once naturally maintained by stand-replacing wildfires have shifted to an anthropogenic disturbance regime of clearcut harvesting followed by natural or artificial regeneration, with unknown consequences for soil biogeochemical processes. We used a comparative approach to investigate the effects of whole-tree harvesting (WTH) vs. stand-replacing wildfire (WF) on soil C and nutrient availability, and nutrition and growth of the succeeding stand, in jack pine (Pinus banksiana) forests of northern Lower Michigan. We compared total carbon (C), total nitrogen (N), potential N mineralization, and extractable phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) among stands regenerated via WTH or WF in two age classes (4–7 years and 12–18 years). We also measured jack pine foliar nutrition and height growth in these same stands, as well as estimating the contribution of legacy dead wood to ecosystem nutrient capital in young stands. We found some evidence in support of our hypothesis that WTH would leave behind greater pools of soil C and N, but lower pools of P and base cations. However, the differences we observed were confined entirely to surface organic horizons, with the two disturbance regimes indistinguishable when viewed cumulatively to our maximum sampling depth of 30 cm. Estimates of nutrient pools in legacy wood inherited by young jack pine stands were also small in comparison to total soil pools (ranging from 1 to 9% depending on the element), suggesting that decomposition and nutrient release from this material is not likely to result in noticeable differences in soil fertility later in stand development. Similar levels of soil nutrients between WTH- and WF-origin stands were reflected in our measures of jack pine foliar nutrition and height growth, which were both unaffected by mode of stand origin. Results from this study suggest that soil nutrient levels following WTH fall within the natural range of variation produced by WF in these jack pine forests; however, comparison with a similar study on boreal jack pine suggests that latitudinal effects on O-horizon nutrient capital may influence the degree to which WTH matches the effects of WF on soil nutrient availability.  相似文献   

    18.
    Effects of a land use change from grassland to coniferous plantation forestry (Pseudotsuga menzieii [Douglas fir]; Pinus radiata [radiata pine]) on soil acidity and organic matter were assessed at two sites in New Zealand. The sites differed with respect to soils, climate, vegetation cover and type, relative maturity and management of the forest stands. Results obtained at the different sites were, therefore, not directly comparable, although they represented a comparison of a similar change in land use and some overall trends were evident. The change from grassland to conifers decreased levels of organic carbon, total nitrogen and exchangeable cations and increased exchangeable acidity in the upper 20–30 cm of soil. Exchangeable aluminium and exchangeable acidity were more sensitive measures of the effects of afforestation on soil acidity than pH.  相似文献   

    19.
    Eleven seral, postfire forest stands in southern Yukon (Canada) were sampled to determine where western white spruce (Picea albertiana ssp. albertiana) seedlings occurred with respect to distance to the nearest lodgepole pine (Pinus contorta var. latifolia) tree. Seedling-to-nearest tree distances were assessed at 10-cm increments up to 220?cm. On average, seedlings occurred 54?cm from the nearest pine (n?=?490), but peak frequencies were 20–50?cm away, compared to a potential separation distance of 103?cm. Greatest average seedling density occurred 10–20?cm from pine (0.81?m?2), with values between 10 and 120?cm decreasing logarithmatically with increasing distance from pine (r?=?0.994, p?n?=?11). Spruce seedling densities were <0.02?m?2 beyond 120?cm. The differences in frequency, which represented moderately strong aggregation (Clark-Evans Index 0.34–0.52), and density suggest greater spruce recruitment near lodgepole pine was facilitated by more favorable ecological conditions than further away, for example, greater nutrient availability. The bias in seedling-to-nearest tree distances occurred regardless of stand age (57–165 years), pine density (1599–5935 stems?ha?1), or understory vegetation type, although the bias may be weakened by the abundant presence of feathermosses (Hylocomium splendens) on the forest floor.  相似文献   

    20.
    The growth patterns of annually resolved tree rings are good indicators of local environmental changes, making dendrochronology a valuable tool in air pollution research. In the present study, tree-ring analysis was used to assess the effects of 16 years (1991–2007) of chronic nitrogen (N) deposition, and 10 years (1991–2001) of reduced nitrogen input, on the radial growth of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) growing in the experimental area of Lake Gårdsjön, southwest Sweden. In addition to the ambient input of c. 15 kg N ha?1 year?1, dissolved NH4NO3 was experimentally added to a 0.52-ha watershed at a rate of c. 40 kg ha?1 year?1. Atmospheric N depositions were reduced by means of a below-canopy plastic roof, which covered a 0.63-ha catchment adjacent to the fertilized site. The paired design of the experiment allowed tree growth in the N-treated sites to be compared with the growth at a reference plot receiving ambient N deposition. Nitrogen fertilization had a negative impact on pine growth, while no changes were observed in spruce. Similarly, the reduction in N and other acidifying compounds resulted in a tendency towards improved radial growth of pine, but it did not significantly affect the spruce growth. These results suggest that spruce is less susceptible to changes in the acidification and N status of the forest ecosystem than pine, at least in the Gårdsjön area.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号