首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate the growth of C3 crops. However, little information exists about the effect of elevated [CO2] on biomass production of sugar beet, and data from field experiments are lacking. In this study, sugar beet was grown within a crop rotation over two rotation cycles (2001, 2004) at present and elevated [CO2] (375 μl l?1 and 550 μl l?1) in a free air CO2 enrichment (FACE) system and at two levels of nitrogen supply [high (N2), and 50% of high (N1)], in Braunschweig, Germany. The objective of the present study was to determine the CO2 effect on seasonal changes of leaf growth and on final biomass and sugar yield. Shading treatment was included to test whether sugar beet growth is sink limited under elevated [CO2]. CO2 elevation did not affect leaf number but increased individual leaf size in early summer resulting in a faster row closure under both N levels. In late summer CO2 enrichment increased the fraction of senescent leaves under high but not low N supply, which contributed to a negative CO2 effect on leaf area index and canopy chlorophyll content under high N at final harvest. Petioles contained up to 40% water-soluble carbohydrates, which were hardly affected by CO2 but increased by N supply. More N increased biomass production by 21% and 12% in 2001 and 2004, respectively, while beet and sugar yield was not influenced. Concentration of α-amino N in the beet fresh weight was increased under low N and decreased under high N by CO2 enrichment. The CO2 response of total biomass, beet yield and white sugar yield was unaffected by N supply. Averaged over both N levels elevated [CO2] increased total biomass by 7% and 12% in 2001 and 2004, respectively, and white sugar yield by 12% and 13%. The shading treatment in 2004 prevented the decrease in leaf area index under elevated [CO2] and high N in September. Moreover, the CO2 effect on total biomass (24%) and white sugar yield (28%) was doubled as compared to the unshaded conditions. It is concluded that the growth of the storage root of sugar beet is not source but sink limited under elevated [CO2], which minimizes the potential CO2 effect on photosynthesis and beet yield.  相似文献   

2.
This study analysed the alleviating effect of elevated CO2 on stress‐induced decreases in photosynthesis and changes in carbohydrate metabolism in two wheat cultivars (Triticum aestivum L.) of different origin. The plants were grown in ambient (400 μl l?1) and elevated (800 μl l?1) CO2 with a day/night temperature of 15/10 °C. At the growth stages of tillering, booting and anthesis, the plants were subjected to heat stress of 40 °C for three continuous days. Photosynthetic parameters, maximum quantum efficiency of photosystem II (PSII) photochemistry (Fv/Fm) and contents of pigments and carbohydrates in leaves were analysed before and during the stress treatments as well as after 1 day of recovery. Heat stress reduced PN and Fv/Fm in both wheat cultivars, but plants grown in elevated CO2 maintained higher PN and Fv/Fm in comparison with plants grown in ambient CO2. Heat stress reduced leaf chlorophyll contents and increased leaf sucrose contents in both cultivars grown at ambient and elevated CO2. The content of hexoses in the leaves increased mainly in the tolerant cultivar in response to the combination of elevated CO2 and heat stress. The results show that heat stress tolerance in wheat is related to cultivar origin, the phenological stage of the plants and can be alleviated by elevated CO2. This confirms the complex interrelation between environmental factors and genotypic traits that influence crop performance under various climatic stresses.  相似文献   

3.
Elevated CO2 stimulates crop yields but leads to lower tissue and grain nitrogen concentrations [N], raising concerns about grain quality in cereals. To test whether N fertiliser application above optimum growth requirements can alleviate the decline in tissue [N], wheat was grown in a Free Air CO2 Enrichment facility in a low‐rainfall cropping system on high soil N. Crops were grown with and without addition of 50–60 kg N/ha in 12 growing environments created by supplemental irrigation and two sowing dates over 3 years. Elevated CO2 increased yield and biomass (on average by 25%) and decreased biomass [N] (3%–9%) and grain [N] (5%). Nitrogen uptake was greater (20%) in crops grown under elevated CO2. Additional N supply had no effect on yield and biomass, confirming high soil N. Small increases in [N] with N addition were insufficient to offset declines in grain [N] under elevated CO2. Instead, N application increased the [N] in straw and decreased N harvest index. The results suggest that conventional addition of N does not mitigate grain [N] depression under elevated CO2, and lend support to hypotheses that link decreases in crop [N] with biochemical limitations rather than N supply.  相似文献   

4.
花铃期增温对棉花干物重累积的影响及其生理机制   总被引:3,自引:0,他引:3  
以遗传背景相近的棉花(Gossypium hirsutum L.)品种泗棉3号和泗杂3号为材料,于2010年在南京农业大学牌楼试验站(118º50′E, 32º02′N)模拟全球温室化气候,研究花铃期增温对棉花干物质累积的影响及其生理机制。结果显示,增温2~3℃(龄期日均温33.5~35.2℃)的条件下,主茎功能叶SPAD值降低,蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)上升,但净光合速率(Pn)下降;棉铃对位叶可溶性蛋白含量大幅上升(Δ%>50%)、可溶性糖及可溶性氨基酸含量小幅下降(P<0.05)、C/N值显著下降(P<0.05);叶片POD、CAT活性大幅下降、MDA含量显著上升;泗杂3号相关指标变化幅度较泗棉3号小。说明尽管2~3℃的增温幅度较小,但在花铃期日均温(33.5~35.2℃)的条件下,植株已处于显著的热胁迫状态,光合产物累积能力受到抑制,棉铃对位叶光合产物输出能力显著下降, 棉株总干物质累积量下降20%左右;增温条件下植株水分吸收能力下降并因此受到一定程度的水分胁迫,但此条件下光合能力下降主要由非气孔因子所致,与叶片膜结构的严重受损关系密切;泗杂3号抗高温能力高于泗棉3号。  相似文献   

5.
Plant growth and development are influenced by future elevated atmospheric CO2 concentration and increased salinity stress. AM (arbuscular mycorrhiza) symbiosis has been shown to improve plant growth and resistance to environmental stresses. The aim of this study was to investigate the potential role of AM fungus in alleviating salinity stress in wheat (Triticum aestivum L.) plants grown under ambient and elevated CO2 concentrations. Wheat plants inoculated or not inoculated with AM fungus were grown in two glasshouses with different CO2 concentrations (400 and 700 μmol l?1) and salinity levels (0, 9.5 and 19.0 dS m?1). Results showed that salinity stress decreased and elevated CO2 increased AM colonization. AM inoculation increased plant dry weight under elevated CO2 and salinity stress. Stomatal conductance, density, size and aperture of AM plants were greater than non‐AM plants. AM fungi enhanced NUE by altering plant C assimilation and N uptake. AM plants had higher soluble sugar concentration and [K+]: [Na+] ratio compared with non‐AM plants. It is concluded that AM symbiosis improves wheat plant growth at vegetative stages through increasing stomatal conductance, enhancing NUE, accumulating soluble sugar, and improving ion homeostasis in wheat plants grown at elevated CO2 and salinity stress.  相似文献   

6.
Salinity stress and inefficient nitrogen fertilization adversely affect cotton growth and yield. The effect of salinity on the growth and stress response of cotton seedlings and the effect on N‐use efficiency from the use of the inhibitors of urease (NBPT) and nitrification (DCD) under salinity stress were studied in growth chambers. The study consisted of three levels of salinity – low (0.45 dS m?1), moderate (8 dS m?1) and high (16 dS m?1) – and five N treatments – unfertilized control, 100 % N rate with urea, 80 % N rate with urea, 80 % N rate with urea +NBPT and 80 % N rate with urea +NBPT + DCD. The results indicated that salinity stress reduced plant growth (low leaf area and plant dry matter), decreased N assimilation (low NR, GS and protein), increased plant stress response (high GR and SOD), and decreased leaf chlorophyll, stomatal conductance and quantum yield. Addition of NBPT to urea improved N uptake by 22 % under low salinity; however, this effect was not observed with increasing salinity. No benefit of addition of DCD was observed in any of the parameters collected. In conclusion, salinity stress hindered the performance of the additive NBPT and negatively affected the growth and physiology of cotton.  相似文献   

7.
于2004—2005在江苏南京农业大学卫岗试验站进行盆栽试验, 设置干旱与对照2个土壤水分处理, 每个处理再设置3个氮素水平, 研究了花铃期干旱胁迫下氮素水平对棉花叶片光合作用与叶绿素荧光参数的影响, 以期为棉花花铃期干旱时的合理氮肥运筹提供理论依据。结果表明, 与对照相比, 干旱处理显著降低了棉株凌晨叶水势、土壤相对含水量、净光合速率(Pn)、气孔导度(Gs)与胞间CO2浓度(Ci), 但提高了叶绿素a(Chl a)、叶绿素b(Chl b)、总叶绿素(Chl a+b)及类胡萝卜素(Car)的含量。干旱处理下, Pn、Gs、Ci、Chl a、Chl b、Chl a+b及Car均以240 kg hm-2氮素水平最高。干旱胁迫下叶绿素初始荧光(Fo)明显升高, 且随氮素水平的提高而增大; 而最大光化学效率(Fv/Fm)、光系统II(PS II)量子产量(ΦPS II)、电子传递速率(ETR)与光化学猝灭系数(qP)均显著降低, 干旱胁迫亦增大了非光化学猝灭系数(NPQ)。干旱胁迫下Fv/Fm、ΦPS II、ETR与qP均以240 kg hm-2氮素水平最高。干旱胁迫显著降低叶片蒸腾速率(Tr), 导致叶温升高, 增施氮肥进一步增大了叶温。干旱胁迫降低了棉株各器官干物质重, 而施氮则增大水分胁迫指数。综合分析认为, 过量施氮或施氮不足均不利于提高棉花叶片光合性能。两年试验结果表明, 在本试验设置的3个氮素水平中, 花铃期干旱胁迫下以240 kg hm-2纯氮, 且基施50%, 初花期追施50%较适宜。  相似文献   

8.
探讨了施氮量对高大气CO2浓度下小麦功能叶光合能量传递与分配的影响,进而明确氮素对小麦叶片光合作用适应性下调的能量分配调节作用。采用开顶式气室盆栽法,通过测定小麦拔节期和抽穗期不同大气CO2浓度和施氮水平下的叶氮浓度、光合速率–胞间CO2浓度(Pn–Ci)响应曲线和荧光动力学参数,测算光合电子传递速率和分配去向。与在正常CO2浓度(400 μmol mol-1)条件下相比,在高大气CO2浓度(760 μmol mol-1)下,小麦叶氮浓度显著下降,N200处理(200 mg kg-1)叶片抽穗期叶氮浓度的下降幅度较拔节期高335.7%。N200处理较N0处理(0 mg kg-1)提高小麦叶片光适应下PSII反应中心最大量子产额(Fv′/Fm′)、光化学效率(ΦPSII)和开放比例(qP),降低非光化学猝灭系数(NPQ)。高大气CO2浓度下,小麦叶片光化学反应的非环式光合电子传递速率(Jc)和Rubisco羧化速率(Vc)显著升高,而光呼吸的非环式光合电子传递速率(Jo)和Rubisco氧化速率(Vo)明显降低;施氮使Jc、Jo、Vc和Vo值均呈上升趋势,而且Jc和Vc达到显著差异。高大气CO2浓度下Jo/Jc和Vo/Vc显著降低,施氮后小麦拔节期叶片Jo/Jc和Vo/Vc降低,但抽穗期Jo/Jc升高而Vo/Vc无明显变化。叶氮浓度与小麦叶片Jc、Jo和Vo均呈显著线性正相关,而且高大气CO2浓度下小麦叶片Jc、Jo和Vo对氮浓度的敏感性降低。高大气CO2浓度下,小麦叶片PSII反应中心开放比例增加,非光化学耗能降低,更多的光合电子进入光化学过程;施氮后使小麦叶氮浓度增加,提高光合能力,改变了能量分配,这是高氮条件下光合作用适应性下调被缓解的一个关键因素。  相似文献   

9.
Genotypic variability in relation to growth and photosynthetic CO2 assimilation rate (Pn) is well known for maize (Zea mays L.) under heat stress conditions. This study was, however, initiated to test whether genotypic growth variation is related to variations in individual leaf size, leaf extension rate (LER), and photosynthesis of the single leaf at high temperature. Six tropical maize genotypes selected from the International Maize and Wheat Improvement Centre (CIMMYT) with contrasting growth responses were grown for 9 days after emergence (DAE) in the first and for 15 DAE in the second experiment at 25/22 °C and 42/30 °C. High temperature caused a marked decrease in the growth parameters, and the genotypes showed high growth variations irrespective of temperature levels. Interestingly, genotypes did not follow a similar ranking in relation to biomass production between 9 DAE (heterotrophic growth phase) and 15 DAE (autotrophic growth phase) at 25/22 °C, but the pattern was similar at 42/30 °C. Total leaf area and daytime LER of leaves 2 (l2), 3 (l3), and 4 (l4) showed a tight correlation with biomass production at both temperatures, while the LER of the youngest leaf (l4) at night also showed the same correlation at 42/30 °C. A significant relationship between the areas l2 and l3 and biomass was observed only at high temperature and not at 25/22 °C. The Pn decreased markedly at high temperature and genotypic variability was pronounced. The genotypes maintained a similar ranking of Pn measured from l2 at 8 DAE and from l3 at 13 DAE under unfavourable conditions only and not at 25 °C. Of the six genotypes, F250 outperformed the others in relation to growth and Pn activity. A tight correlation between photosynthesis of different leaves and growth was detected at high temperature but not at the optimal temperature for growth. It is concluded that the areas l2 or l3, daytime LER and Pn, all measured at high temperature stress conditions, can be regarded as good indicators of the thermo‐tolerance of tropical maize genotypes at the seedling stage.  相似文献   

10.
The leaf subtending to a cotton boll (LSCB) is vital to boll development and biomass, but few studies have examined the effects of drought on the source capacity of LSCBs on different fruiting branches (FBs). To investigate the response of LSCB photosynthesis on different FBs and the relationship of boll biomass to drought, a drought experiment was performed with three treatments: well‐watered (WW, soil water relative content [SRWC] 75 ± 5%), mild drought (MD, SRWC 60 ± 5%), and severe drought (SD, SRWC 45 ± 5%). Despite photosynthetic active radiation increasing under drought conditions, the pre‐dawn leaf water potential, net photosynthesis rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and maximum quantum yield in PSII (Fv/Fm) under MD and SD significantly decreased when compared with WW, with a more pronounced decrease observed on upper FBs. Additionally, the maximum sucrose and hexose levels in LSCBs increased under drought conditions, whereas the maximum starch content decreased on FB10–11, but showed a varied trend on FB2–3 and FB6–7. Although carbohydrate levels in the LSCBs increased, biomass per cotton boll decreased. More importantly, the ratio of cotton boll biomass was significantly correlated to the maximum sucrose content ratio on each FB, indicating that sucrose allocation was important to cotton boll biomass. Cotton boll biomass notably decreased on upper FBs, but was maintained on lower FBs, indicating that drought promoted carbon allocation in older bolls. Thus, LSCBs and cotton bolls on upper FBs were more affected under drought conditions due to decreased photosynthesis and carbohydrate allocation.  相似文献   

11.
The objective of the present paper is to determine the response of the physiological parameters related to biomass production and plant water relations in a standard Sri Lankan rice (Oryza sativa) variety (BG‐300) to elevated CO2 (i.e. 570 µmol/mol). During two seasons, rice crops were grown under three different experimental treatments; namely, at 570 µmol/mol (i.e. ‘elevated’) and 370 µmol/mol (‘ambient’) CO2 within open top chambers, and at ambient CO2 under open field conditions. Leaf net photosynthetic rate in the elevated treatment increased by 22–75 % in comparison to the ambient. However, the ratio between intercellular and ambient CO2 concentrations remained constant across different CO2 treatments and seasons. CO2 enrichment decreased individual leaf stomatal conductance and transpiration rate per unit leaf area, and increased both leaf and canopy temperatures. However, the overall canopy stomatal conductance and daily total canopy transpiration rate of the elevated treatment were approximately the same as those achieved under ambient conditions. This was because of the significantly greater leaf area index and greater leaf–air vapour pressure deficit under CO2 enrichment. The leaf chlorophyll content increased significantly under elevated CO2; however, the efficiency (i.e. photochemical yield) of light energy capture by Photosystem II (i.e. Fv/Fm) in chlorophyll a did not show a significant and consistent variation with CO2 enrichment.  相似文献   

12.
氮素对高大气CO2浓度下小麦叶片光合功能的影响   总被引:3,自引:0,他引:3  
为探讨高大气CO2浓度下植物光合作用适应现象的光合能量转化和分配的氮素响应及其对C3植物光合功能的影响,本试验对盆栽小麦进行2个大气CO2浓度和2个氮水平的组合处理,通过测定小麦光合气体交换参数、叶绿素荧光参数和叶绿素含量等指标,研究施氮对高大气CO2浓度下小麦叶片光合功能的影响。结果表明,大气CO2浓度升高后,低氮处理小麦叶片光合速率发生明显的适应性下调,光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)下降;但高氮叶片则无明显的光合作用适应现象发生。高大气CO2浓度下低氮叶片光化学速率、PSII线性电子传递速率(JF)、光合电子流的光化学传递速率(JC)、Rubisco羧化速率(VC)和TPU下降,并随生育时期推进其下降趋势更为明显,但高氮叶片的上述参数无显著变化;小麦叶片JC/JF、VC/JC和V0 /VC随氮素水平和大气CO2浓度的变化无显著变化,表明施氮能提高光合机构对光合能量的传递速率,但对光合能量的分配方向无明显影响。施氮提高小麦叶片氮素和叶绿素含量,并且使高大气CO2浓度下光合氮素利用效率(NUE)明显增加。大气CO2浓度升高后,施氮增强光合机构的光合能量运转速率,同化力提高,无明显的光合作用适应现象;由于氮素水平与大气CO2浓度对小麦叶片的光合能量利用存在明显的交互作用,而且高大气CO2浓度下施氮使得小麦叶片NUE增加、正常大气CO2浓度下降低,证明高大气CO2浓度下施氮对光合作用具有直接的影响。  相似文献   

13.
Potatoes (Solanum tuberosum L.) are drought‐sensitive and more efficient water use, while maintaining high yields is required. Here, water‐use efficiency (WUE) of a mapping population comprising 144 clones from a cross between 90‐HAF‐01 (Solanum tuberosum1) and 90‐HAG‐15 (S. tuberosum2 × S. sparsipilum) was measured on well‐watered plants under controlled‐environment conditions combining three levels of each of the factors: [CO2], temperature, light, and relative humidity in growth chambers. The clones were grouped according to their photosynthetic WUE (pWUE) and whole‐plant WUE (wpWUE) during experiments in 2010. Two offspring groups according to pWUE and wpWUE were identified on the basis of experiments conducted in 2010, which in experiments in 2011 again showed significant differences in pWUE (46 %, P < 0.001) and wpWUE (34 %, P < 0.001). The high‐WUE group had a higher net photosynthesis rate (34 %) and dry matter accumulation (55 %, P < 0.001) rather than leaf‐level transpiration rate (?4 %, no significant difference) or whole‐plant water use (16 %). The pWUE correlated negatively to the ratio between leaf‐internal and leaf‐external [CO2] (R2 = ?0.86 in 2010 and R2 = ?0.83 in 2011, P < 0.001). The leaf chlorophyll content was lower in the high‐WUE group indicating that the higher net photosynthesis rate was not due to higher leaf‐N status. Less negative value of carbon isotope discrimination (δ13C) in the high‐WUE group was only found in 2011. A modified Ball‐Berry model was fitted to measured stomatal conductance (gs) under the systematically varied environmental conditions to identify parameter differences between the two groups, which could explain their contrasting WUE. Compared to the low‐WUE group, the high‐WUE group showed consistently lower values of the parameter m, which is inversely related to WUE. Differences related specifically to the dependence of gs on humidity and net photosynthesis rate were only found in 2010. The lower ratio between leaf‐internal and leaf‐external [CO2] and higher WUE of the high‐WUE group was consistent over a wide range of air vapour pressure deficits from 0.5 to 3.5 kPa. The mapping population was normally distributed with respect to WUE suggesting a multigenic nature of this trait. The WUE groups identified can be further employed for quantitative trait loci (QTL) analysis by use of gene expression studies or genome resequencing. The differences in population WUE indicate a genetic potential for improvement of this trait.  相似文献   

14.
To investigate the interactive effects of drought, heat and elevated atmospheric CO2 concentration ([CO2]) on plant water relations and grain yield in wheat, two wheat cultivars with different drought tolerance (Gladius and Paragon) were grown under ambient and elevated [CO2], and were exposed to post‐anthesis drought and heat stress. The stomatal conductance, plant water relation parameters, abscisic acid concentration in leaf and spike, and grain yield components were examined. Both stress treatments and elevated [CO2] reduced the stomatal conductance, which resulted in lower leaf relative water content and leaf water potential. Drought induced a significant increase in leaf and spike abscisic acid concentrations, while elevated [CO2] showed no effect. At maturity, post‐anthesis drought and heat stress significantly decreased the grain yield by 21.3%–65.2%, while elevated [CO2] increased the grain yield by 20.8% in wheat, which was due to the changes of grain number per spike and thousand grain weight. This study suggested that the responses of plant water status and grain yield to extreme climatic events (heat and drought) can be influenced by the atmospheric CO2 concentration.  相似文献   

15.
 利用Fluke红外热像仪获取两个棉花品种4水平水分处理5个关键生育时期冠层的红外热图像;并在红外热图像测试的样本区内,分别测试棉花叶片净光合速率(Pn)、气孔导度(Gs)和叶面积指数(LAI)。应用图像处理技术,提取棉花冠层受光叶片温度,并将人工参考湿表面(WARS)的温度运用到Jones定义的作物水分胁迫指数CWSI的经验公式中,计算CWSI;分析棉花冠层CWSI和光合参数的生育期变化,表明棉花冠层CWSI升高,Pn、Gs和LAI相应降低;不同水分处理条件下,生育期CWSI平均值分别与Pn、Gs和LAI平均值呈极显著的负相关关系(rCWSI-Pn=-0.9182**,rCWSI-Gs=-0.8819**,rCWSI-LAI=-0.8661**,n=16),CWSI与Pn、Gs和LAI可同步反映棉花冠层水分胁迫的状况。研究结果表明,先进的红外热图像技术,提供了一种获得作物冠层表面温度的高分辨率空间信息的手段,能够消除背景干扰因素的影响,更精确的计算棉花冠层CWSI,可快速、有效、准确地监测棉花冠层的水分状况。  相似文献   

16.
钾对水分胁迫下甘蔗幼苗生理和光合特性的影响   总被引:1,自引:0,他引:1  
为探讨不同钾水平对水分胁迫下甘蔗幼苗生理及光合特性的影响,采用水培及聚乙二醇(PEG6000)模拟水分胁迫处理的方法,在苗期设置2个钾浓度(3、0.05 mmol/L)和3种水分条件(非水分胁迫、轻度及中度水分胁迫)的组合处理进行研究。结果表明,随着水分胁迫强度的增加,正常供钾和低钾处理的甘蔗幼苗生物量、叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和叶片相对含水量(RWC)均下降,但正常供钾处理的下降幅度小于低钾处理;胞间CO2浓度(Ci)在正常钾处理下呈先升后降的趋势,而低钾处理下则相反;水分利用效率(WUE)、游离脯氨酸(Pro)及丙二醛(MDA)含量升高。在非水分胁迫下,与低钾处理相比,正常钾处理对甘蔗幼苗的生物量、叶片Pn、Gs、Tr和Pro含量影响甚微。但在水分胁迫下,正常供钾处理显著提高了甘蔗幼苗的生物量、叶片钾含量、Pn、Gs、Tr和Pro含量,抑制了MDA含量。上述结果说明适量施钾对甘蔗生长和光合能力具有明显促进作用,能有效缓解干旱胁迫对蔗株的伤害。  相似文献   

17.
瞬时CO2浓度变化对杏属植物光合生理影响研究   总被引:1,自引:1,他引:0  
孙猛  刘威生 《中国农学通报》2014,30(16):108-112
为探讨CO2浓度瞬时变化对杏碳同化能力、水分利用能力的影响,进一步了解杏属植物在未来大气CO2浓度升高和全球变暖情况下的生长潜力和生态优势。作者利用Li-6400便携式光合测定仪对15个2年生杏品种进行瞬时CO2浓度倍降和倍升处理的光合参数测定。结果表明,瞬时CO2浓度变化显著影响杏属植物光合作用,在瞬时CO2浓度升高情况下,最大净光合速率(Amax)升高,呼吸速率(Rd)下降,光补偿点(LCP)降低,表光量子效率(AQY)提高,水分利用效率(WUE)显著增强,但光饱和点(LSP)变化不显著,不同品种Gs和Tr反应有一定差异。适当增加CO2浓度能提高杏属植物对弱光和水分的利用能力,促进光合作用,增加同化物积累,加速碳素循环。  相似文献   

18.
Different species have different sensitivity to heat waves; therefore, interspecific competition may affect the crop response to heat waves. We investigated the effects of heat waves on spring barley (Hordeum vulgare L.) grown with and without wild mustard (Sinapis arvensis L.) as well as the recovery of barleys from stress. The plants were exposed to a 7‐day 35/28ºC (day/night) heat wave at ambient CO2 (400 μmol/mol) and elevated CO2 (800 μmol/mol). All seedlings were rehydrated and returned to control conditions (21/14ºC, CO2 400 μmol/mol) after the cease of heat wave and grown for a 7‐day period of recovery. Heat wave had more pronounced negative effect on the barley's aboveground biomass under competition with mustard, whereas the response of root biomass was not influenced by the presence of weeds. The heat wave induced reductions in barley's photosynthetic rate, stomatal conductance and water use efficiency under interspecific competition were higher compared to monocultured conditions. Interspecific competition impaired and delayed the recovery of barley's biomass production and leaf gas exchange parameters after heat wave. Elevated CO2 slightly mitigated negative heat wave impact on the growth and leaf gas exchange parameters but had no effect during the recovery period.  相似文献   

19.
胡梦芸  李辉  张颖君  刘茜 《作物学报》2009,35(4):724-732
以15%聚乙二醇(PEG-6000)模拟水分胁迫,以不同浓度外源葡萄糖(Glc)处理小麦幼苗,探讨外源Glc对水分胁迫下小麦幼苗生长发育和光合特性的影响。结果表明,水分胁迫显著降低了小麦叶片水势和光合作用,抑制植株的生长,而水分胁迫下外源Glc处理能明显增加叶片水势和光合色素含量,并使水分胁迫和水分胁迫后复水处理条件下,小麦幼苗叶片的净光合速率(Pn)、气孔导度(Gs)胞间CO2浓度(Ci)和叶片水分利用效率(WUE)显著升高,而使蒸腾速率(Tr)下降。同时,外源Glc处理显著提高了水分胁迫下叶片中可溶性糖和脯氨酸的积累,促进不定根和侧根的生长,植株干重比单一干旱处理提高14.32%~40.39%。由此表明,水分胁迫下外源Glc通过促进小麦根系生长和提高叶组织的渗透调节能力,改善叶片的水分状况,提高了叶片的光合功能,促进小麦幼苗的生长,降低了水分胁迫对小麦幼苗生长的抑制作用。  相似文献   

20.
北疆灌耕灰漠土施钾对棉花钾素营养生理和产量的影响   总被引:3,自引:0,他引:3  
 选择新疆北疆棉区具有代表性的灌耕灰漠土,采用透射电镜显微技术和常规分析方法,对棉花的钾素营养和钾肥肥效进行了研究。结果表明,施钾可提高棉花冠层功能叶的气孔导度,改善棉花生长中后期功能叶的叶绿体超微结构,使基粒片层数量多且排列整齐致密,而不施钾会导致棉花功能叶片叶绿体过早解体。施钾显著提高了棉花的含钾量,叶和铃壳中钾含量比对照分别增加了13.3%和6.3%。施钾可使果枝数增加11.8%,显著提高皮棉产量,但对纤维品质无明显作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号