首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
动物肠道具有感应肠腔葡萄糖的功能,机体通过葡萄糖激酶(GCK)、味觉受体、葡萄糖转运蛋白GLUT2、mTORC1信号通路及AMPK等机制感应葡萄糖,影响肠道内分泌细胞(enteroendocrine cells,EECs)分泌激素,形成复杂的内分泌调控网络,调节机体营养物质代谢和采食行为等重要生理活动。文章综述了动物葡萄糖的感应机制及其对肠道内分泌调控的影响。  相似文献   

2.
氨基酸转运载体既有转运活性,又可作为感受器发挥胞外氨基酸感知功能。细胞膜上的氨基酸转运载体,尤其是转运大中性氨基酸包括亮氨酸的转运载体,能够通过胞内营养信号通路,包括调控细胞生长的哺乳动物雷帕霉素靶蛋白复合物1(mTORC1)通路以及被氨基酸饥饿所激活的一般性调控阻遏蛋白激酶(GCN)通路,调控细胞代谢。鉴于氨基酸转运载体的研究对动物营养学的重要性,本文对氨基酸转运载体的分类、氨基酸转运载体介导的氨基酸感知功能及氨基酸转运载体的组织特异性进行综述,以期更好的协助相关研究的发展。  相似文献   

3.
肠道上皮细胞的感应系统能够感应肠腔营养物质,影响肠道内分泌细胞(EECs)分泌脑肠肽,从而调节机体生理活动。机体对蛋白胨的感应主要通过小肽转运蛋白(Pep T1)和溶血磷脂酸受体5(LPAR5)发挥作用,对氨基酸的感应主要通过G蛋白偶联受体C家族6组a亚型受体(GPRC6A)、1型味觉受体1和3(T1R1/T1R3)以及雷帕霉素靶蛋白复合体1(m TORC1)信号通路发挥作用。文章对动物肠道蛋白质的感应机制及内分泌调控进行综述,旨在为同行提供参考。  相似文献   

4.
转运系统A载体——钠离子依赖性的中性氨基酸转运载体2(SNAT2)是近年发现的氨基酸转运感受体的典型代表,是体内主要的氮转运载体。SNAT2通过转运过程调节细胞内氨基酸浓度,进而调控细胞内氨基酸感受体的下游信号,发挥氨基酸转运载体和信号受体的双重功能,而成为近年氨基酸营养感应的研究热点。本文围绕SNAT2的分子特性、生物学特性、表达调控及其介导的氨基酸感应信号的研究进展进行综述。  相似文献   

5.
动物肠道内消化代谢产生的各种营养素或其他化学物质,能够通过肠道内分泌和营养素感应系统发挥生理效应。作为肠道内分泌和营养素感应系统重要的组成部分,肠道内分泌细胞通过表面的感应受体(氨基酸感应受体、脂肪酸感应受体和葡萄糖感应受体等),识别感应肠道内各类营养素,不仅调节营养素吸收和代谢,同时能够分泌脑肠肽(胰高血糖素样肽-1、酪酪肽、胆囊收缩素等)。脑肠肽通过由中枢神经系统、自主神经系统以及肠神经系统构成的脑肠神经网络,参与调控机体摄食行为及其他生理功能。本文就动物肠道内分泌系统、脑肠轴以及营养素感应受体等方面研究进展进行综述。  相似文献   

6.
氨基酸转运载体(AAT)是一类介导氨基酸从细胞外转运到细胞内的重要蛋白,也是一类能介导氨基酸相关的信号通路的重要营养物质感受分子,在机体的生长代谢、营养健康等方面具有重要作用。动物机体中存在多种类型的AAT,它们能感知机体内相关氨基酸水平的变化,介导细胞氨基酸感知信号通路——哺乳动物雷帕霉素靶蛋白复合体1(mTORC1)和一般性调控阻遏蛋白激酶2(GCN2)的激活,从而引起通路下游发挥作用。在不同组织细胞中,发挥主导作用的AAT存在差异,表明AAT具有组织特异性,同时,AAT也受多种因素的影响,比如动物机体本身、营养物质水平、激素水平等。作者主要从AAT的类型及转运机制、介导营养信号启动及对mTORC1通路和GCN通路的影响、在不同组织中的作用及AAT表达的调控4个方面进行综述,从宏观方面介绍了AAT,旨在为AAT的研究提供一些参考。  相似文献   

7.
胃肠化学感应(chemosensing)是指胃肠道内分泌细胞功能与内脏迷走神经元之间复杂的相互作用。胃肠道内分泌细胞监测到管腔内容物后,释放信号分子,激活神经纤维或其他靶目标,产生生理效应。本文综述了胃肠营养化学感应受体和信号转导途径,阐述了胃肠道内分泌细胞碳水化合物、蛋白质和脂肪的感应机制及其在激素分泌、摄食和黏膜防御调控中的作用。  相似文献   

8.
胃肠化学感应(chemosensing)是指胃肠道内分泌细胞功能与内脏迷走神经元之间复杂的相互作用。胃肠道内分泌细胞监测到管腔内容物后,释放信号分子,激活神经纤维或其他靶目标,产生生理效应。本文综述了胃肠营养化学感应受体和信号转导途径,阐述了胃肠道内分泌细胞碳水化合物、蛋白质和脂肪的感应机制及其在激素分泌、摄食和黏膜防御调控中的作用。  相似文献   

9.
本研究旨在探讨Na~+依赖性中性氨基酸转运载体2(SNAT2)介导多胺及其前体物质对仔猪肠黏膜营养感应信号的调控作用。试验选取32头哺乳仔猪,随机分为4组,每组8头猪,自出生当日开始,每日2次分别灌服生理盐水(对照组)、腐胺(5 mg/kg BW)、脯氨酸(25 mg/kg BW)和N-氨甲酰谷氨酸(NCG,8 mg/kg BW)。14日龄断奶,断奶第3天采血后屠宰,采集空肠和回肠样品。结果表明:与对照组相比,灌服腐胺、脯氨酸和NCG显著提高仔猪平均日增重(P0.05);灌服腐胺和NCG显著提高空肠和回肠黏膜SNAT2的蛋白表达水平(P0.05);灌服脯氨酸和NCG显著提高了空肠黏膜氨基酸转运感应相关基因[质子耦合氨基酸转运蛋白1(PAT1)、钙感应受体(CasR)、磷脂酶Cβ2(PLCβ2)和味觉受体1家族成员3(T1R3)]的mRNA相对表达量(P0.05),NCG还显著上调哺乳动物雷帕霉素靶蛋白(mTOR)信号通路相关基因[促分裂原活化蛋白激酶3(MAP4K3)和mTOR]的mRNA相对表达量(P0.05);灌服NCG显著提高了血清中胆囊收缩素(CCK)含量(P0.05)及空肠黏膜CCK受体mRNA相对表达量(P0.05)。综上所述,NCG可通过上调仔猪肠道氨基酸转运载体相关基因的表达,调节氨基酸感应途径信号分子的释放和基因表达。  相似文献   

10.
氨基酸转运载体(AAT)是一类介导氨基酸从细胞外转运到细胞内的重要蛋白,也是一类能介导氨基酸相关的信号通路的重要营养物质感受分子,在机体的生长代谢、营养健康等方面具有重要作用。动物机体中存在多种类型的AAT,它们能感知机体内相关氨基酸水平的变化,介导细胞氨基酸感知信号通路——哺乳动物雷帕霉素靶蛋白复合体1(mTORC1)和一般性调控阻遏蛋白激酶2(GCN2)的激活,从而引起通路下游发挥作用。在不同组织细胞中,发挥主导作用的AAT存在差异,表明AAT具有组织特异性,同时,AAT也受多种因素的影响,比如动物机体本身、营养物质水平、激素水平等。作者主要从AAT的类型及转运机制、介导营养信号启动及对mTORC1通路和GCN通路的影响、在不同组织中的作用及AAT表达的调控4个方面进行综述,从宏观方面介绍了AAT,旨在为AAT的研究提供一些参考。  相似文献   

11.
本试验旨在研究槲皮素促进猪肠上皮细胞利用蛋白质的作用及机制。猪肠上皮细胞孵育48 h后试验组分别用含0.1、0.2、0.4、0.8和1.6 mg/L槲皮素的二甲基亚砜(DMSO)溶液处理72 h,对照组采用0.2%DMSO处理。采用二喹啉甲酸(BCA)测定受试细胞中蛋白质的含量;采用实时荧光定量PCR(RT-qPCR)法测定氨基酸和小肽转运载体以及哺乳动物雷帕霉素靶蛋白(mTOR)信号通路相关基因的mRNA相对表达量;采用Western blot法测定mTOR信号通路相关基因的蛋白表达。结果表明:与对照组相比,1)0.4和0.8 mg/L槲皮素均极显著增加猪肠上皮细胞中蛋白质的含量(P<0.01)。2)1.6 mg/L槲皮素极显著提高猪肠上皮细胞中兴奋性氨基酸转运载体1(EAAC1)、谷氨酰胺载体2(ASCT2)、氨基酸转运载体A2(ATA2)、L型氨基酸转运载体2(LAT2)、阳离子氨基酸转运载体1(CAT1)、b 0,+系统氨基酸转运载体(rBAT)、y+L系统氨基酸转运载体1(y+LAT1)、y+L系统氨基酸转运载体2(y+LAT2)和寡肽转运载体1(PepT1)mRNA相对表达量(P<0.01)。3)0.4 mg/L槲皮素极显著降低猪肠上皮细胞中结节性硬化复合物1(TSC1)mRNA相对表达量(P<0.01);0.8 mg/L槲皮素极显著增加mTOR和核糖体蛋白S6(RPS6)mRNA相对表达量并极显著降低TSC1 mRNA相对表达量(P<0.01);1.6 mg/L槲皮素极显著增加mTOR、真核起始因子4E结合蛋白1(4E-BP1)、真核细胞翻译起始因子4E(eIF4E)、真核细胞翻译起始因子4B(eIF4B)、真核细胞翻译起始因子4A(eIF4A)和RPS6 mRNA相对表达量(P<0.01)。4)0.1和1.6 mg/L槲皮素极显著提高猪肠上皮细胞中mTOR、eIF4E和eIF4A蛋白表达量并极显著降低4E-BP1蛋白表达量(P<0.01)。由此可见,槲皮素可通过调控氨基酸转运载体、小肽转运载体及mTOR信号通路相关基因的表达来促进猪肠上皮细胞对蛋白质的利用。  相似文献   

12.
本研究旨在基于哺乳动物雷帕霉素靶蛋白(mTOR)信号通路探讨猪肠上皮细胞增殖和精氨酸(Arg)转运的调控机制。在含100或350μmol/L Arg的培养基中添加(10 nmol/L)或不添加(0 nmol/L)雷帕霉素(Rap),培养猪肠上皮细胞(IPEC-J2细胞)3 d后,对细胞活力、细胞周期以及Arg转运、增殖和凋亡相关通路基因和蛋白表达进行检测。结果表明:1)添加Rap极显著降低了G2期和S期细胞数量(P0.01),而提高Arg浓度有效缓解了Rap对细胞增殖的抑制作用;Rap通过激活磷脂酰肌醇-3-羟激酶(PI3K)-蛋白激酶(Akt)-B细胞淋巴瘤2(Bcl2)信号通路抑制细胞凋亡。2)添加Rap抑制mTOR信号通路后极显著提高了Arg摄取率(P0.01),极显著提高了100μmol/L Arg培养下细胞中阳离子氨基酸转运载体2(CAT2)的mRNA和蛋白表达量(P0.01);进一步试验证明蛋白激酶Cα(PKCα)-细胞外信号调节激酶(Erk)/cFos-CAT2信号通路可能是Rap促进CAT2表达,进而提高Arg摄取的重要通路。综上可知,Rap应激下猪肠上皮细胞增殖被抑制,提高Arg浓度能有效缓解Rap对细胞增殖的抑制作用;Rap通过调控PKCα-Erk/cFos-CAT2信号通路促进猪肠上皮细胞对Arg的摄取,且提高Arg浓度可促进细胞对Arg的摄取。结果提示,mTOR信号通路在调控猪肠上皮细胞Arg利用过程中发挥重要作用。  相似文献   

13.
哺乳动物雷帕霉素靶蛋白复合体1(mTORC1)信号通路能够感受一系列细胞内外环境因素的变化,如氨基酸浓度、能量水平、生长因子等进而调节细胞生长。氨基酸不仅是合成蛋白质的底物,也可作为信号分子激活mTORC1信号通路,促进蛋白质合成。溶酶体是氨基酸激活mTORC1信号通路过程中一个重要细胞器,mTORC1感应氨基酸的上游信号通路需要溶酶体相关蛋白及胞浆蛋白的参与完成。本文综述了氨基酸调节mTORC1信号通路的分子机制,为营养因子调控蛋白质合成的关键通路提供参考。  相似文献   

14.
小肽转运载体1的生物学特性及其功能   总被引:1,自引:0,他引:1  
小肽转运载体1(PepT1)是H+/肽偶联的转运载体。该载体通过利用肠腔到肠细胞的质子梯度来转运二肽和三肽。PepT1对游离氨基酸、多肽在动物肠道内的转运调控具有重要作用。本文综述了PepT1的分类、生物学特征及功能,并探讨了影响PepT1活性调控的因素。  相似文献   

15.
氨基酸作为蛋白质营养功能的执行者,其调控细胞功能的作用已经超过其在新陈代谢中的基本作用;而细胞生理功能的调控是通过调整氨基酸转运体基因表达和信号转导途径实现的。虽然氨基酸调控基因表达的研究已经成熟,但人们对真核细胞如何感应氨基酸的营养信号尚未了解透彻。对雷帕霉素靶蛋白(mTOR)信号通路及氨基酸介导通路上游作用机制的最新研究进展进行综述,为调控蛋白质合成达到最大化提供依据。  相似文献   

16.
1前言近10多年的研究发现,蛋白质除了以氨基酸的形式被消化和吸收以外,小肽以一种特殊的吸收途径在动物体内发挥特殊的生理作用,某些生物活性肽(Bioactive peptides BAP),他们在消化过程中被释放,并与肠道内特殊的受体结合参与消化和内分泌的调节。这一研究的发展对传统的营养学概念提出了挑战,并成为营养学研究领域的新的热点。2单胃动物对肽的吸收机制游离氨基酸在动物体内存在中性、碱性、酸性氨基酸和亚氨基酸4种主动转运系统。与游离氨基酸不同,小肽有不同的转运形式。(1)具有PH依赖性的氢离子和钠离子转运系统,不消耗ATP(Kato,198…  相似文献   

17.
饲粮蛋白质在瘤胃或肠道被降解成多肽,并进一步被分解成氨基酸和小肽,然后被吸收、利用。肠道氨基酸的转运受多种氨基酸转运载体,如中性、酸性和碱性氨基酸转运载体等的调节,小肽的转运则由小肽转运载体1介导。目前,对氨基酸及小肽转运载体基因的表达和功能调节相关的分子机制还不清楚,有待于进一步研究。本文综述了动物小肠肽与氨基酸转运载体等,重点介绍了其基因表达调节的分子机制、影响因素以及营养调控方面的研究进展。  相似文献   

18.
氨基酸平衡对哺乳动物健康生长具有重要意义,而在维持机体氨基酸平衡的过程中,GCN2和mTORC1信号路径发挥着重要作用。GCN2路径能有效感应胞内氨基酸缺乏,而mTORC1路径则能对胞外氨基酸水平的变化做出响应。本文结合近年来有关GCN2和mTORC1的研究进展,阐述了氨基酸充足和氨基酸饥饿条件下,GCN2和mTORC1这两条信号路径的感应特点以及随后启动的相关应答机制,包括蛋白质合成、拒食行为、氨基酸转运体表达增加、氨基酸合成酶增加和自噬启动等。了解动物在不同的氨基酸营养状态下维持细胞内氨基酸平衡的这些调节机制,有助于人们更好的对动物进行氮营养调控,从而改善肠道健康。  相似文献   

19.
亮氨酸对猪胎盘滋养层细胞增殖及氨基酸转运的影响   总被引:1,自引:0,他引:1  
为研究亮氨酸(Leu)对猪胎盘滋养层细胞(pTr)增殖、凋亡以及氨基酸转运载体表达的影响及其机制,本试验用不同浓度Leu(0、1、10 mmol/L)分别处理pTr细胞24 h和48 h后,使用荧光定量PCR技术检测pTr细胞增殖和凋亡相关基因、氨基酸转运载体以及mTOR信号通路关键蛋白等的mRNA表达水平。结果表明:Leu处理pTr细胞24 h后,1 mmol/L试验组的SNAT1(P<0.01)、4E-BP1 (P<0.05)和eIF4G(P<0.05)的mRNA相对表达量低于对照组;Leu处理pTr细胞48 h后,1 mmol/L试验组LAT1(P<0.05)、4E-BP1(P<0.01)的mRNA相对表达量低于对照组,10 mmol/L试验组CDK4(P<0.05)、4E-BP1 (P <0.01)、SNAT1 (P <0.01)、SNAT2 (P <0.01)、LAT1 (P <0.01)以及rBAT (P <0.05)的mRNA相对表达量也低于对照组;Leu处理pTr细胞24 h和48 h后,10 mmol/L组mTORC1的mRNA相对表达量较对照组和1 mmol/L组均极显著提高(P<0.01)。可见,10 mmol/L Leu会抑制pTr细胞的增殖活力,并可能通过mTOR信号通路的介导,降低了pTr细胞氨基酸转运载体的表达。  相似文献   

20.
钙敏感受体(CaSR)是G蛋白偶联受体(GPCRs)C家族的成员,其在神经系统、心血管系统、胃肠道、肾脏及骨组织中有广泛的分布,当与激动剂及变构调节剂结合后,激活下游相关信号通路,对于机体钙稳态的维持、细胞的增殖分化、免疫及多种内分泌激素的释放具有重要调节作用。目前的研究报告主要来自于牛、人、鼠等,对家畜和其他动物的研究还较少,对机体各项生命活动的调控作用也不明确。为此,本文从CaSR的发现、结构、介导的信号活动及生理作用等方面作一综述,以期为研究CaSR调节动物生理活动的机制及发挥的生理功能奠定理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号