首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Four hardwood barks (HWB) i. e.Acacia arabica (AA),Ficus sycomorus (FS),Morus alba (MA) andZiziphus spinachristi (ZS) were tried as soil amendments at 0.5, 1.0 and 1.5% rates w/w for control ofRotylenchulus reniformis and improvement of cv. Giza 1 sunflower growth under greenhouse conditions. All HWB with various concentrations significantly (P≤0.01) reduced numbers of larvae in soil, both females and eggmasses on roots, total final nematode population as well as the nematode build-up as compared to control. 1.5% rate of ZS, AA and MA barks were most effective in reducing numbers of larvae in soil, total final nematode population and the nematode build-up. Also, 1.5% rate of each of FS and AA barks were most effective in reducing numbers of females or eggmasses, respectively. On the other hand, the least reduction in the previous nematode stages and rate of build-up was observed with 0.5% dose of FS bark. Shoot weights were increased significantly with both of 1.0% and 1.5% doses of each of FS and ZS barks and only with 1.5% dose of MA bark. Both shoot lengths and root weights increased significantly with 1.5% dose of all HWB or with 1.0% dose of each of AA and ZS barks as compared to control. No significant increase in root lengths was observed. Generally, there were positive significant correlations between doses of HWB, each of the reductions in the previous nematode stages and increases in sunflower growth criteria.  相似文献   

2.
3.
Abstract

Brassicaceae plants have the potential as part of an integrated approach to replace fumigant nematicides, providing the biofumigation response following their incorporation is not offset by reproduction of plant-parasitic nematodes on their roots. Forty-three Brassicaceae cultivars were screened in a pot trial for their ability to reduce reproduction of three root-knot nematode isolates from north Queensland, Australia: M. arenaria (NQ1), M. javanica (NQ2) and M. arenaria race 2 (NQ5/7). No cultivar was found to consistently reduce nematode reproduction relative to forage sorghum, the current industry standard, although a commercial fodder radish (Raphanus sativus) and a white mustard (Sinapis alba) line were consistently as resistant to the formation of galls as forage sorghum. A second pot trial screened five commercially available Brassicaceae cultivars, selected for their biofumigation potential, for resistance to two nematode species, M. javanica (NQ2) and M. arenaria (NQ5/7). The fodder radish cv. Weedcheck, was found to be as resistant as forage sorghum to nematode reproduction. A multivariate cluster analysis using the resistance measurements, gall index, nematode number per g of root and multiplication for two nematode species (NQ2 and NQ5/7) confirmed the similarity in resistance between the radish cultivar and forage sorghum. A field trial confirmed the resistance of the fodder radish cv. Weedcheck, with a similar reduction in the number of Meloidogyne spp. juveniles recovered from the roots 8 weeks after planting. The use of fodder radish cultivars as biofumigation crops to manage root-knot nematodes in tropical vegetable production systems deserves further investigation.  相似文献   

4.
Root-knot nematodes (Meloidogyne spp.) threaten the livelihood of millions of farmers producing coffee worldwide. The use of resistant plants either as cultivars or rootstocks appears to be the single most effective method of control. A screening method was developed to evaluate large populations of plants for resistance to root-knot nematodes. Two coffee cultivars, one susceptible and the other resistant to Meloidogyne paranaensis, were grown under controlled conditions in two substrates: a commercial sieved potting compost and an inert substrate containing sand with a water-absorbent synthetic polymer. Plant growth and development and nematode multiplication were compared for two inoculation dates (2 and 8 weeks after planting) and two evaluation dates (eight and 13 weeks after inoculation). Root growth, but not nematode multiplication, was influenced by the choice of substrate. Evaluation of the differences in root weight and nematode numbers between the different cultivars, substrates and dates of inoculation suggested that an optimal condition could be defined. The best discrimination between susceptible and resistant plants was found in the experiment where inoculation occurred at 2 weeks after planting and evaluation occurred at 8 weeks after inoculation. Because the total duration of this experiment was only 3 months, high-throughput evaluation was possible, opening up new possibilities for screening large germplasm collections and studying the genetic control of root-knot nematode resistance in coffee.  相似文献   

5.
 棉花黄萎病是一种极难防治的土传性真菌病害,研究病原菌侵染棉花的组织学过程对致病机理解析和抗病资源利用具有重要意义。本研究利用绿色荧光蛋白标记的大丽轮枝菌系统研究了其对抗病棉种海岛棉7124和三裂棉、感病棉种军棉1号和戴维逊棉的侵染过程。结果表明,大丽轮枝菌对抗/感棉种的初始侵染没有明显差异,接菌5 h后,分生孢子均能吸附在感病和抗病棉种的根表面。但侵染过程存在显著差异,侵染感病棉种中病原菌3~5 d到达皮层,5~7 d达到维管束,随后迅速扩展繁殖,侵染14 d后即完成系统侵染,并开始产生黄萎病症状;而病原菌侵染抗病棉种,5~7 d才侵入皮层,7~10 d到达维管束,14 d后仍无法扩展,病原菌的定殖与发展受到限制,无法形成系统侵染,较少形成黄萎病症状。本研究通过绿色荧光蛋白标记大丽轮枝菌对抗/感棉种的侵染过程研究,为大丽轮枝菌致病机理研究和抗性资源利用提供了强有力的理论依据。  相似文献   

6.
In an attempt to reduce or eliminate the need for spraying to control potato late blight caused by Phytophthora infestans, investigations were made on the use of controlled-release granules containing the systemic fungicide ofurace. The granules when mixed with sand and buried in soil released the fungitoxicant for about 100 days. When the granules were applied in furrows at planting, protection of potato plants (cv. Maris Bard), assessed by inoculation of detached leaflets with P. infestans, lasted for between 85 and 100 days. Application of the granules when the plants were earthed up 48 days after planting did not result in better late-season protection, possibly due to poorer uptake of the fungitoxicant by the plants at this time. Chemical analysis of leaves from plants that had received in-furrow treatment indicated that ofurace at 0.2–0.5 μg g?1 fresh weight was needed to confer protection from late blight.  相似文献   

7.
Respiration of tomato roots susceptible and resistant to Meloidogyne incognita was measured during infestation. No significant changes in respiratory rate occurred in susceptible tomato roots, during infestation by M. incognita. In resistant tomato roots, a pronounced increase of both cyanide-sensitive and cyanide-resistant oxidases, was observed during nematode attack. The time-course of the respiration during 12 days, after nematode inoculation, showed that resistant tomato roots responded with a rapid increase in cyanide-sensitive and cyanide-resistant respiration as invading nematodes progressed; no changes were observed in the susceptible tomato roots.Change in the rate of oxygen uptake paralleled an increase in nematode density in resistant tomato roots; oxygen uptake rose linearly to an infestation level of 50 juveniles for each seedling, above which value it declined. The physiological significance of the alternative respiratory pathway is discussed.  相似文献   

8.
The time course of accumulation of two phytoalexins, the terpenoid rishitin and the polyacetylene cis-tetradeca-6-ene-1,3-diyne-5,8-diol, was determined in near-isogenic susceptible and resistant tomato lines inoculated with either Verticillium albo-atrum or Fusarium oxysporum f.sp. lycopersici.Cultivars containing the Ve gene for verticillium wilt resistance accumulated phytoalexins at a rate similar to that in susceptible plants following stem inoculation with V. albo-atrum. Higher amounts of phytoalexins were isolated from susceptible than from resistant plants at 11 days after inoculation. Inoculum concentrations of 105, 106, 107 and 108 conidia ml−1 had no differential effect on phytoalexin accumulation at 3 days after inoculation. Also, no differences were observed between fungal growth in susceptible and resistant cultivars during that period.A cultivar containing the I-1 gene for fusarium wilt resistance contained more rishitin than did susceptible plants at 2 and 3 days after inoculation with 107 conidia of F. oxysporum f.sp. lycopersici ml−1, but at 7 and 11 days after inoculation more rishitin had accumulated in the susceptible plants.No difference was observed between the rate of accumulation of phytoalexin in stem segments from resistant and susceptible plants inoculated by vacuum-infiltration.To estimate the concentration of phytoalexins in the xylem fluid, sap was expressed from vascular tissue and amounts of phytoalexins were determined in the sap and in the expressed tissue. Less than 5% of the phytoalexins present in stem segments was recovered from the sap, indicating that their concentration in the xylem fluid may be relatively low.The role of phytoalexins in resistance to verticillium and fusarium wilt is discussed.  相似文献   

9.
We tested the hypothesis that PAL activity in chilli plants CM-334 inoculated with Nacobbus aberrans (Na) alone or in combination with Phytophthora capsici (Pc), is lower than in those inoculated only with Pc. At 21 days after nematode inoculation, inoculated plants showed a significant (P < 0.01) reduction of 48% in PAL activity compared to those non-inoculated in two separate experiments. In two other tests, where plants were inoculated with the oomycete 21 days after inoculation with the nematode, PAL activity at 2, 4, 6, 8 and 24 h after inoculation with Pc was significantly higher (Tukey, P < 0.01) in plants inoculated only with Pc than in plants inoculated only with Na or both pathogens (Na+Pc).  相似文献   

10.
The pathogenicity and reproductive fitness of Pratylenchus coffeae and Radopholus arabocoffeae from Vietnam on coffee (Coffea arabica) seedlings cv. Catimor were evaluated in greenhouse experiments. The effect of initial population densities (Pi = 0, 1, 2, 4, 8, 16, 32, 64, 128, and 256 nematodes per cm3 soil) was studied for both species at different days after inoculation (dai). The data were adjusted to the Seinhorst damage model Y = m + (1-m).zPi-T. Tolerance limit (T) for P. coffeae was zero for the height and the diameter of the coffee plants. For the diameter, the T-value for R. arabocoffeae was 25.6 for 30 and 60 dai and 12.8 for 90 and 120 dai. After 4 months T was zero. The low tolerance limits indicate that Arabica coffee is highly intolerant to both nematode species. At the end of the experiment (180 dai), all plants were infected and most were dead when inoculated with R. arabocoffeae at initial densities of 32, 64, 128 and 256 nematodes/cm3 soil. For P. coffeae plant death was already observed at the lowest inoculation densities. Growth of coffee was reduced at all inoculation levels for both species. Pratylenchus coffeae and R. arabocoffeae caused intense darkening of the roots, leaf chlorosis and a strong reduction of root and shoot growth. It was observed that P. coffeae mainly destroyed lateral roots rather than tap roots, whereas R. arabocoffeae reduced tap root length rather than the lateral roots. At the lowest inoculum densities, the reproduction factor of P. coffeae was 2.38 and 2.01 for R. arabocoffeae, indicating that arabica coffee is a host for both species. Plant growth as expressed by shoot height and shoot and root weight measured 60 dai was negatively correlated with nematode (both species) density as expressed by the geometric mean of nematode numbers at 30 and 60 dai.  相似文献   

11.
Three species of blue green algae;Anabena oryzae, Nostoc calcicola andSpirulina sp. were tested versusMeloidogyne incognita infecting cowpea cv. Baladi. In single treatments,N. calcicola alga was superior than the other algae treatments in reducing the number of nematode galls and egg masses as compared to the untreated check. In combined treatments, the 3 algae together achieved the highest significant (P≤0.01 and 0.05) reduction in the number of galls and egg masses. All the treatments significantly (P≤0.01 and 0.05) improved plant growth criteria as measured by fresh and dry weight of shoots and roots and length of shoots and increased the number of nodules.  相似文献   

12.
Local lesion formation on cowpea leaves was more than 50% inhibited by treatment with a 23 kDa RNase-like glycoprotein from Cucumis figarei, figaren, from 24 hr before to 1 hr after inoculation with Cucumber mosaic virus (CMV). CMV accumulation detected by ELISA in tobacco leaves treated with figaren 6 or 0 hr before inoculation with CMV was suppressed. When upper leaves of tobacco plants were treated with figaren and inoculated 10 min later with CMV, mosaic symptoms were delayed for 5–7 days on most of the tobacco plants, and some plants remained asymptomatic. From fluorescence in situ hybridization, infection sites were present in figaren-treated cowpea or melon leaves after inoculation with CMV, though the sites were reduced in number and size compared with those in water-treated control leaves. The amount of CMV RNAs and CMV antigen in melon protoplasts inoculated with CMV and subsequently incubated with figaren similarly increased with time as did that in the control. ELISA and local lesion assays indicated that CMV infection on the upper surfaces of the leaves of tobacco, melon, cowpea and C. amaranticolor whose lower surfaces had been treated with figaren 5–10 min before CMV inoculation was almost completely inhibited. Figaren did not inhibit CMV infection on the opposite untreated leaf halves of melon, cowpea and C. amaranticolor, whereas it almost completely inhibited CMV infection on the untreated halves of leaves of tobacco. CMV infection was not inhibited in the untreated upper or lower leaves of the four plants. These data suggest that figaren does not completely prevent CMV invasion but does inhibit the initial infection processes. It may also induce localized acquired resistance in host plants. Received 10 October 2000/ Accepted in revised form 6 February 2001  相似文献   

13.
The suitability of watermelon cultivars and cucurbit rootstocks as hosts to Meloidogyne incognita and M. javanica was determined in pot and field experiments. Meloidogyne incognita showed higher reproduction than did M. javanica on watermelon and cucurbit rootstocks. The watermelon cultivars did not differ in host status when challenged with these two species and supported lower nematode reproduction than the cucurbit rootstocks. Rootstocks Lagenaria siceraria cv. Pelops and Cucurbita pepo AK15 supported lower reproduction than did the squash hybrid rootstocks (C. maxima × C. moschata). Egg production increased (< 0·05) with a rising initial inoculum level (Pi) in the non‐grafted Sugar Baby but the reproduction factor Rf (eggs per plant/Pi) was similar at two Pi levels. The total egg production in the plants grafted onto squash hybrids RS841 and Titan was greater (< 0·05) at the higher Pi, but the Rf values were lower. The development of field‐grown non‐grafted watermelon plants was significantly stunted in plots where nematodes were detected at planting. However, no differences were observed in plots with grafted plants. In plots with nematodes, non‐grafted and Titan‐grafted plants had similar yields that were higher than that of RS841‐grafted plants. In the commercial plastic houses with grafted watermelon, the average Rf value was 42‐fold, confirming the high susceptibility of squash hybrids as rootstocks for grafted watermelon. The Titan–Sugar Baby combination was tolerant to M. javanica.  相似文献   

14.
Several studies were carried out to determine (i) thermal requirements for development, egg production and emergence of juveniles, and completion of the life cycle of Meloidogyne incognita and Meloidogyne javanica on cucumber, (ii) the maximum multiplication rate and the equilibrium density of root‐knot nematodes on cucumber and yield losses in pot and plastic greenhouse experiments, and (iii) the relationships between relative leaf chlorophyll content (RLCC) and relative cucumber dry top weight biomass (RDTWB) in relation to increasing nematode densities at planting (Pi) in pot experiments. Thermal requirements of M. incognita and M. javanica on cucumber did not differ, irrespective of the biological stage. In the pot experiments, Mjavanica completed one generation. The maximum multiplication rate (a) was 833, and the equilibrium density (E) varied according to the effective inoculum densities. The relationship between RDTWB and Pi fitted the Seinhorst damage function model. The RLCC value at 40 or 50 days post‐inoculation also fitted the damage model and was related to RDTWB. In greenhouse experiments, conducted from 2009 to 2012, M. incognita completed three generations. The values for a and E were 1147 and 625 second stage juveniles (J2) per 250 cm3 soil, respectively. The tolerance limit was below zero, and the minimum relative yield ranged from 0·12 to 0·34.  相似文献   

15.
This study evaluated the impact of time between the application of cell suspensions or cell-free filtrates of Bacillus subtilis strains SB01 or SB24 on soybean plants under field conditions and inoculation with Sclerotinia sclerotiorum on their effectiveness for suppression of S. sclerotiorum. The results showed that the cell suspensions of two strains provided greater effectiveness than the cell-free filtrates, but the suppression effectiveness decreased as the time between application in the field and S. sclerotiorum inoculation increased. The B. subtilis cell suspensions applied on soybean leaves for up to 10 days under field conditions were able to provide a significant (P < 0.01) reduction in disease severity by approximately 20–90% at 5 days after the S. sclerotiorum inoculation. When rated 15 days after S. sclerotiorum inoculation, plants treated with bacterial cells for ≤6 days reduced Sclerotinia stem rot severity by 15–70%. Most effectiveness was provided by the cell suspensions present on soybean leaves for <3 days under field conditions, which significantly (P < 0.01) reduced disease severity by 40–70% over 15 days. In comparison, the cell-free filtrates remaining on leaves for <6 days significantly (P < 0.01) reduced disease severity during the first 5 days after the inoculation, while the best cell-free filtrate treatments were those with ≤1-day intervals, which significantly (P < 0.01) reduced disease severity by 10–40% during 15 days after the inoculation. The effectiveness of B. subtilis was reduced when it rained after application.  相似文献   

16.
为明确南方根结线虫Meloidogyne incognita效应蛋白MiV901在其寄生过程中的生物学功能,通过构建MiV901基因的植物表达载体,利用根癌农杆菌Agrobacterium tumefaciens介导的花序浸染法将其转化拟南芥Arabidopsis thaliana,并采用室内人工接种法测定转基因植株对灰葡萄孢 Botrytis cinerea侵染及南方根结线虫寄生的影响。结果显示:经Southern blot检测,MiV901基因以不同的拷贝数插入到转基因拟南芥株系901-6、901-8和901-12的基因组中,且qPCR检测结果证实 MiV901基因能够正常表达。3个转基因拟南芥株系901-6、901-8和901-12叶部接种灰葡萄孢3 d后,叶片上形成的病斑平均直径分别为1.00、1.06、1.05 cm,比野生型对照扩大了9.9%~16.5%。相比野生型对照,转基因拟南芥株系901-12、901-6和901-8接种南方根结线虫2龄幼虫后根系上产生了更多的雌虫和卵块,雌虫数分别显著增加了45.4%、34.4%和23.7%,卵块数分别显著增加了51.2%、 46.3%和31.7%。表明异源表达MiV901基因能够抑制植物免疫,增加拟南芥对灰葡萄孢和南方根结线虫侵染的敏感性。  相似文献   

17.
Tomato plants grown in sand-silica culture in 0.75-liter pots and 50-liter containers were fertilized with three ratios of NH4 +/N03 - percentages: 100/0, 50/50, and 0/100. The seedlings were inoculated with the root-knot nematode,Meloidogyne javanica, and 30 and 60 days after inoculation top and root fresh weights, nematode infection degree and sex ratio of the nematode populations were recorded, and N, P, K analyses of plant tops and roots were conducted. Nematode development was not influenced by the nutrient treatments but a reduced nematode population per mm of root, and a high percentage of males in the population were associated with the 100% ammonium treatment. Increased nitrate level in the medium enhanced fresh top and root weights in the pots and, especially, in the containers. High levels of N and K in the first month, and of N, P, K in the second month, accumulated in the inoculated roots, particularly in the nitrate-fertilized plants. The results support the theory of the existence of a metabolic sink in roots ofMeloidogyne-infected plants and suggest an increased tolerance to the root-knot nematode in plants receiving nitrate nutrition.  相似文献   

18.
Plants of four potato (Solanum tuberosum L.) cultivars were grown in pots in a greenhouse at five densities ofGlobodera pallida between 0 and 300 eggs per gram of soil. Photosynthesis and transpiration of selected leaves were measured at 30, 37, 49 and 60 days after planting. Stem length was recorded at weekly intervals. Plants were harvested 70 days afteer planting and various plant variables were determined.At 30 days after planting, when second and third stage juveniles were present in roots, both photosynthesis and transpiration rates were severely reduced byG. pallida. In the course of time these effects became less pronounced. Water use efficiency was reduced byG. pallida between 30 and 49 days, but not at 60 days after planting. The results suggest independent effects ofG. pallida on stomatal opening and on photosynthesis reactions. There were no consistent differences among cultivars in the response of leaf gas exchange rates and water use efficiency to nematode infection. Reduction of photosynthesis byG. pallida appeared additive to photosynthesis reduction due to leaf senescence.Total dry weight was reduced by 60% at the highestG. pallida density. Weights of all plant organs were about proportionally affected. Shoot/root ratio was not affected and dry matter content was reduced. Stem length and leaf area were most strongly reduced during early stages of plant-nematode interaction. The number of leaves formed was only slightly reduced byG. pallida, but flowering was delayed or inhibited. Reduction of total dry weight correlated with reduction of both leaf area and photosynthesis rate. Leaf area reduction seems the main cause of reduction of dry matter production. Tolerance differences among cultivars were evident at 100 eggs per gram of soil only, where total dry weight of the intolerant partially resistant cv. Darwina was lower than that of the tolerant partially resistant cv. Elles and of the tolerant susceptible cv. Multa. The tolerance differences were not correlated with leaf photosynthesis and transpiration. Apparently these processes are not part of tolerance of plants.  相似文献   

19.
Leaves of powdery mildew-susceptible barley (Hordeum vulgare cv. Ingrid) and related near-isogenic lines bearing various resistance genes (Mla12, Mlg or mlo5) were inoculated with Blumeria graminis f. sp. hordei race A6. Fungal attack induced several-fold increases in ethylene emission and electrolyte leakage in leaves of susceptible Ingrid beginning 3 days after inoculation. Activities of peroxidase, superoxide dismutase, glutathione S-transferase, ascorbate peroxidase and glutathione reductase enzymes were induced markedly in susceptible leaves 5–7 days after inoculation. Similar, but less pronounced pathogen-induced changes were detected in inoculated leaves of Mla-type resistant plants that show hypersensitive cell death upon inoculation, and, to an even lesser extent, in the Mlg and mlo lines, where no visible symptoms accompanied the incompatible interaction. Glutathione content increased only in susceptible barley 7 days after inoculation. Catalase activity, total ascorbate content and redox state were not influenced by inoculation in any of the genotypes. The activity of dehydroascorbate reductase was significantly reduced 3–5 days after inoculation in the susceptible parental plants and after 5 days in Mla and Mlg lines, while it was stable in the mlo barley. Slightly elevated levels of H2O2 were observed in the inoculated resistant plants. In contrast, H2O2 content decreased in the susceptible line 7 days after pathogen attack. These data indicate that high levels of antioxidants are involved in the compatible interaction of susceptible barley and powdery mildew by protecting the pathogen from oxidative damage.  相似文献   

20.
With the expansion of passion fruit cultivation in Brazil, phytosanitary problems have increased, among them, the occurrence of root-knot nematodes. This research aimed to study the response of passion fruit genotypes to Meloidogyne incognita, M. javanica and M. enterolobii in addition to evaluating the life cycle of M. enterolobii in the passion fruit genotype ‘FB 200’. The genotype response was carried out in a greenhouse. Each pot’s soil was inoculated with 5000 eggs. Gall index, egg mass index and nematode reproduction factors were evaluated at 120 days after inoculation. All genotypes studied were resistant to M. incognita, M. javanica and M. enterolobii, except ‘Roxinho do Kênia’, which was susceptible to the three nematode species. The life cycle of M. enterolobii in “FB 200” passion fruit was studied in a growth chamber at 26 °C with a photoperiod of 12 h. Seven days after transplantation, each plant was inoculated with approximately 400 second-stage juveniles. Evaluations were done at 7, 14, 21, 28, 35, 42 and 49 days post inoculation. The nematode did not complete its life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号