首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了阐明大型海藻针叶蕨藻对海水养殖废水的净化效果,设置针叶蕨藻密度为20,60 120 mg·L~(-1)实验组和无针叶蕨藻的对照组,每组3个重复,分析海水养殖废水中NH_4~+-N、NO_2~--N、NO_3~--N的浓度变化。研究结果表明,各实验组水质处理效果均较好;实验进行8 d后,20 mg·L~(-1)处理组NH_4~+-N去除率为99.91%,NO_3~--N去除率为25.80%,;60 mg·L~(-1)处理组NH_4~+-N去除率99.96%,NO_3~--N去除率为25.39%;120 mg·L~(-1)处理组NH_4~+-N去除率为99.94%,NO_3~--N去除率为64.15%。不同处理组NO_2~--N浓度基本无变化。在NH_4~+-N去除速率方面不同处理组间存在极显著差异(P0.01)。  相似文献   

2.
短程硝化反硝化工艺具有节省碳源、节省曝气量、污泥产量低等优点,但由于启动时间长、短程硝化效果不稳定等问题限制了其工程应用。针对此问题,本研究采用泥膜一体化工艺(IFAS)处理猪粪秸秆沼液,并考察了短程硝化反硝化工艺生物强化快速启动及稳定运行效果。结果表明,通过添加实验室自制氨氧化菌剂与反硝化菌剂,可在17 d内完成反应器的快速启动;稳定运行阶段,系统猪粪秸秆沼液有机负荷(COD)平均为1 040.0 mg·L~(-1)·d~(-1),好氧池平均NH_3-N负荷为110 mg·L~(-1)·d~(-1);好氧池平均NO_2~--N积累率为91.4%;COD、NH_3-N、TN平均去除率分别达到92.1%、97.0%、90.1%,且COD和TN的去除主要发生在缺氧池。分子生物学分析表明,整个运行过程中,好氧池生物膜氨氧化细菌(AOB)的丰度由0.003 6%上升至0.014 3%,增长至原来的4倍;亚硝酸盐氧化细菌(NOB)的丰度由0.004 8%下降至0,说明利用氨氧化菌剂、反硝化菌剂可快速稳定实现短程硝化反硝化脱氮工艺的启动。  相似文献   

3.
采用挂膜法在曝气式生物滤池中比较分析不同用量的呼吸环和陶瓷环处理养殖废水时NH_4~+-N,NO_2~--N的质量浓度变化,并构建浓度变化模型公式。结果表明,不同生物滤料、不同用量的NH_4~+-N质量浓度均随处理时间延长而逐渐下降,NO_2~--N质量浓度先上升至峰值然后下降。14%红色呼吸环、10%红色呼吸环NH_4~+-N和NO_2~--N处理效果最优,处理的第21~23天NH_4~+-N达最低值(0.056±0.014)mg·L~(-1),去除率为97.37%;处理的第10天NO_2~--N达到峰值(1.722±0.014)mg·L~(-1),第24~26天达最低值(0.024±0.009)mg·L~(-1)。不同比例不同生物滤料NH_4~+-N去除效果满足模型公式y=a/(1+be~(cx))+d,NO_2~--N去除效果满足模型公式y=x~ae~((b/x+cx))+d。  相似文献   

4.
亚热带小流域浅层地下水不同形态氮含量的时空变异特征   总被引:1,自引:0,他引:1  
为了定量研究流域尺度上氮素(N)形态的时空变异特征,以湖南省长沙县亚热带湘江源头小流域(134.4 km~2)为研究对象,2011年(1—12月)定位观测了小流域菜地、茶园、旱地、林地、两季稻田和一季稻田6种土地利用类型下浅层地下水总氮(TN)、硝态氮(NO_3~--N)、铵态氮(NH_4~+-N)浓度的动态变化,运用空间分析技术分析了各观测指标的时空变异特征。结果表明:研究区浅层地下水NH_4~+-N、NO_3~--N和TN均具有强烈的空间自相关性(块金系数分别为0.76%、8.50%、4.41%),结构变异占主导地位,变程分别为540、580、570 m。小流域浅层地下水TN、NH_4~+-N和NO_3~--N月均浓度变化趋势不尽相同,TN和NO_3~--N月均浓度的动态变化相对比较平缓,而NH_4~+-N的变幅较大,TN和NH_4~+-N的峰值出现在2011年7月,NO_3~--N无明显高峰;TN、NO_3~--N和NH_4~+-N的平均浓度分别为2.97、1.12 mg N·L~(-1)和1.32 mg N·L~(-1)。研究区浅层地下水N的浓度分布特征与土地利用类型关系密切,茶园、稻田为浅层地下水N分布高浓度区,且茶园地下水N浓度最高,林地为N分布低浓度区。  相似文献   

5.
以洱海北部正常运行10 a的罗时江河口湿地为研究对象,通过开展为期1 a的现场定点监测及文献调研,探讨洱海流域运行1、5、10 a的人工湿地氮截留动态变化及影响因子。结果表明:罗时江河口湿地上覆水无机氮浓度呈现显著干、湿季节分异,干季无机氮浓度显著高于湿季(P0.05);从空间分异看,湿地进水口TN、NH_4~+-N和NO_3~--N浓度平均值分别为3.34、0.75、0.77 mg·L~(-1),出水口浓度分别为2.01、0.42、0.45 mg·L~(-1),表明正常运行10 a的罗时江河口湿地仍具备氮截留能力。正常运行1、5、10 a后的人工湿地对TN、NH_4~+-N和NO_3~--N的平均截留效率呈下降趋势,但差异未达到显著水平(P0.05)。运行10 a后的罗时江河口湿地对TN、NH_4~+-N和NO_3~--N的平均截留效率分别为37.2%、34.6%和29.2%。冗余分析和Pearson相关分析结果显示,上覆水中DO、ρ(NH_4~+-N)、COD/TN及温度是罗时江湿地氮截留的重要影响因子。研究表明,处于氧化环境的上覆水有利于硝化过程,但不利于反硝化过程,后续湿地恢复、建设、管理中应重点优化湿地中的反硝化过程,以提升氮截留效果。  相似文献   

6.
高负荷活性污泥法对生活污水的处理效果   总被引:1,自引:0,他引:1  
[目的]探究高负荷活性污泥法与短程硝化和TN去除率之间的关系。[方法]采用A/O小试装置处理低C/N实际生活污水,将水力停留时间(HRT)降低至7.00和3.50 h,考察该方法对生活污水中氮的去除效果。[结果]在低HRT高负荷工况下,DO需要高达3.00 mg/L才能将NH_4~+-N完全去除。低HRT对于亚硝化率有一定影响,但进水NH_4~+-N浓度仍是影响亚硝化率的主要因素。在一定范围内,较低的NH_4~+-N去除率对TN去除没有影响。COD的去除不受低HRT影响。在高COD负荷下,提高DO浓度可以预防污泥膨胀,但会降低TN的去除率。[结论]低HRT对亚硝化率有一定影响,但影响亚硝化率最主要的因素是NH_4~+-N浓度。  相似文献   

7.
为研究溶藻弧菌Vibrio alginolyticus HA2同步硝化反硝化过程中氮的代谢产物,分别用以铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)、亚硝态氮(NO_2~--N)为氮源的培养基培养溶藻弧菌HA2 120 h,测定不同时间段菌液浓度,以及NH_4~+-N、NO_3~--N、NO_2~--N、pH和发酵罐中气体(N_2、NO、N_2O)的含量,并且拟合菌株生长曲线。结果表明:溶藻弧菌对NH_4~+-N、NO_3~--N、NO_2~--N降解率最高分别为99.97%、99.95%、36.87%;生长极限k值分别为4.769、5.477、5.567;培养基中的NH_4~+-N直接被氧化为NO_3~--N;试验中均未检测出NO、N_2O气体,各培养基中N_2量均有上升趋势;各培养基中pH均有增加趋势。研究表明,溶藻弧菌HA2具有开发为高效、环保、安全的硝化反硝化细菌的研究价值。  相似文献   

8.
低碳氮比畜禽粪水厌氧消化液短程硝化脱氮试验研究   总被引:1,自引:0,他引:1  
针对畜禽粪水厌氧消化液存在低C/N、后续可生化性差等问题,提出利用短程硝化反硝化技术处理高氨氮畜禽粪水厌氧消化液。结果表明:在(29±1)℃条件下,通过调节曝气量控制DO在0.6~0.9 mg·L~(-1)之间,接种厌氧氨氧化颗粒污泥可快速实现短程硝化反硝化;之后在恒定曝气量下使反应器内DO为0.1~2.88 mg·L~(-1)时,在处理高氨氮粪水过程中,通过对比四组不同pH和游离氨(FA)发现,当pH=8、FA=18 mg·L~(-1)左右时更利于亚硝化菌的优势竞争并可长期稳定实现短程硝化反硝化;应用MPN法测得氨氧化菌(AOB)和亚硝酸氧化菌(NOB)数量之比为600∶1。SBR反应器稳定运行期间COD负荷和氨氮负荷分别为2.0~3.5 kg·m~(-3)·d~(-1)和0.6~0.8 kg·m~(-3)·d~(-1),COD去除率为63%~71%,NH~+_4-N去除率在94.9%以上,NO-2-N积累率(NAR)达到94.25%以上。  相似文献   

9.
采用A/O-MBR工艺处理低C/N(3~5)生活污水,考查溶解氧(DO)、水力停留时间(HRT)及回流比(R)对脱氮效果的影响,并对处理过程进行全氮分析。结果表明,该工艺NH4+-N去除率在95%以上,但TN去除率最高仅为66%,TN去除在DO=2~3 mg/L、HRT=9 h及R=300%时分别出现峰值,缺氧段处理效果明显优于好氧段。对处理过程的全氮分析表明,28~32℃水温条件下,系统亚硝化率(NO2-/TN)保持在3%以下的低比率,说明短程硝化反硝化作用可以忽略,TN去除主要依赖硝化反硝化;控制DO=2~3 mg/L、HRT=9 h,系统好氧池硝化率(NO3-/TN)维持在61%~90%之间,缺氧池硝化率随R增加逐渐上升,在R=300%时达到高点76%;控制DO=2~3 mg/L、R=300%,缺氧池硝化率也在HRT=9 h时达到高点。结果表明,A/O-MBR工艺维持TN去除效果的先决条件是缺氧池达到足够的硝化率。由于反硝化细菌是典型的异养菌,TN去除不够理想主要源于进水碳源相对缺乏。除了增加碳源的传统措施外,提高TN去除率应更多地关注工艺条件的改进。  相似文献   

10.
通过在垂直流人工湿地缺氧反硝化区添加负载型纳米零价铁(n ZVI),分析不同负载型n ZVI投加量对反硝化的影响,研究不同进水C/N条件下负载型nZVI参与反硝化的效果。结果表明:投加负载型nZVI 4 g的人工湿地装置对硝氮去除效果最佳,当C/N为6、HRT=1 d、进水NO_3~--N为50 mg·L~(-1)时,其NO_3~--N去除率比未添加负载型n ZVI的人工湿地装置提高15%;随负载型n ZVI投加量的增加,人工湿地装置出水pH值和NH_4~+-N、NO_2~--N的浓度增加;在进水C/N为0、2、4、6的人工湿地装置中,其对NO_3~--N的去除率随C/N升高而升高;统计分析表明,进水C/N与负载型n ZVI投加量对人工湿地反硝化都具有显著影响,且两者具有协同作用,碳源的存在可以促进负载型nZVI参与人工湿地反硝化。  相似文献   

11.
目的]研究溶解氧(DO)浓度和p H对沼液废水短程硝化反应的影响。[方法]采用自制的SBR反应器,针对DO浓度和p H 2个影响因子进行单因素试验,考察其对亚硝酸盐积累的影响。[结果]在温度(25±2)℃,进水氨氮(NH_4~+-N)浓度550~600 mg/L、化学需氧量(COD)1 600~1 700 mg/L、p H 7.5,水力停留时间(HRT)为1 d的条件下,DO浓度在1.1~1.5 mg/L时,出水亚硝氮(NO_2~--N)/总硝氮(NO_x~--N)可达到0.85,NO_2~--N/NH_4~+-N接近于1。在温度为(25±2)℃、DO为1.3 mg/L和进水NH_4~+-N浓度为600 mg/L时,将p H控制在7.3~7.8,亚硝酸菌整体活性最高。[结论]DO浓度会显著影响亚硝酸盐的积累和转化,p H直接影响亚硝酸菌的生长,过高的p H会导致高NH_4~+-N沼液废水中游离氨的浓度升高,从而抑制亚硝酸菌的活性。  相似文献   

12.
为修复养蛙池塘水体环境,根据菌株对蛙塘中氨氮(NH_4~+-N)、亚硝酸盐(NO_2~--N)的去除率及其产酶能力,从实际蛙塘水体中筛选高效去除池塘氨氮及亚硝酸盐的益生芽孢杆菌。结果表明,从实际养蛙池塘环境分离筛选的菌株B2能够高效去除养蛙塘水中的氨氮(NH_4~+-N)和亚硝酸盐(NO_2~--N),其在5d内对氨氮和亚硝酸盐的去除率分别达到64.56%和36.39%,同时在好氧和厌氧条件下具备较好的产酶能力,符合养蛙池塘环境的实际情况。生理生化特性以及16SrDNA序列比对结果表明,菌株B2为枯草芽孢杆菌(Bacillus subtilis)。菌株B2降解氨氮(NH_4~+-N)、亚硝酸盐(NO_2~--N)的最适温度为25~35℃,最适pH值为6~8。  相似文献   

13.
“空心菜-水芹”轮作对养殖池塘水质和底质环境的影响   总被引:3,自引:0,他引:3  
通过测定TOC、COD、Chl、TN、NH_4~+-N、NO_2~--N、NO_3~--N、TP、PO_4~(3-)-P等水质指标和底泥中TOC、TN、TP指标,探究"空心菜-水芹"轮作模式对不同养殖品种和养殖数量情况下养殖池塘水质和底质环境的影响。结果表明,在轮作模式前期,空心菜(Ipomoea aquatica)种植能显著降低甘露青鱼(Mylopharyngodon piceus)养殖场TOC、Chl、TN、NH_4~+-N、NO_2~--N、NO_3~--N、PO_4~(3-)-P等水质指标,能显著降低苏州经济鱼亲本塘TOC、COD、Chl、NH_4~+-N、NO_2~--N、NO_3~--N、TP等水质指标。轮作后期水芹(Oenanthe stolonifera)种植能降低甘露青鱼养殖场TOC、NO_3~--N、TP等水质指标,降低苏州经济鱼亲本塘TOC、COD、NH_4~+-N、NO_3~--N、TP等水质指标。轮作前、后期均能降低底质TOC、TN和TP含量。"空心菜-水芹"轮作模式能显著降低养殖池塘水体中TOC、NH_4~+-N、NO_3~--N、TP指标和底泥中TOC、TN、TP指标。  相似文献   

14.
采用CSTR作为产甲烷反硝化反应器和MSBR作为短程硝化反硝化反应器的串联工艺进行屠宰废水处理中试试验。通过控制溶解氧在0.7~1.2 mg·L-1,实现短程硝化反硝化;将MSBR出水按一定比例回流至CSTR,实现产甲烷反硝化。在稳定运行的前提下考察了组合工艺对屠宰废水的处理效果,并进一步分析了各反应器对COD、TN、NH+4-N的去除贡献。结果表明:工艺对屠宰废水COD、NH+4-N、TN的去除率分别达到97.12%、95.13%、77.14%; CSTR对系统COD去除贡献率为68.35%,MSBR对系统TN去除贡献率为72.34%;CSTR对系统TN、NH+4-N去除的贡献率分别为27.66%、-33.42%,MSBR对系统COD、NH+4-N去除的贡献率分别为31.65%、133.42%;组合工艺的适宜回流比较为75%;温度对COD、NH+4-N、TN的去除效果及去除稳定性有重要的影响;在最佳回流比75%的条件下,沼气中甲烷含量为66.70%;在气温较高的夏秋季,稳定期的亚硝酸盐积累率(NAR)可达65%以上。  相似文献   

15.
采用一体化SBR反应器处理废水,研究溶解氧(DO)和水力停留时间(HRT)对系统同步硝化反硝化脱氮的影响.结果表明:进水NH3-N浓度在45 mg/L左右,COD在450~500 mg/L,pH值为7.2~8.5,MLSS在4 500 mg/L左右的情况下,DO控制在0.5~1.5 mg/L时TN去除率最大值达到69.62%,DO值过高或过低都会影响同步硝化反硝化的顺利进行.其他操作条件相同,DO在1 mg/L左右,HRT控制在7 h时TN的去除率最高达到71.53%.  相似文献   

16.
复合人工湿地处理低浓度畜禽养殖废水的净化效果   总被引:2,自引:0,他引:2  
为了解人工湿地对低浓度畜禽养殖废水的去除速度与净化效果,采用4级复合人工湿地以间歇进水的方式处理低浓度猪场废水,监测不同时期各级湿地进出水中TN、TP、NH_4~+-N、COD_(Cr)等污染物指标浓度的变化。结果表明,复合人工湿地进水中TN、TP、NH_4~+-N、CODCr年平均初始浓度分别为41.6、8.4、21.4、253.9 mg·L~(-1),去除率分别为94.66%、79.36%、91.04%、32.32%。其中1级湿地(芦苇-砾石垂直渗透流)对TN、TP和CODCr去除速度较快,分别为2.9、0.6、7.5 g·m~(-2)·d~(-1);2级湿地(芦苇-沸石垂直渗透流)对NH_4~+-N去除速度较快,为1.8 g·m~(-2)·d~(-1);3级湿地(芦苇-砾石水平潜流)和4级湿地(稻田水平表面流)对污染物的去除速度较低,对TN、TP、NH_4~+-N的去除速度均小于0.4 g·m~(-2)·d~(-1),对COD_(Cr)的去除速度小于2.3 g·m~(-2)·d~(-1)。污染物去除率受季节温度变化的影响较小。  相似文献   

17.
施肥导致的水体氮流失是重要的面源污染源。开展不同养分来源下,基肥和追肥下不同施肥模式下稻田田面水中的铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)、总氮(TN)及可溶性生物量氮(DON)的含量监测研究。结果显示:稻田田面水NH_4~+-N、TN浓度随尿素用量增加而增加,无论是单施尿素还是增施猪粪或继续增施秸秆,NH_4~+-N及TN浓度峰值均出现在施肥后4~5 d,基肥施用后的前10 d,田面水以NH_4~+-N为主,基施尿素的NH_4~+-N及TN峰值分别达47.6、54.5 mg/L。NO_3~--N浓度变化不如NH_4~+-N明显,且流失风险较小;DON在施肥后10 d增至峰值后缓慢下降,但占总氮比较高。提高尿素用量或增施猪粪用量,田面水NH_4~+-N、TN及DON都呈增加趋势,增施秸秆虽然提高田面水的NH_4~+-N和TN,但NO_3~--N和DON含量呈下降趋势。以上结果表明,施肥后的10 d内NH_4~+-N是重点需要关注的氮形态,增施猪粪增加氮流失风险,尿素配合猪粪和秸秆施用,可降低田面水的NO_3~--N和DON含量。  相似文献   

18.
为明确黄瓜幼苗根系生长与不同氮素用量及氮形态间的关系,采用盆钵培养的方法,以硝酸铵磷为供试肥料(NO_3~--N∶NH_4~+-N为0.9∶1.0),研究不同氮素用量及氮素形态对黄瓜幼苗根系生长的影响。结果表明:不施氮肥的黄瓜幼苗根长高于各施氮处理,施用氮肥植株根系的生长受到抑制,氮素用量100mg·株~(-1)的情况下,根系生长受到的抑制更为明显;施用氮肥主要降低了根系直径在1.0~1.3mm和2.3~2.6mm范围内的根长比例。黄瓜幼苗的根长与播种前和移栽期基质无机氮的含量与形态显著相关。播种前基质NO_3~--N含量为382mg·kg~(-1)、NH_4~+-N含量为373mg·kg~(-1)、无机氮总量840mg·kg~(-1)时,根长最小;移栽期,幼苗根长随基质NO_3~--N含量的增加逐渐降低,基质NH_4~+-N含量为88mg·kg~(-1)、无机氮总量为455mg·kg~(-1)时,对根长的抑制作用最大。播前基质NO_3~--N/NH_4~+-N的比值为10.7时,根长最大;移栽期NO_3~--N/NH_4~+-N为3.8时,则显著抑制根系生长。  相似文献   

19.
氮素是影响湖泊初级生产力的主要因素之一。近年来,受气候干旱及上游用水量增加等因素的影响,大多数封闭性内陆湖都面临着湖面萎缩、湖水因营养盐浓度增加而逐渐恶化的问题。本文以内蒙古高原境内封闭型内陆湖泊——达里诺尔湖为例,于2017年夏季采集湖水、间隙水、沉积物、入湖河流等样品。对湖泊氮素赋存特征、迁移趋势做出分析,并且对入湖河流携带的氮素对湖泊水质的影响展开讨论。结果表明:氨氮(NH_4~+-N)是上覆水中占比例最高的形态氮。总氮(TN)、硝酸盐氮(NO_3~--N)、亚硝酸盐氮(NO_2~--N)含量随水深从浅到深基本保持不变。只有B6、E2、E5样点的NH_4~+-N在水深1.5 m向下处含量有所波动。表层沉积物TN均值2 809.97 mg·kg~(-1),可交换态氮占TN含量6.74%;河水中占比例最高的形态氮是NO_3~--N,四条入湖河流中,TN、NH_4~+-N含量最高的是沙里河,NO_3~--N含量最高的是亮子河;每年由入湖河流携带入湖的TN量为120 t。总体来看,达里诺尔湖氮素赋存特征为:NH_4~+-N是上覆水的主导形态氮,TN及各形态氮含量在不同深度水层掺混均匀,无明显的分层现象。沉积物TN含量较高且氮素迁移能力较强。TN、NO_3~--N、NO_2~--N表现为由沉积物到上覆水的释放状态,而NH_4~+-N则以上覆水到沉积物的吸附状态为主。河流的输入对湖水TN含量有稀释作用,但会增加湖水NO_3~--N的负荷。  相似文献   

20.
反硝化作用是地下水硝酸盐污染去除最重要的过程。为研究含水层中反硝化作用强度及其影响因素,采用整合分析法对不同含水介质类型中的反硝化强度范围进行了总结,揭示了反硝化强度在含水层中垂向分布规律,研究了不同取样深度和不同溶解氧(DO)浓度下的反硝化强度影响因素,分析了反硝化强度统计结果的不确定性。结果表明,大多含水介质中反硝化强度处于10~(-1)~10~2μg·kg~(-1)·d~(-1),砂和砂砾石含水介质中可以达到10~3μg·kg~(-1)·d~(-1)量级。含水介质粒间孔隙大小与反硝化强度未呈明显相关关系。反硝化强度沿含水层垂向上先逐渐增大后显著减小,在某深度处存在峰值,峰值对应的深度存在明显的区域差异。浅层含水层反硝化强度主要受有机碳浓度影响;深层含水层反硝化强度主要受Eh值影响。当DO浓度为0.2~2 mg·L~(-1)时,反硝化强度与取样深度、地下水位埋深、NO_3~--N浓度和Eh均呈不显著负相关关系;DO浓度介于2~6 mg·L~(-1)时,与取样深度呈显著负相关,与温度为显著正相关;DO浓度大于6 mg·L~(-1)时,与Eh呈显著负相关关系。反硝化强度测定、计算方法的不同和统计过程导致统计结果具有一定的不确定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号