首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroid anaesthetic, alfaxalone, in neonatal foals after a single intravenous (IV) injection of alfaxalone following premedication with butorphanol tartrate.Study designProspective experimental study.AnimalsFive clinically healthy Australian Stock Horse foals of mean ± SD age of 12 ± 3 days and weighing 67.3 ± 12.4 kg.MethodsFoals were premedicated with butorphanol (0.05 mg kg?1 IV) and anaesthesia was induced 10 minutes later by IV injection with alfaxalone 3 mg kg?1. Cardiorespiratory variables (pulse rate, respiratory rate, direct arterial blood pressure, arterial blood gases) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and alfaxalone plasma concentrations were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis.ResultsThe harmonic, mean ± SD plasma elimination half life (t½) for alfaxalone was 22.8 ± 5.2 minutes. The observed mean plasma clearance (Clp) and volume of distribution (Vd) were 19.9 ± 5.9 mL minute kg?1 and 0.6 ± 0.2 L kg?1, respectively. Overall, the quality of the anaesthetic inductions and recoveries was good and most monitored physiological variables were clinically acceptable in all foals, although some foals became hypoxaemic for a short period following recumbency. The mean durations of anaesthesia from induction to first movement and from induction to standing were 18.7 ± 7 and 37.2 ± 4.7 minutes, respectively.ConclusionsThe anaesthetic protocol used provided a predictable and consistent plane of anaesthesia in the five foals studied, with minimal cardiovascular depression. In foals, as in the adult horse, alfaxalone has a short elimination half life.Clinical relevanceAlfaxalone appears to be an adequate anaesthetic induction agent in foals and the pharmacokinetics suggest that, with continuous infusion, it might be suitable to provide more prolonged anaesthesia. Oxygen supplementation is recommended.  相似文献   

2.
3.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

4.
ObjectiveTo determine the induction doses, then minimum infusion rates of alfaxalone for total intravenous anaesthesia (TIVA), and subsequent, cardiopulmonary effects, recovery characteristics and alfaxalone plasma concentrations in cats undergoing ovariohysterectomy after premedication with butorphanol-acepromazine or butorphanol-medetomidine.Study designProspective randomized blinded clinical study.AnimalsTwenty-eight healthy cats.MethodsCats undergoing ovariohysterectomy were assigned into two groups: together with butorphanol [0.2 mg kg?1 intramuscularly (IM)], group AA (n = 14) received acepromazine (0.1 mg kg?1 IM) and group MA (n = 14) medetomidine (20 μg kg?1 IM). Anaesthesia was induced with alfaxalone to effect [0.2 mg kg?1 intravenously (IV) every 20 seconds], initially maintained with 8 mg kg?1 hour?1 alfaxalone IV and infusion adjusted (±0.5 mg kg?1 hour?1) every five minutes according to alterations in heart rate (HR), respiratory rate (fR), Doppler blood pressure (DBP) and presence of palpebral reflex. Additional alfaxalone boli were administered IV if cats moved/swallowed (0.5 mg kg?1) or if fR >40 breaths minute?1 (0.25 mg kg?1). Venous blood samples were obtained to determine plasma alfaxalone concentrations. Meloxicam (0.2 mg kg?1 IV) was administered postoperatively. Data were analysed using linear mixed models, Chi-squared, Fishers exact and t-tests.ResultsAlfaxalone anaesthesia induction dose (mean ± SD), was lower in group MA (1.87 ± 0.5; group AA: 2.57 ± 0.41 mg kg?1). No cats became apnoeic. Intraoperative bolus requirements and TIVA rates (group AA: 11.62 ± 1.37, group MA: 10.76 ± 0.96 mg kg?1 hour?1) did not differ significantly between groups. Plasma concentrations ranged between 0.69 and 10.76 μg mL?1. In group MA, fR, end-tidal carbon dioxide, temperature and DBP were significantly higher and HR lower.Conclusion and clinical relevanceAlfaxalone TIVA in cats after medetomidine or acepromazine sedation provided suitable anaesthesia with no need for ventilatory support. After these premedications, the authors recommend initial alfaxalone TIVA rates of 10 mg kg?1 hour?1.  相似文献   

5.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

6.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

7.
8.
ObjectiveTo evaluate the influence of premedication with tramadol on xylazine–ketamine anaesthesia in young pigs.Study designProspective, randomized, blinded cross-over study.AnimalsTen young Niger hybrid pigs: mean weight 6.1 ± 0.6 kg.MethodsPigs were anaesthetized twice. Xylazine (2.5 mg kg?1), ketamine (25 mg kg?1) and atropine (0.04 mg kg?1) were administered by intramuscular (IM) injection, 5 minutes after either tramadol (5 mg kg?1)) (treatment XKT) or saline (treatment XKS). Time to loss of righting reflex (TLRR), duration of antinociception, duration of recumbency (DR) and recovery times (RCT) were recorded. Quality of induction of anaesthesia including ease of endotracheal intubation was assessed using a subjective ordinal rating score of 1 (worst) to 4 (best). Heart, pulse and respiratory rates, arterial oxygen saturations and rectal temperatures were determined over 60 minutes. Antinociception was assessed by the pigs’ response to artery forceps applied at the interdigital space. Data were compared with Student's t-test, Mann–Whitney's test or analysis of variance (anova) for repeated measures as appropriate and are presented as mean ± standard deviation.ResultsThe quality of anaesthetic induction was significantly better and duration of antinociception significantly longer (p < 0.05) in treatment XKT (3.1 ± 0.7 score; 43.7 ± 15.5 minutes) than in treatment XKS (2.8 ± 0.6 score; 32.0 ± 13.3 minutes). TLRR, DR and RCT did not differ significantly (p > 0.05) between treatment XKT (2.1 ± 0.8, 65.8 ± 17.0 and 13.2 ± 6.7 minutes) and treatment XKS (2.1 ± 1.3, 58.0 ± 14.8 and 10.3 ± 5.6 minutes). Physiological measurements did not differ between the treatments.Conclusion and clinical relevanceTramadol improved the quality of anaesthetic induction and increased the duration of antinociception in xylazine–ketamine anaesthetized young pigs without increasing duration of anaesthesia, nor causing additional depression of the physiological parameters measured.  相似文献   

9.
ObjectiveTo determine the alfaxalone dose reduction during total intravenous anaesthesia (TIVA) when combined with ketamine or midazolam constant rate infusions and to assess recovery quality in healthy dogs.Study designProspective, blinded clinical study.AnimalsA group of 33 healthy, client-owned dogs subjected to dental procedures.MethodsAfter premedication with intramuscular acepromazine 0.05 mg kg-1 and methadone 0.3 mg kg-1, anaesthetic induction started with intravenous alfaxalone 0.5 mg kg-1 followed by either lactated Ringer’s solution (0.04 mL kg-1, group A), ketamine (2 mg kg-1, group AK) or midazolam (0.2 mg kg-1, group AM) and completed with alfaxalone until endotracheal intubation was achieved. Anaesthesia was maintained with alfaxalone (6 mg kg-1 hour-1), adjusted (±20%) every 5 minutes to maintain a suitable level of anaesthesia. Ketamine (0.6 mg kg-1 hour-1) or midazolam (0.4 mg kg-1 hour-1) were employed for anaesthetic maintenance in groups AK and AM, respectively. Physiological variables were monitored during anaesthesia. Times from alfaxalone discontinuation to extubation, sternal recumbency and standing position were calculated. Recovery quality and incidence of adverse events were recorded. Groups were compared using parametric analysis of variance and nonparametric (Kruskal-Wallis, Chi-square, Fisher’s exact) tests as appropriate, p < 0.05.ResultsMidazolam significantly reduced alfaxalone induction and maintenance doses (46%; p = 0.034 and 32%, p = 0.012, respectively), whereas ketamine only reduced the alfaxalone induction dose (30%; p = 0.010). Recovery quality was unacceptable in nine dogs in group A, three dogs in group AK and three dogs in group AM.Conclusions and clinical relevanceMidazolam, but not ketamine, reduced the alfaxalone infusion rate, and both co-adjuvant drugs reduced the alfaxalone induction dose. Alfaxalone TIVA allowed anaesthetic maintenance for dental procedures in dogs, but the quality of anaesthetic recovery remained unacceptable irrespective of its combination with ketamine or midazolam.  相似文献   

10.
ObjectiveTo compare the anaesthetic and cardiopulmonary effects of alfaxalone with propofol when used for total intravenous anaesthesia (TIVA) during ovariohysterectomy in dogs.Study designA prospective non-blinded randomized clinical study.AnimalsFourteen healthy female crossbred bitches, aged 0.5–5 years and weight 16–42 kg.MethodsDogs were premedicated with acepromazine 0.01 mg kg?1 and morphine 0.4 mg kg?1. Anaesthesia was induced and maintained with either propofol or alfaxalone to effect for tracheal intubation followed by an infusion of the same agent. Dogs breathed spontaneously via a ‘circle’ circuit, with oxygen supplementation. Cardiopulmonary parameters (respiratory and heart rates, end-tidal carbon dioxide, tidal volume, and invasive blood pressures) were measured continuously and recorded at intervals related to the surgical procedure. Arterial blood samples were analysed for blood gas values. Quality of induction and recovery, and recovery times were determined. Non-parametric data were tested for significant differences between groups using the Mann–Whitney U-test and repeatedly measured data (normally distributed) for significant differences between and within groups by anova.ResultsBoth propofol and alphaxalone injection and subsequent infusions resulted in smooth, rapid induction and satisfactory maintenance of anaesthesia. Doses for induction (mean ± SD) were 5.8 ± 0.30 and 1.9 ± 0.07 mg kg?1 and for the CRIs, 0.37 ± 0.09 and 0.11 ± 0.01 mg kg?1 per minute for propofol and alfaxalone respectively. Median (IQR) recovery times were to sternal 45 (33–69) and 60 (46–61) and to standing 74 (69–76) and 90 (85–107) for propofol and alphaxalone respectively. Recovery quality was good. Cardiopulmonary effects did not differ between groups. Hypoventilation occurred in both groups.Conclusions and clinical relevanceFollowing premedication with acepromazine and morphine, both propofol and alphaxalone produce good quality anaesthesia adequate for ovariohysterectomy. Hypoventilation occurs suggesting a need for ventilatory support during prolonged infusion periods with either anaesthetic agent.  相似文献   

11.

Objective

To determine the suitability of alfaxalone total intravenous (IV) anaesthesia in horses and concurrently evaluate infusion rates, cardiovascular effects, pharmacokinetics and the quality of the anaesthetic recovery period.

Study design

Prospective, experimental study.

Animals

Eight Standardbred horses.

Methods

Horses were premedicated with IV acepromazine (0.03 mg kg–1) and xylazine (1 mg kg–1) and anaesthesia was induced with guaifenesin (35 mg kg–1) and alfaxalone (1 mg kg–1). Anaesthesia was maintained for 180 minutes using an IV infusion of alfaxalone at a rate determined by a horse’s response to a supramaximal electrical noxious stimulus. Venous blood samples were regularly collected to determine alfaxalone plasma concentrations and for pharmacokinetic analysis. Cardiopulmonary variables were monitored and the quality of the anaesthetic recovery period scored.

Results

The median (range) alfaxalone infusion rate was 3.1 (2.4–4.3) mg kg–1 hour–1. The mean ± standard deviation plasma elimination half-life, plasma clearance and volume of distribution for alfaxalone were 41 minutes, 25 ± 6.3 mL minute–1 kg–1 and 1.6 ± 0.5 L kg–1, respectively. During anaesthesia, mean arterial blood pressure was maintained above 70 mmHg in all horses. Cardiac index reached a minimum value (68% of baseline values) immediately after induction of anaesthesia and was maintained between 74% and 90% of baseline values for the remainder of the anaesthetic protocol. Following the cessation of the alfaxalone infusion, six of eight horses exhibited muscle tremors and paddling. All horses stood without incident on the first or second attempt with a median recovery score of 4.5 (good to excellent).

Conclusions and clinical relevance

Anaesthesia in horses can be maintained with an infusion of alfaxalone at approximately 3 mg kg–1 hour–1. The alfaxalone infusion rates used resulted in minimal haemodynamic changes and good recovery quality. Mean alfaxalone plasma concentration was stable over the infusion period and clearance rates were similar to previously published single-dose alfaxalone studies in horses.  相似文献   

12.
ObjectiveTo evaluate the clinical efficacy and cardiorespiratory effects of alfaxalone as an anaesthetic induction agent in dogs with moderate to severe systemic disease.Study designRandomized prospective clinical study.AnimalsForty dogs of physical status ASA III-V referred for various surgical procedures.MethodsDogs were pre-medicated with intramuscular methadone (0.2 mg kg?1) and allocated randomly to one of two treatment groups for induction of anaesthesia: alfaxalone (ALF) 1–2 mg kg?1 administered intravenously (IV) over 60 seconds or fentanyl 5 μg kg?1 with diazepam 0.2 mg kg?1± propofol 1–2 mg kg?1 (FDP) IV to allow endotracheal intubation. Anaesthesia was maintained with isoflurane in oxygen and fentanyl infusion following both treatments. All dogs were mechanically ventilated to maintain normocapnia. Systolic blood pressure (SAP) was measured by Doppler ultrasound before and immediately after anaesthetic induction, but before isoflurane administration. Parameters recorded every 5 minutes throughout subsequent anaesthesia were heart and respiratory rates, end-tidal partial pressure of carbon dioxide and isoflurane, oxygen saturation of haemoglobin and invasive systolic, diastolic and mean arterial blood pressure. Quality of anaesthetic induction and recovery were recorded. Continuous variables were assessed for normality and analyzed with the Mann Whitney U test. Repeated measures were log transformed and analyzed with repeated measures anova (p < 0.05).ResultsTreatment groups were similar for continuous and categorical data. Anaesthetic induction quality was good following both treatments. Pre-induction and post-induction systolic blood pressure did not differ between treatments and there was no significant change after induction. The parameters measured throughout the subsequent anaesthetic procedures did not differ between treatments. Quality of recovery was very, quite or moderately smooth.Conclusions and clinical relevanceInduction of anaesthesia with alfaxalone resulted in similar cardiorespiratory effects when compared to the fentanyl-diazepam-propofol combination and is a clinically acceptable induction agent in sick dogs.  相似文献   

13.
ObjectiveTo compare three anaesthetic protocols for umbilical surgery in calves regarding adequacy of analgesia, and cardiopulmonary and hormonal responses.Study designProspective, randomised experimental study.AnimalsThirty healthy German Holstein calves (7 female, 23 male) aged 45.9 ± 6.4 days.MethodsAll calves underwent umbilical surgery in dorsal recumbency. The anaesthetic protocols were as follows: group INH (n = 10), induction 0.1 mg kg?1 xylazine IM and 2.0 mg kg?1 ketamine IV, maintenance isoflurane in oxygen; Group INJ (n = 10), induction 0.2 mg kg?1 xylazine IM and 5.0 mg kg?1 ketamine IV, maintenance 2.5 mg kg?1 ketamine IV every 15 minutes or as required; group EPI (n = 10), high volume caudal epidural anaesthesia with 0.2 mg kg?1 xylazine diluted to 0.6 mL kg?1 with procaine 2%. All calves received peri-umbilical infiltration of procaine and pre-operative IV flunixin (2.2 mg kg?1). Cardiopulmonary variables were measured at preset intervals for up to 2 hours after surgery. The endocrine stress response was determined. Intra-operative nociception was assessed using a VAS scale. Data were compared between groups using appropriate statistical tests. A value of p < 0.05 was considered significant.ResultsAll three protocols provided adequate anaesthesia for surgery although, as judged by the VAS scale, intra-operative response was greatest with INJ. Lowest mean cortisol levels during surgery occurred in EPI. Heart rate and cardiac output did not differ between groups, but mean arterial blood pressure, systemic vascular resistance, and partial pressure of carbon dioxide were higher and arterial pH lower in groups INH and INJ than in Group EPI. Group INJ became hypoxaemic and had a significantly greater vascular shunt than did the other groups.Conclusion and clinical relevanceGroups INH and EPI both proved acceptable protocols for calves undergoing umbilical surgery, whilst INJ resulted in variable anti-nociception and in hypoxaemia. High volume caudal epidural anaesthesia provides a practical inexpensive method of anaesthesia for umbilical surgery.  相似文献   

14.
Objective To characterize intravenous anaesthesia with detomidine, ketamine and guaiphenesin in pregnant ponies. Animals Twelve pony mares, at 260–320 days gestation undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (30 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) preceded induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was measured directly throughout anaesthesia and arterial blood samples were taken at 20‐minute intervals for measurement of blood gases and plasma concentrations of cortisol, glucose and lactate. Anaesthesia was maintained with an IV infusion of detomidine (0.04 mg mL?1), ketamine (4 mg mL?1) and guaiphenesin (100 mg mL?1) (DKG) for 140 minutes. Oxygen was supplied by intermittent positive pressure ventilation (IPPV) adjusted to maintain PaCO2 between 5.0 and 6.0 kPa (38 and 45 mm Hg), while PaO2 was kept close to 20.0 kPa (150 mm Hg) by adding nitrous oxide. Simultaneous fetal and maternal blood samples were withdrawn at 90 minutes. Recovery quality was assessed. Results DKG was infused at 0.67 ± 0.17 mL kg?1 hour?1 for 1 hour then reduced, reaching 0.28 ± 0.14 mL kg?1 hour?1 at 140 minutes. Arterial blood gas values and pH remained within intended limits. During anaesthesia there was no change in heart rate, but arterial blood pressure decreased by 10%. Plasma glucose and lactate increased (10‐fold and 2‐fold, respectively) and cortisol decreased by 50% during anaesthesia. Fetal umbilical venous pH, PO2 and PCO2 were 7.34 ± 0.06, 5.8 ± 0.9 kPa (44 ± 7 mm Hg) and 6.7 ± 0.8 kPa (50 ± 6 mm Hg); and fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 4.0 ± 0.7 kPa (30 ± 5 mm Hg) and 7.8 ± 1.7 kPa (59 ± 13 mm Hg), respectively. Surgical conditions were good but four ponies required a single additional dose of ketamine. Ponies took 60 ± 28 minutes to stand and recovery was good. Conclusions and clinical relevance Anaesthesia produced with DKG was smooth while cardiovascular function in mare and fetus was well preserved. This indicates that DKG infusion is suitable for maintenance of anaesthesia in pregnant equidae.  相似文献   

15.
ObjectiveTo characterise the anaesthetic effects of alfaxalone administered intramuscularly (IM) at 10, 20, and 30 mg kg?1.Study designProspective, randomized cross-over study.AnimalsTen juvenile green iguanas (Iguana iguana) of mean body weight (±SD) 480 ± 134 g.MethodsAlfaxalone was administered IM in the triceps of both thoracic limbs. Times for anaesthetic induction, plateau and recovery periods were recorded. Skeletal muscle tone of the jaw, neck, thoracic limbs, pelvic limbs, and tail was scored. The palpebral, corneal and righting reflexes, and the response to painful stimuli were also assessed. Pulse rate and respiratory rate were recorded. Comparisons between different dosages and over time were made using anova.ResultsTimes are given for 10, 20 and 30 mg kg?1 dosages respectively: mean time to maximal effect was 7.7 ± 2.2, 5.4 ± 1.7 and 3.9 ± 1.2 minutes; duration of the plateau phase was 11.3 ± 3.8, 22.1 ± 6.5 and 39.1 ± 11.5 minutes; recovery time was 10 ± 2.4, 17.5 ± 8.6 and 25 ± 7.1 minutes; and total anaesthetic duration was 29 ± 35.7, 45 ± 8.2 and 68 ± 9.8 minutes. Endotracheal intubation was possible in 40% of the subjects given 10 mg kg?1 and in 100% subjects given both 20 and 30 mg kg?1. Loss of response to a painful stimulus was seen in 0/10, 8/10 and 9/10 animals at 10, 20, and 30 mg kg?1 respectively. There was an initial dose-dependent depression of respiration followed by a significant increase in frequency over time. In contrast, pulse rates decreased by 20% over the duration of the anaesthetic events.Conclusions and clinical relevanceIntramuscular administration of alfaxalone is a simple, rapid and reliable means of achieving relatively brief sedation or anaesthesia in healthy green iguanas. A dosage of 10 mg kg?1 provides light sedation, appropriate for examination and venipuncture; 20 mg kg?1 provides a level suitable for minor procedures or for endotracheal intubation and supplementation with inhalational anaesthesia; 30 mg kg?1 produces an anaesthetic plane suitable for surgical procedures of limited duration (up to 40 minutes).  相似文献   

16.
ObjectiveTo compare racemic ketamine and S-ketamine as induction agents prior to isoflurane anaesthesia.Study designProspective, blinded, randomized experimental study.AnimalsThirty-one healthy adult goats weighing 39-86 kg.MethodsGoats were premedicated with xylazine (0.1 mg kg?1) intravenously (IV) given over 5 minutes. Each goat was assigned randomly to one of two treatments for IV anaesthetic induction: group RK (15 goats) racemic ketamine (3 mg kg?1) and group SK (16 goats) S-ketamine (1.5 mg kg?1). Time from end-injection to recumbency was measured and quality of anaesthetic induction and condition for endotracheal intubation were scored. Anaesthesia was maintained with isoflurane in oxygen for 90 minutes. Heart rate, invasive arterial blood pressure, oxygen saturation, temperature, end-tidal carbon dioxide and isoflurane were recorded every 5 minutes. Arterial blood samples were taken for analysis every 30 minutes. Recovery time to recurrence of swallowing reflex, to first head movement and to standing were recorded and recovery quality was scored. Two-way repeated measures anova, Mann-Whitney and a Mantel-Cox tests were used for statistical analysis as relevant with a significance level set at p < 0.05.ResultsInduction of anaesthesia was smooth and uneventful in all goats. There was no statistical difference between groups in any measured parameter. Side effects following anaesthetic induction included slight head or limb twitching, moving forward and backward, salivation and nystagmus but were minimal. Endotracheal intubation was achieved in all goats at first or second attempt. Recovery was uneventful on all occasions. All goats were quiet and needed only one or two attempts to stand.Conclusions and clinical relevanceS-ketamine at half the dose rate of racemic ketamine in goats sedated with xylazine and thereafter anaesthetised with isoflurane induces the same clinically measurable effects.  相似文献   

17.
ObjectiveTo evaluate quality of anaesthetic induction and cardiorespiratory effects following rapid intravenous (IV) injection of propofol or alfaxalone.Study designProspective, randomised, blinded clinical study.AnimalsSixty healthy dogs (ASA I/II) anaesthetized for elective surgery or diagnostic procedures.MethodsPremedication was intramuscular acepromazine (0.03 mg kg?1) and meperidine (pethidine) (3 mg kg?1). For anaesthetic induction dogs received either 3 mg kg?1 propofol (Group P) or 1.5 mg kg?1 alfaxalone (Group A) by rapid IV injection. Heart rate (HR), respiratory rate (fR) and oscillometric arterial pressures were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. The occurrence of post-induction apnoea or hypotension was recorded. Pre-induction sedation and aspects of induction quality were scored using 4 point scales. Data were analysed using Chi-squared tests, two sample t-tests and general linear model mixed effect anova (p < 0.05).ResultsThere were no significant differences between groups with respect to sex, age, body weight, fR, post-induction apnoea, arterial pressures, hypotension, SpO2, sedation score or quality of induction scores. Groups behaved differently over time with respect to HR. On induction HR decreased in Group P (?2 ± 28 beats minute?1) but increased in Group A (14 ± 33 beats minute?1) the difference being significant (p = 0.047). However HR change following premedication also differed between groups (p = 0.006). Arterial pressures decreased significantly over time in both groups and transient hypotension occurred in eight dogs (five in Group P, three in Group A). Post-induction apnoea occurred in 31 dogs (17 in Group P, 14 in Group A). Additional drug was required to achieve endotracheal intubation in two dogs.Conclusions and Clinical relevanceRapid IV injection of propofol or alfaxalone provided suitable conditions for endotracheal intubation in healthy dogs but post-induction apnoea was observed commonly.  相似文献   

18.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

19.
20.
ObjectiveTo describe the use of intramuscular (IM) premedication with alfaxalone alone or in combination with diazepam in pigs.Study designRandomised‐controlled trial.AnimalsTwelve healthy 2 month‐old Landrace x Large White pigs weighing 21.3 ± 2.4 kg.MethodsAnimals were distributed randomly into two groups: group A (n = 6) 5 mg kg?1 of IM alfaxalone; and group AD (n = 6) 5 mg kg?1 of IM alfaxalone + 0.5 mg kg?1 of IM diazepam mixed in the same syringe. The total volume of injectate was standardized at 14 mL by dilution in 0.9% sodium chloride. Pain on injection, the degree of sedation and the quality of and time to induction of recumbency were evaluated. Once pigs were recumbent, reflexes were evaluated. Pulse and respiratory rates and arterial oxygen saturation were recorded at 5 and 10 minutes after drug administration. Pigs were then moved to another room for subsequent anaesthesia.ResultsTwo animals of group A and one of group AD showed slight pain on drug injection. Time to lateral recumbency (in seconds) was shorter in group AD (mean 203 ± SD 45 range 140–260) than group A (302 ± 75, range 220–420; p < 0.05). In group AD sedation was deeper, and on recumbency there was better muscle relaxation. When moved for anaesthesia, two pigs in Group A showed slight resistance but did not vocalize. There were no differences in physiologic measurements between groups, although in both groups, respiratory rate was significantly lower at ten compared with five minutes post drug injection. There was no apneoa.Conclusions and clinical relevanceIM administration of alfaxalone combined with diazepam resulted in a rapid onset of recumbency and deep sedation, with minimal side effects. The combination might be useful for premedication, but volume of injectate will limit its use to small pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号