首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米材料粒径小、比表面积大、表面能高,具有良好的吸附特性。以磁性纳米颗粒合成的材料作为吸附材料时,不仅表现出高吸附容量,且易于回收和循环使用。本研究以沉淀法合成的超顺磁性Fe_3O_4纳米颗粒为负载物质,以黑液木质素为载体,采用原位吸附法和氨丙基三乙氧基硅烷(APTES)交联法分别制备磁性木质素Fe_3O_4@木质素和Fe_3O_4@APTES@木质素。采用红外线光谱仪、X射线衍射仪、透射电子显微镜、扫描电镜和振动样品磁强计对磁性木质素进行分析表征,并考察这些磁性木质素对染料(亚甲基蓝、刚果红和甲基橙)的吸附性能。结果显示:通过原位吸附法和交联法均能使木质素负载在Fe_3O_4外层,形成的Fe_3O_4@木质素和Fe_3O_4@APTES@木质素具有核壳结构,饱和磁强度分别为51和22 emu/g,负载前后Fe_3O_4的晶型结构和木质素的分子结构均不受影响。与黑液木质素、Fe_3O_4@木质素相比,利用交联法得到的Fe_3O_4@APTES@木质素对染料吸附性能最好,在颗粒添加量1.5 g/L,吸附温度298 K,初始染料质量浓度100 mg/L条件下,亚甲基蓝、刚果红和甲基橙的最大吸附量分别达到140.2,181.4和71.2 mg/g,吸附后磁性木质素在外磁场作用下能够从体系中分离出来,回收过程简便。  相似文献   

2.
以溶剂热法合成Fe_3O_4磁性微球,并以正硅酸四乙酯(TEOS)为硅源,通过溶胶-凝胶法在Fe_3O_4磁性微球表面包裹SiO_2壳层,利用3-(异丁烯酰氧)三甲氧基硅烷(APTES)对SiO_2壳层进行修饰后,通过交联沉淀聚合法在SiO_2壳层外部合成聚丙烯酸(PAA)层,形成Fe_3O_4@SiO_2@PAA多层核-壳结构复合微球。利用透射电子显微镜(TEM)、红外光谱(FT-IR)和热重分析仪(TGA)对合成材料的形貌和结构进行表征,并就多层结构复合微球对染料的吸附性能进行研究。结果显示:制备的Fe_3O_4磁性微球具有良好的水分散性,其表面可分步包裹SiO_2和PAA壳层,形成Fe_3O_4@SiO_2@PAA多层核-壳结构复合微球,该复合微球对罗丹明6G和亚甲基蓝的吸附量分别达到1.04和1.14 mg/g(吸附质量浓度为2.4 mg/L,吸附时间为10 min),表现出良好的染料吸附性能。  相似文献   

3.
以马来松香乙二醇丙烯酸酯作为交联剂,甲基丙烯酸、甲基丙烯酸甲酯为单体,Fe_3O_4为磁核,通过化学沉淀法及悬浮聚合制备出松香基磁性微球(Fe_3O_4@RPM),并优化了制备条件。分别采用红外光谱、扫描电镜、X射线衍射和热重等分析手段,对Fe_3O_4@RPM的结构进行表征,并采用静态吸附法,研究了具有菲环骨架的高分子磁性微球吸附Mn2+过程中的热力学和动力学。研究结果表明:制备具有菲环骨架的高分子磁性微球条件为70℃,400 r/min,1 g偶氮二异丁腈为引发剂,反应4 h,此条件下磁性微球含磁23.5%。对Mn2+的吸附符合准二级动力学模型;在实验浓度和温度范围内,吸附热力学研究显示,ΔH0、ΔG0、ΔS0,说明该吸附过程为自发的吸热过程。  相似文献   

4.
简单介绍了乙酰丙酸和乙酰丙酸酯的合成途径。乙酰丙酸的合成路径主要包括糠醇催化水解法、生物质直接水解法和半纤维素水解法,乙酰丙酸酯类的合成路径主要有乙酰丙酸酯化合成法、生物质直接醇解法、生物质经糠醇醇解法和5-氯甲基糠醛醇解法。综述了近年来固体催化剂在催化转化生物质合成乙酰丙酸和乙酰丙酸酯的研究进展,简要概述了用于催化生物质的固体超强酸、分子筛、杂多酸和树脂等固体催化剂类型,并展望了固体催化剂今后的发展应用。  相似文献   

5.
利用沉淀-浸渍法制备了磁性固体酸催化剂S_2O_8~(2-)/Zr O_2-Al_2O_3-Fe_3O_4,将其应用于乙醇介质中能源植物柳枝稷的催化液化,并采用X射线衍射(XRD)、BET比表面积测定、NH_3程序升温脱附(NH_3-TPD)、傅里叶红外光谱(FT-IR)和振动样品磁强计(VSM)等测试方法对催化剂的物化性质和结构进行了表征,考察了Al/Zr物质的量比、煅烧温度等制备条件对其催化性能的影响,并研究了反应温度、反应时间、催化剂用量等对柳枝稷液化反应的影响。结果表明:当n(Al)∶n(Zr)为1∶1,煅烧温度为650℃时,制备的催化剂催化活性最高,在260℃、催化剂用量4%(以原料质量计)、反应时间2.5 h时,可以获得较好的液化效果,生物油产率达到56%。GC-MS分析表明产物生物油的主要成分为酯类、醇类及烃类物质。催化剂重复使用3次后,回收率达到87.5%,生物油产率仅下降12%。  相似文献   

6.
磁性纳米固体超强酸的制备及合成松香甘油酯的研究   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了磁性纳米固体超强酸SO2-4/TiO2-Fe3O4,以松香甘油酯的合成为目标反应,探讨了制备条件对SO2-4/TiO2-Fe3O4催化剂酯化性能的影响.得出最佳制备条件为:Ti与Fe的摩尔比为30∶1, 用浓度为1.5 mol/L的H2SO4浸泡,在450 ℃下焙烧3 h.并采用IR、TEM等分析手段对该催化剂结构进行了表征, 用改进的Hammett指示剂法测定了催化剂的酸强度.  相似文献   

7.
采用溶胶-凝胶法制备了磁性纳米固体超强酸SO4^2-/TiO2-Fe3O4,以松香甘油酯的合成为目标反应,探讨了制备条件对SO4^2-/TiO2-Fe3O4催化剂酯化性能的影响。得出最佳制备条件为:Ti与Fe的摩尔比为30:1,用浓度为1.5mol/L的H2SO4浸泡.在450℃下焙烧3h。并采用IR、TEM等分析手段对该催化剂结构进行了表征.用改进的Hammett指示剂法测定了催化剂的酸强度。  相似文献   

8.
受能源危机和环境污染的影响,绿色环保的固体酸催化剂在催化生物质转化为各类化学品方面的研究已成为近期的热点。本文综述了固体酸在生物质催化转化上的研究进展,首先列举可用于生物质转化的固体酸种类,接着介绍了固体酸催化剂在催化生物质转化生成生物质燃料、生物质平台化合物和生物基材料的研究状况,然后总结了在应用中存在的问题,最后展望解决这一问题的建议和思路。  相似文献   

9.
生物质碳基固体酸催化剂在纤维素水解中的研究进展   总被引:1,自引:0,他引:1  
综述了生物质碳基固体酸催化剂催化纤维素水解的最新研究进展,首先介绍了催化剂制备的原料及方法,包括热解炭化-磺化法、硫酸炭化-磺化法、水热炭化-磺化法以及热解炭化-氧化-磺化法等,分析了催化纤维素水解的机理,简述了催化剂活性评价方法及促进水解反应的辅助方法,并展望生物质碳基固体酸催化剂在纤维素水解中的应用前景及发展方向。  相似文献   

10.
以黑液固形物和松木粉为原料,经炭化、磺化制备得到黑液固形物磺化固体酸(BLSBC)和松木粉磺化固体酸(WMBC),采用扫描电镜(SEM)、热重分析(TG)、红外光谱(FT-IR)及元素分析对2种生物质炭基固体酸进行表征,并将BLSBC和WMBC催化对苯二酚(HQ)烷基化合成2-叔丁基对苯二酚(2-TBHQ),考察了原料种类和炭化温度对生物基固体酸催化性能的影响。研究结果表明:生物炭固体酸催化剂200℃以内的热稳定性良好,功能基团—SO_3H被成功接枝;催化剂C元素含量的增加及H~+交换容量的降低则归结于温度的影响,同温度条件下WMBC的H~+交换容量高于BLSBC。HQ转化率随着催化剂的H~+交换容量的降低而不断降低,而2-TBHQ选择性则取决于H~+交换容量与羟基含量的协同效应;与商业催化剂Amberlyst-15树脂、732树脂相比,450℃制备得到的WMBC(WMBC-450)表现出更高的催化活性,2-TBHQ有最高的选择性(83.8%)和产率(57.6%)。  相似文献   

11.
采用浸渍-焙烧法制备SO2-4/ZrO2固体酸催化剂,通过XRD、FT-IR、SEM和Hammett指示剂法对固体酸的结构和酸强度进行表征。考察不同条件制备的SO2-4/ZrO2固体酸催化剂,在不同反应条件下对碱木质素氢还原反应的催化作用,并用化学法对反应前后碱木质素官能团进行定量测定。结果表明,硫酸浸渍浓度为1 mol/L,550℃焙烧3.5 h制备的SO2-4/ZrO2固体超强酸对碱木质素氢还原反应具有较高的催化活性,在催化剂添加量5%,反应温度100℃,时间4 h,氢气压力3 MPa时,反应后碱木质素总羟基、酚羟基和醇羟基分别为9.34%、3.28%和6.06%,较反应前分别增加55.15%、13.89%和93.00%;木质素的苯环结构稳定,活性官能团含量增加,反应活性提高。  相似文献   

12.
采用浸渍-焙烧法制备SO2-4/ZrO2固体酸催化剂,通过XRD、FT-IR、SEM和Hammett指示剂法对固体酸的结构和酸强度进行表征。考察不同条件制备的SO2-4/ZrO2固体酸催化剂,在不同反应条件下对碱木质素氢还原反应的催化作用,并用化学法对反应前后碱木质素官能团进行定量测定。结果表明,硫酸浸渍浓度为1 mol/L,550℃焙烧3.5 h制备的SO2-4/ZrO2固体超强酸对碱木质素氢还原反应具有较高的催化活性,在催化剂添加量5%,反应温度100℃,时间4 h,氢气压力3 MPa时,反应后碱木质素总羟基、酚羟基和醇羟基分别为9.34%、3.28%和6.06%,较反应前分别增加55.15%、13.89%和93.00%;木质素的苯环结构稳定,活性官能团含量增加,反应活性提高。  相似文献   

13.
采用共沉淀法制备纳米级Fe_3O_4,并研究了其对水中氟的吸附性能。通过透射电镜、X射线衍射等手段对其进行表征,研究了初始氟离子浓度、溶液pH值、吸附剂用量、反应时间等因素对Fe_3O_4吸附水中的氟性能的影响。结果表明:制备的纳米级Fe_3O_4平均粒径为20 nm;当氟离子初始浓度为5 mg/L,溶液pH值为3,吸附剂用量为40 g/L,反应时间为150 min时,氟去除率达到最高为80.03%;纳米级Fe_3O_4材料对氟的吸附等温线符合Freundlich方程,并且吸附动力学符合假二级动力学方程。  相似文献   

14.
固体超强酸作为酯化反应的催化剂,充分显示了该类催化剂酸强度高、催化活性好、无污染等优点,但这类多相催化反应体系往往存在反应界面小、传质阻力大等弊端,当固体微粒达到纳米级就可以扩大其表面积,提高其催化活性。本采用微波法成功制备出纳米级固体超强酸SO4^2-/ZrO2.同时将其用于催化酯化合成乳酸正酯,并优化了合成乳酸正酯的工条件。  相似文献   

15.
研究了以磁性体为核、催化活性体为壳的固体酸催化剂制备过程的结构转化及其酯化催化活性变化.在ZrOCl2/FeCl2投料为10∶1(质量比),酸浓度为1 mol/L,浸泡时间2 h,400℃焙烧1 h的条件下,制得了具有优异的催化活性的纳米磁性催化剂ZrO2/SiO2-Fe3O4.采用IR、扫描电镜(SEM)和孔径分布等...  相似文献   

16.
采用原位水热合成法在氧化铝陶瓷膜(CM)表面原位合成出了孔道规则有序的MCM-41/CM分子筛膜。再采用浸渍法将SO2-4/Zr O2负载在MCM-41/CM分子筛膜上对MCM-41进行酸改性,制得负载型固体酸催化剂SO2-4/Zr O2/MCM-41/CM,并用于催化棕榈油与甲醇的酯交换反应制备生物柴油。结果表明,当Zr(NO3)4的浓度为0.4 mol/L、硫酸浓度为2 mol/L、焙烧温度为550℃时,制备出的负载型固体酸催化剂SO2-4/Zr O2/MCM-41/CM活性最高。通过考察反应条件对酯交换反应的影响,得出最佳的反应条件,即当催化剂用量5%(以活性组分负载率计)、反应时间为60 min、反应温度为100℃、醇油物质的量之比为10∶1时,脂肪酸甲酯的收率可达92%以上,重复使用5次后,脂肪酸甲酯收率仍达80%以上。  相似文献   

17.
为了使呋喃甲醛的制备过程绿色化,以ZrOCl2为原料,利用沉淀-浸渍法初步制备了SO42-/ZrO2固体酸,并应用于催化木糖制备呋喃甲醛的反应。采用L9(34)正交试验确定了适宜的反应条件:木糖质量浓度10 g/L、催化剂用量20 g/L、反应温度220℃、反应时间3 h。之后采用单因素试验考察了催化剂制备条件对呋喃甲醛产率的影响。得到的催化剂最佳制备条件为:H2SO4浸渍浓度1.0 mol/L、焙烧温度550℃、焙烧时间5 h,呋喃甲醛产率达最大值47%。实验结果表明:SO42-/ZrO2固体酸在催化木糖制备呋喃甲醛方面,具有较大发展潜力。  相似文献   

18.
为了使呋喃甲醛的制备过程绿色化,以ZrOCl2为原料,利用沉淀-浸渍法初步制备了SO24-/ZrO2固体酸,并应用于催化木糖制备呋喃甲醛的反应.采用L9(34)正交试验确定了适宜的反应条件:木糖质量浓度10g/L、催化剂用量20 g/L、反应温度220℃、反应时间3h.之后采用单因素试验考察了催化剂制备条件对呋喃甲醛产率的影响.得到的催化剂最佳制备条件为:H2SO4浸渍浓度1.0 mol/L、焙烧温度550℃、焙烧时间5h,呋喃甲醛产率达最大值47%.实验结果表明:SO24-/ZrO2固体酸在催化木糖制备呋喃甲醛方面,具有较大发展潜力.  相似文献   

19.
综述了以糖类、含酚类生物小分子及其他生物质为炭基前驱体制备生物质基炭气凝胶的研究进展,重点介绍了纤维素基、壳聚糖基、木质素基和单宁基炭气凝胶的制备工艺、产品性能及其在催化剂载体、超级电容器、吸附剂以及隔热阻燃材料等领域的应用情况,并对未来生物质基炭气凝胶工业化发展的研究重点和方向进行了展望。  相似文献   

20.
以杉木屑为原料,采用原位合成法制备炭基磷钨酸催化剂,以此催化剂催化水解微晶纤维素制备纳米纤维素(NCC),考察了液料浸渍比、炭化温度及炭化时间等催化剂的制备因素对NCC得率的影响。结果表明:液料浸渍比2.5∶1(mL∶g),炭化温度350℃,炭化时间1.5 h条件下制备得到的炭基磷钨酸的催化性能较好,NCC得率可达25.28%。采用傅里叶红外光谱仪、热重分析及扫描电镜对炭基磷钨酸催化剂进行了表征,结果表明:磷钨酸较好地负载在炭材料上,炭基磷钨酸的Keggin结构特征吸收峰并未发生明显变化,磷钨酸Keggin结构开始分解的温度是370℃。用透射电子显微镜和X射线衍射仪对NCC的形貌、晶体结构进行了分析,结果表明:NCC呈棒状,直径9~70 nm,长度130~830 nm,平均长径比为11.2∶1,结晶度为76.1%,平均晶粒尺寸6.9 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号