首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鸡新城疫病毒分离株与La Sota株灭活疫苗效力比较试验   总被引:1,自引:0,他引:1  
用NDV分离株及La Sota株为抗源液,经福尔马林灭活后,与油佐剂混合,分别制成分离株灭活苗、La Sota株灭活苗及分离株与La Sota株二价灭活苗。将这三种灭活疫苗分别免疫SPF鸡后,均获得100%抵抗NDV分离株及F48株强毒攻击的保护力;而用这3种灭活苗与La Sota活苗单独或联合使用,免疫带有ND母源抗体的普通鸡后,3种灭活苗的免疫效力不同,分离株灭活苗与价灭活苗对NDV分离株攻击的免疫保护效力明显优于La Sota灭活苗;灭活苗与活苗同时使用,其免疫效力明显优于单独使用灭活苗或活苗。  相似文献   

2.
Influenza A viruses of the H3N8 subtype are a major cause of respiratory disease in horses. Subclinical infection with virus shedding can occur in vaccinated horses, particularly where there is a mismatch between the vaccine strains and the virus strains circulating in the field. Such infections contribute to the spread of the disease. Rapid diagnostic techniques are available for detection of virus antigen and can be used as an aid in control programmes. Improvements have been made to methods of standardising inactivated virus vaccines, and a direct relationship between vaccine potency measured by single radial diffusion and vaccine-induced antibody measured by single radial haemolysis has been demonstrated. Improved adjuvants and antigenic presentation systems extend the duration of immunity induced by inactivated virus vaccines, but high levels of antibody are required for protection against field infection. In addition to circulating antibody, infection with influenza virus stimulates mucosal and cellular immunity; unlike immunity to inactivated virus vaccines, infection-induced immunity is not dependent on the presence of circulating antibody to HA. Live attenuated or vectored equine influenza vaccines, which may better mimic the immunity generated by influenza infection than inactivated virus vaccines, are now available. Mathematical modelling based upon experimental and field data has been applied to examine issues relating to vaccine efficacy at the population level. A vaccine strain selection system has been implemented and a more global approach to the surveillance of equine influenza is being developed.  相似文献   

3.
Various vaccine preparations against an infection with Bovine Viral Diarrhea Virus (BVDV) have been used since more than 30 years. To prevent reproduction failure and the generation of persistently infected animals, protection of heifers and cows against transplacental infection is the most important aim of BVDV vaccination. In principal, BVD vaccines with replication competent, attenuated BVDV (modified live vaccines) and vaccines with inactivated BVDV preparations (killed vaccines) are used. In Germany, modified live vaccines as well as killed vaccines are registered, however, only BVDV type I strains are included in both types of vaccines. This paper presents an short overview about the different BVD vaccines and their efficacy and safety. In addition, new vaccine types are mentioned and final conclusions are drawn.  相似文献   

4.
Protection provided by live and inactivated virus vaccination against challenge with the virulent nephropathogenic infectious bronchitis virus (NIBV) strain PA/Wolgemuth/98 was assessed. Vaccinations with combinations of live attenuated strains Massachusetts (Mass) + Connecticut (Conn) or Mass + Arkansas (Ark) were given by eyedrop to 2-wk-old specific-pathogen-free leghorn chickens. After live infectious bronchitis virus (IBV) vaccination, some chickens at 6 wk of age received an injection of either an oil emulsion vaccine containing inactivated IBV strains Mass + Ark or an autogenous vaccine prepared from NIBV PA/Wolgemuth/98. Challenge with PA/Wolgemuth/98 was given via eyedrop at 10 wk of age. Serum IBV enzyme-linked immunosorbent assay antibody geometric mean titers (GMTs) after vaccination with the combinations of live attenuated strains were low, ranging from 184 to 1,354, prior to NIBV challenge at 10 wk of age. Both inactivated vaccines induced an anamnestic response of similar magnitudes with serum GMTs of 6,232-12,241. Assessment of protection following NIBV challenge was based on several criteria virus reisolation from trachea and kidney and renal microscopic pathology and IBV-specific antigen immunohistochemistry (IHC). Live attenuated virus vaccination alone with combinations of strains Mass + Conn or Mass + Ark did not protect the respiratory tract and kidney of chickens after PA/Wolgemuth/98 challenge. Chickens given a live combination vaccination of Mass + Conn and boosted with an inactivated Mass + Ark vaccine were also susceptible to NIBV challenge on the basis of virus isolation from trachea and kidney butshowed protection on the basis of renal microscopic pathology and IHC. Live IBV-primed chickens vaccinated with an autogenous inactivated PA/Wolgemuth/98 vaccine had the highest protection against homologous virulent NIBV challenge on the basis of virus isolation.  相似文献   

5.
The potency of inactivated Newcastle disease virus (NDV) vaccines in the United States is currently determined using vaccination and challenge of experimental animals against a velogenic strain of NDV. Because velogenic strains of NDV are now classified as select agents in the United States, all vaccine potency testing must be performed in live animals under biosafety level 3 agriculture conditions. If the minimum amount of inactivated viral antigen required for clinical protection can be determined using other methods, vaccines meeting these criteria might be considered of adequate potency. The linearity of correlation between the hemagglutination (HA) assay measurement and the 50% embryo infectious dose titer ofNDV Hitchner B1 vaccine virus was determined. Correlation between hemagglutinin units (HAU) per vaccine dose, clinical protection, and antibody response was then determined using a vaccinate-and-challenge model similar to Chapter 9 of the U.S. code of federal regulations approved method for vaccine potency testing. The dose providing 50% protection of an in-house water-in-oil emulsion vaccine formulated with inactivated NDV B1 was determined to be between 400 and 600 HAU from two separate trials. A positive correlation (R2 = 0.97) was observed between antibody response and HAU per vaccine dose. Serum antibody responses from vaccinated birds indicate HA inhibition titers >2(5) log2 would provide 100% protection from morbidity and mortality and require a minimum protective dose of 1000 HAU per bird. These are the first studies to examine establishing both a minimum protective HAU content for inactivated ND vaccines and a minimum serologic response necessary to ensure potency.  相似文献   

6.
Intradermal vaccination with plasmid DNA encoding envelope glycoprotein C (gC) of pseudorabies virus (PrV) conferred protection of pigs against Aujeszky's disease when challenged with strain 75V19, but proved to be inadequate for protection against the highly virulent strain NIA-3. To improve the performance of the DNA vaccine, animals were vaccinated intradermally with a combination of plasmids expressing PrV glycoproteins gB, gC, gD, or gE under control of the major immediate-early promotor/enhancer of human cytomegalovirus. 12.5 microg per plasmid were used per immunization of 5-week old piglets which were injected three times at biweekly intervals. Five out of six animals survived a lethal challenge with strain NIA-3 without exhibiting central nervous signs, whereas all the control animals succumbed to the disease. This result shows the increased protection afforded by administration of the plasmid mixture over vaccination with a gC expressing plasmid alone. A comparative trial was performed using commercially available inactivated and modified-live vaccines and a mixture of plasmids expressing gB, gC, and gD. gE was omitted to conform with current eradication strategies based on gE-deleted vaccines. All six animals vaccinated with the live vaccine survived the lethal NIA-3 challenge without showing severe clinical signs. In contrast, five of six animals immunized with the inactivated vaccine died, as did two non-vaccinated controls. In this test, three of six animals vaccinated with the DNA vaccine survived without severe clinical signs, whereas three succumbed to the disease. Comparing weight reduction and virus excretion, the DNA vaccine also ranged between the inactivated and modified-live vaccines. Thus, administration of DNA constructs expressing different PrV glycoproteins was superior to an adjuvanted inactivated vaccine but less effective than an attenuated live vaccine in protection of pigs against PrV infection. Our data suggest a potential use of DNA vaccination in circumstances which do not allow administration of live attenuated vaccines.  相似文献   

7.
Previous findings, viz. that mice can be successfully immunized against infection with Salmonella dublin with either live or inactivated vaccine, were confirmed. Immunity lasted for at least 12 weeks in mice which had been immunized with inactivated alum-precipitated vaccine. The immunogenicity of inactivated vaccine gradually decreased on storage at 4 degrees C, but this was only detectable if a single injection was used for immunization: 2 injections virtually eliminated this phenomenon. The immunogenicity of live vaccine in mice was not enhanced by levamizole or the simultaneous injection of inactivated organisms. Both live and inactivated vaccines provided immunity in calves. A single injection of lyophilized vaccine, prepared from live rough Salmonella dublin strain (HB 1/17),protected 3 out of 6 calves, while 2 injections of a formalin-inactivated, alum-precipated vaccine, containing 1% packed cells of S. dublin strain 2652 V, protected 5 out of 6 calves against intraduodenal challenge with 2 x 10(9), S. dublin strain 2652 V. Two calves which had been immunized with an inactivated oil adjuvant vaccine were also solidly immune to this challenge. Serum antibody response in calves was poor when measured by the tube agglutination and the haemagglutination tests. Similarly, the sera had only marginal protective values when tested by means of a passive protection test in mice. Antibody titres alone are not a valid measure therefore, for the immune status of immunized animals.  相似文献   

8.
After the incursion of bluetongue virus (BTV) into European Mediterranean countries in 1998, vaccination was used in an effort to minimize direct economic losses to animal production, reduce virus circulation and allow safe movements of animals from endemic areas. Vaccination strategies in different countries were developed according to their individual policies, the geographic distribution of the incurring serotypes of BTV and the availability of appropriate vaccines. Four monovalent modified live virus (MLV) vaccines were imported from South Africa and subsequently used extensively in both cattle and sheep. MLVs were found to be immunogenic and capable of generating strong protective immunity in vaccinated ruminants. Adverse side effects were principally evident in sheep. Specifically, some vaccinated sheep developed signs of clinical bluetongue with fever, facial oedema and lameness. Lactating sheep that developed fever also had reduced milk production. More severe clinical signs occurred in large numbers of sheep that were vaccinated with vaccine combinations containing the BTV-16 MLV, and the use of the monovalent BTV-16 MLV was discontinued as a consequence. Abortion occurred in <0.5% of vaccinated animals. The length of viraemia in sheep and cattle that received MLVs did not exceed 35 days, with the single notable exception of a cow vaccinated with a multivalent BTV-2, -4, -9 and -16 vaccine in which viraemia persisted at least 78 days. Viraemia of sufficient titre to infect Culicoides insects was observed transiently in MLV-vaccinated ruminants, and natural transmission of MLV strains has been confirmed. An inactivated vaccine was first developed against BTV-2 and used in the field. An inactivated vaccine against BTV-4 as well as a bivalent vaccine against serotypes 2 and 4 were subsequently developed and used in Corsica, Spain, Portugal and Italy. These inactivated vaccines were generally safe although on few occasions reactions occurred at the site of inoculation. Two doses of these BTV inactivated vaccines provided complete, long-lasting immunity against both clinical signs and viraemia, whereas a single immunization with the BTV-4 inactivated vaccine gave only partial reduction of viraemia in vaccinated cattle when challenged with the homologous BTV serotype. Additional BTV inactivated vaccines are currently under development, as well as new generation vaccines including recombinant vaccines.  相似文献   

9.
The article reviews the history, present status and the future of BT vaccines in Europe. So far, an attenuated (modified live viruses, MLV) and inactivated virus vaccines against BT were developed and used in the field. Moreover, the virus-like particles (VLPs) produced from recombinant baculovirus, and live recombinant vaccinia or canarypox virus-vectored vaccines were tested in the laboratory. The main aims of BT vaccination strategy are: to prevent clinical disease, to reduce the spread of the BTV in the environment and to protect movement of susceptible animals between affected and free zones. Actually, all of the most recent European BT vaccination campaigns have used exclusively inactivated vaccines. The use of inactivated vaccines avoid risk associated with the use of live-attenuated vaccines, such as reversion to virulence, reassortment of genes with field strain, teratogenicity and insufficient attenuation leading to clinical disease. The mass vaccinations of all susceptible animals are the most efficient veterinary method to fight against BT and successful control of disease. The vaccination of livestock has had a major role in reducing BTV circulation and even in eradicating the virus from most areas of Europe.  相似文献   

10.
A plaque-purified experimental rabies vaccine was developed from an isolate (strain V-319) made from a naturally infected vampire bat (Desmodus rotundus). Two different vaccines were prepared; one was live virus and the second was an inactivated rabies virus preparation. The live virus vaccine, as well as a betapropiolactone-inactivated vaccine, gave complete protection to challenge inoculation after 1 year. In contrast, greater than 80% of the non-vaccinated experimental control cattle died of rabies. The live virus vaccine could be given at doses as low as 10(5) PFU without loss of efficacy. It did not cause adverse reactions. More than 10,000 cattle have been vaccinated with the live virus vaccine under field conditions. No rabies deaths occurred in vaccinated cattle during a 2-year postvaccinal period. The serological responses of vaccinated cattle indicated protection that endured at least 1 year.  相似文献   

11.
This review provides inside information on the production of vaccines for veterinary use. The vaccines against rinderpest as well as foot and mouth disease are considered milestones in the history of veterinary vaccine production. Modern vaccines are based on the scientific progress in virology, cell biology and immunology. While naturally occurring attenuated viruses or viruses obtained after passage in different animal species or cell culture were used as vaccine strains in the early vaccines, nowadays targeted mutagenesis can be applied to generate vaccine virus strains. In principle, the antigen production process is the same for live and inactivated vaccines. The vaccine virus is usually grown in cell culture, either in roller bottles or bioreactors. Most live vaccines are freeze-dried in order to enable storage in the refridgerator for a longer period. To this end, a so-called stabilizer is added to the culture medium. The inactivation of the vaccine virus for the production of killed vaccines is done by physical or chemical treatments that lead to denaturation of the proteins or damage of the nucleic acids. The inactivated antigen may be further purified and mixed with an adjuvant. The quality standards for vaccines are layed down in international regulations and laws. Numerous tests are performed during the different production steps and on the final product in order to warrant the quality of each batch.  相似文献   

12.
When mice infected 1 or 2 days before by an IM inoculation after high passage of the virus in the species ("challenge virus standard" strain) received an injection of live (Flury) or inactivated virus, their mortality was increased in comparison with unvaccinated controls. In the case of the inactivated virus vaccine, mortality was proportional to the dose of vaccine received. Conversely, when vaccination was carried out in mice recently infected with the same doses of a heterologous strain adapted to foxes, this phenomenon could not be demonstrated. The consequences of these observations on failures of treatment in animals infected with a homologous strain, cases of rabies occurring after vaccination or quality control of vaccines are discussed.  相似文献   

13.
猪流行性腹泻(porcine epidemic diarrhea,PED)是危害养猪业健康发展的重要疾病之一,具有急性、高度传染性的特征,给养猪业造成了严重的经济损失。猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)感染会破坏动物机体的消化系统,造成患病猪食欲下降、呕吐以及严重腹泻等,且药物治愈后的仔猪也会因为生长发育不良等因素严重影响生产,给养殖户带来巨大的困扰。2010年PEDV高致病变异毒株在中国暴发流行,导致PED的发病率和死亡率大幅升高,严重影响中国养猪生产。此次PED的暴发流行引起了养猪行业的密切关注,相关研究领域的学者对PEDV致病机制和PED新型疫苗进行了更加深入的研究,亚单位疫苗、病毒活载体疫苗、细菌活载体疫苗、转基因植物疫苗和核酸疫苗5种PED新型疫苗相继被开发,并取得全新的突破和进展。与传统的PED灭活苗和PED弱毒疫苗相比,PED新型基因工程疫苗具有安全性好、制备简单、免疫效果好等优点。文章着重对PEDV发病机理和5种PED新型疫苗的研究进展展开综述,从而加深对PEDV和PED新型疫苗的了解,以期为PEDV感染的预防和控制措施提供参考。  相似文献   

14.
Porcine epidemic diarrhea (PED) is one of the important diseases that endanger the healthy development of the pig industry.It has acute and highly infectious characteristics,causing severe economic losses to the pig industry.Porcine epidemic diarrhea virus (PEDV) infection could destroy the animal's digestive system,cause the appetite of sick pigs to decline,vomit,and severe diarrhea.And the piglets cured by drugs will also have a serious impact on production due to factors such as poor growth and development,which will bring huge problems to the farmers.The outbreak of PEDV highly pathogenic mutant strains in China in 2010 led to a significant increase in the incidence and mortality of PED,which severely affected pig production in China.The outbreak of PED has drawn close attention from the pig industry.Scholars in related research fields have conducted more in-depth research on the pathogenic mechanism of PEDV and the new PED vaccine.Five new types of PED vaccines,including subunit vaccine,virus live vector vaccine,bacterial live vector vaccine,transgenic plant vaccine and nucleic acid vaccine,have been developed successively,and new breakthroughs and progress have been made.Compared with the traditional PED inactivated vaccine and PED attenuated vaccine,the new PED genetically engineered vaccine has the advantages of good safety,simple preparation,and good immune effect.This article focuses on the pathogenesis of PEDV and the research progress of five new PED vaccines,so as to deepen our understanding of new PEDV and PED vaccines,in order to provide references for prevention and control measures of PEDV infection.  相似文献   

15.
Bovine Viral Diarrhea Virus (BVDV) is widespread in cattle in Brazil and research shows its large antigenic variability. Available vaccines are produced with virus strains isolated in other countries and may not be effective. In this study, inactivated vaccines containing the Brazilian BVDV-Ib IBSP11 isolate were developed and tested on 6 groups of 10 guinea pigs (Cavia porcellus). Animals in groups A and C received an aqueous vaccine (aluminum hydroxide); B and D groups received an oily vaccine (Montanide ISA50); Group E positive-control animals were given an imported commercial vaccine with BVDV-Ia Singer; Group F animals were sham vaccinated (negative control). Groups A, B and E received two doses, and Groups C and D, three, every 21 days. Twelve blood samples were taken, at 21-day intervals over 231 days, and evaluated for antibody titer through virus-neutralization (VN), using a homologous strain (IBSP11), and a heterologous strain (BVDV-Ia NADL). Most animals, 42 days following the first dose, seroconverted to both strains and, after the second dose, there was a significant increase of titers in all groups. The oily formulation induced greater response after the third administration. This increase was not observed with the aqueous vaccines, regardless of the virus used in the VN. Antibody decline was more rapid in animals that received aqueous vaccines. The results showed the importance of studying the influence of endemic strains of commercial vaccines, to improve the efficacy of BVD vaccination. Use of the endemic strain in vaccine formulation presented promising results, as well as the use of guinea pigs as a laboratory model.  相似文献   

16.
Vaccination is a useful option to control infection with porcine reproductive and respiratory syndrome virus (PRRSV), and several modified live-PRRSV vaccines have been developed. These vaccines have shown some efficacy in reducing the incidence and severity of clinical disease as well as the duration of viremia and virus shedding but have failed to provide sterilizing immunity. The efficacy of modified live-virus (MLV) vaccines is greater against a homologous strain compared with heterologous PRRSV strains. The objective of this study was to evaluate the efficacy of Fostera PRRS MLV vaccine in protecting against challenge with a heterologous field strain widely circulating in the swine herds of eastern Canada. Forty-six piglets were divided into 4 groups: nonvaccinated-nonchallenged; nonvaccinated-challenged; vaccinated-challenged; and vaccinated-nonchallenged. The animals were vaccinated at 23 d of age with Fostera PRRS and challenged 23 d later with a heterologous field strain of PRRSV (FMV12-1425619). Overall, the vaccine showed some beneficial effects in the challenged animals by reducing the severity of clinical signs and the viral load. A significant difference between nonvaccinated and vaccinated animals was detected for some parameters starting 11 to 13 d after challenge, which suggested that the cell-mediated immune response or other delayed responses could be more important than pre-existing PRRSV antibodies in vaccinated animals within the context of protection against heterologous strains.  相似文献   

17.
The prevention of distemper in zoo animals   总被引:1,自引:0,他引:1  
The distemper virus infection of different non-domestic carnivorous zoo animals is known since long. All species involved belonged to the suborder Fissipedia. In 1988 a distemper or morbillivirus-like infection occurred in harbour seals, a member of the suborder pinnipedia. For the prophylaxis of distemper in dogs attenuated live vaccines are commonly used. In zoo animals, however, these vaccines caused distemper several times. In contrast, an inactivated virus vaccine proved both its safety and efficacy in more than hundred zoo animals of various species.  相似文献   

18.
West Nile virus (WNV) can lead to fatal diseases in raptor species. Unfortunately, there is no vaccine which has been designed specifically for use in breeding stocks of falcons. Therefore the immunogenicity and protective capacity of two commercially available WNV vaccines, both approved for use in horses, were evaluated in large falcons. One vaccine contained adjuvanted inactivated WNV lineage 1 immunogens, while the second represented a canarypox recombinant live virus vector vaccine. The efficacy of different vaccination regimes for these two vaccines was assessed serologically and by challenging the falcons with a WNV strain of homologous lineage 1. Our studies show that the recombinant vaccine conveys a slightly better protection than the inactivated vaccine, but moderate (recombinant vaccine) or weak (inactivated vaccine) side effects were observed at the injection sites. Using the recommended 2-dose regimen, both vaccines elicited only sub-optimal antibody responses and gave only partial protection following WNV challenge. Better results were obtained for both vaccines after a third dose, i.e. alleviation of clinical signs, absence of fatalities and reduction of virus shedding and viraemia. Therefore the consequences of WNV infections in falcons can be clearly alleviated by vaccination, especially if the amended triple administration scheme is used, although side effects at the vaccination site must be accepted.  相似文献   

19.
犬瘟热的诊断及其预防免疫的研究进展   总被引:36,自引:7,他引:29  
本文对犬瘟热(CD)的诊断、预防免疫和免疫失败的影响因素及犬瘟热病毒(CDV)的宿主范围进行了综述。CDV不仅感染陆生食肉动物,而且也感染水生食肉动物,并且其宿主范围还在不断扩大。CDV感染主要采用病毒分离、特异性病毒抗原或特异性核酸检测等方法确诊。疫苗包括灭活的CDV疫苗、麻疹病毒(MV)异源苗及CDV弱毒活苗。疫苗接种犬的免疫反应主要取决于毒株特性及犬的应答能力,只有弱毒活苗能诱导产生持久而坚强的保护力。尽管多年来CDV弱毒活苗的使用控制了CD的发生,但最近免疫过的犬发生CD的病例并不少见。分析免疫失败的原因,主要是母源抗体干扰、疫苗质量差、其它病毒的免疫抑制以及CDV流行株可能发生了变异等因素的影响。  相似文献   

20.
Mycoplasma gallisepticum infection results in numerous clinical signs including a reduction in egg production in laying chickens. Attempts to prevent mycoplasmosis have included vaccination with both killed and attenuated live M. gallisepticum strains. Live vaccines provide reduction in clinical signs and have been shown to replace indigenous strains when used in a consistent program for several placements. Antibiotic therapy is another option for controlling losses associated with mycoplasmosis. Therapeutic antibiotics with activity against mycoplasma approved for use in poultry include tetracyclines and tylosin. These drugs also are approved for feed efficiency when administered in the feed at levels below the therapeutic index for mycoplasma. The data presented here suggest that birds vaccinated with the live 6/85 strain of M. gallisepticum and then fed tylosin, at the approved level for feed efficiency, exhibit a serologic vaccine response similar to that of unmedicated birds but show improved feed efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号