首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
The tanoak (Lithocarpus densiflorus) acorn was a staple food in the Native American diet and is still used in traditional dishes. Acorns from the genus Quercus have been shown to contain a large range of hydrolyzable tannins. However, neither hydrolyzable nor condensed tannins have been characterized in tanoak acorns. The aim of this study was to identify the full range of hydrolyzable and condensed tannins in extracts of tanoak acorns using liquid chromatography/electrospray ionization-mass spectrometry/mass spectrometry. Condensed tannins were identified as B type oligomers of (epi)-catechin (procyanidins) with a degree of polymerization up to six. Oligomers up to and including tetramers were identified by UV spectra and MS detection whereas pentamers and hexamers were detected only by MS. The total concentration of condensed tannins was 464 mg/100 g acorn pericarp. The concentration of propocyanidin monomers, dimers, trimers, and tetramers in acorn pericarp (mg/100 g acorn pericarp) were 95 +/- 10.9, 148 +/- 35.0, 90 +/- 17.9, and 131 +/- 1.9, respectively. No procyanidins were found in the acorn cotyledon tissue. A total of 22 hydrolyzable tannins were identified in methanolic extracts of acorn cotyledon tissue. Gallic acid derivatives predominated and included galloylated esters of glucose, hexahydrodiphenoyl esters of glucose, and methylated gallates. Galloylated esters of glucose were present as isomers of galloyl glucose, digalloyl glucose, and trigalloyl glucose. Mass spectral fragmentation patterns indicate the presence of one gallic acid-galloyl glucose isomer and two gallic acid-digalloyl-glucose isomers. No isomers of tetragalloyl glucose and pentagalloyl glucose were identified. Ellagic acid and ellagic acid pentoside were also identified.  相似文献   

2.
The effects of different cultivation methods on the amount of phenolic compounds in leaves of 1-year-old seedlings of two Finnish sea buckthorn (Hippophae rhamnoides L. ssp. rhamnoides) cultivars 'Terhi' and 'Tytti' were studied in a field experiment established at coastal area in Merikarvia, western Finland. The cultivation methods included different fertilizers (suitable for organic cultivation), mulches (organic and plastic), and land contours (flat vs low hill surface). Two experiments were conducted. The first allowed the estimation of the effects of cultivar, fertilizer, surface contour, and all their interactions, while the other allowed the estimation of the effects of mulches, land contours, and their interactions for the cultivar 'Tytti'. Eleven different hydrolyzable tannins, pentagalloylglucose, and 14 other phenolic compounds were detected by chemical analysis with high-performance liquid chromatography (HPLC). The amount of phenolic compounds varied between different land contours and mulches. The concentrations of gallic acid, pentagalloylglucose, quercetin-3-rhamnoside, monocoumaroyl astragalin A, total hydrolyzable tannins, and condensed tannins were significantly higher on the flat surface than on the low hill surface. The plastic mulch decreased the concentration of gallic acid, hydrolyzable tannins, and condensed tannins compared to the other mulches used. These results suggest ways to cultivate sea buckthorn to produce large amounts of valuable chemicals, especially tannins in the leaves.  相似文献   

3.
Rosa chinensis (Yuejihua) is a well-known ornamental plant, and its flowers are commonly used in traditional Chinese medicine. Methanolic crude extracts of dried R. chinensis flowers were used for simultaneous determination of phenolic constituents by liquid chromatography-mass spectrometry (LC-MS) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS). A total of 36 known and unknown phenolics were identified as hydrolyzable tannins, flavonols, and anthocyanins, mainly including gallotannins (mono-, di-, or trigalloylglucopyranosides), ellagitannins, quercetin, quercetin/kaempferol mono- and diglycosides, and cyanidin/pelargonidin diglycosides. MALDI-QIT-TOF MS was applied not only to verify most phenolics isolated and identified by LC-MS but also to tentatively identify two ellagitannins (rugosins B and C) not isolated and unidentified by LC-MS. This study is the first to demonstrate the rapid and successful use of MALDI-QIT-TOF MS and LC-MS to directly and simultaneously identify phenolics in the crude extracts of R. chinensis flowers without any purification. The antioxidant activity of the crude extracts from R. chinensis flowers was also measured with three assay methods. The results showed that the phenolic antioxidants from R. chinensis flowers exhibited very strong radical scavenging effect and antioxidant power. High levels of flavonols and hydrolyzable tannins might be important bioactive principles in the dried R. chinensis flowers.  相似文献   

4.
Retention of tannins, produced by plants, could be important for managing soil organic matter and nutrient cycling. However, we know little about the comparative retention of different classes of tannins and related compounds or if soils have a maximum storage capacity for them. To address these questions, forest, and pasture loam soils, collected at 0-5 cm (surface) and 10-20 cm (subsurface), were repeatedly treated with water (Control) or solutions containing condensed and hydrolyzable tannins or related phenolic subunits (10 mg g−1 soil). Treatments included a polymeric flavonoid-based procyanidin from sorghum, catechin, tannic acid, β-1,2,3,4,6-penta-O-galloyl-d-glucose (PGG), gallic acid, and methyl gallate. After each application, soluble-C in supernatants was determined by oxidative-combustion infrared analysis and retention of treatment-carbon by soil was calculated as the difference between added and recovered soluble-C. An interaction between soil depth and treatment was evident through all applications with highest retention of both hydrophobic (PGG) and hydrophilic (procyanidin) tannins, compared to other phenolic compounds. For all treatments except gallic acid and methyl gallate, higher sorption occurred in surface soil, which contained more organic matter than subsurface soil. With each successive application, less additional treatment-C was retained by soil and the amount of C remaining in supernatants was correlated with the presence of phenolic substances. Cumulative retention by surface soil was more than 10.3, 8.5 and 6.4 mg C g−1 soil for PGG, tannic acid, and procyanidin, several times higher than the other compounds. Soluble-C extracted from treated soil, with cool water (23 °C), was 1-2 orders of magnitude greater than Control samples and highly correlated with Prussian Blue (PB) phenolics, indicating some retained treatment-C was only weakly held on the soil. The final extraction, with hot water (80 °C), removed more soluble-C, particularly from surface samples, that contained fewer PB phenolics per unit soluble-C than cool water extracts. After all extractions more than 85% of sorbed procyanidin-C was retained by samples compared to 81% of methyl gallate, 79% of PGG, 74% of tannic acid, 50% of catechin, and 40% of the gallic acid. Total C, measured in soil after all extractions, was close to expected values, confirming tannins and phenolic compounds had remained in soil and were not otherwise lost. Cation exchange capacity was increased about 30% in subsurface and forest samples by PGG, a hydrolyzable tannin, but decreased by 30% and 35% in surface and pasture soil, respectively, by its monomer, gallic acid.  相似文献   

5.
Proline-rich proteins (PRP) in human parotid saliva have a high affinity for dietary polyphenolic compounds (tannins), forming stable complexes that may modulate the biological and nutritional properties of the tannin. The formation of such complexes may also have an important role in the modulation or promotion of the sensation of oral astringency perceived when tannin-rich foods and beverages are consumed. The major classes of PRP (acidic, basic, and glycosylated) have been isolated from human saliva, and the relative binding affinities of a series of hydrolyzable tannins, which are found in a number of plant-derived foods and beverages, to these PRP classes have been determined using a competition assay. All of the classes of PRP have a high capacity for hydrolyzable tannins. Within the narrow range of binding affinities exhibited, structure/binding relationships with the levels of tannin galloylation, hexahydroxydiphenoyl esterification, and degree of polymerization were identified. No individual class of human salivary PRP appears to have an exclusive affinity for a particular type of hydrolyzable tannin.  相似文献   

6.
Pomegranate juice is well known for its health beneficial compounds, which can be attributed to its high level of antioxidant activity and total polyphenol content. Our objective was to study the relationships between antioxidant activity, total polyphenol content, total anthocyanins content, and the levels of four major hydrolyzable tannins in four different juices/homogenates prepared from different sections of the fruit. To this end, 29 different accessions were tested. The results showed that the antioxidant activity in aril juice correlated significantly to the total polyphenol and anthocyanin contents. However, the homogenates prepared from the whole fruit exhibited an approximately 20-fold higher antioxidant activity than the level found in the aril juice. Unlike the arils, the antioxidant level in the homogenates correlated significantly to the content of the four hydrolyzable tannins in which punicalagin is predominant, while no correlation was found to the level of anthocyanins.  相似文献   

7.
A widely used method for analyzing hydrolyzable tannins afer reaction with KIO(3) has been modified to include a methanolysis step followed by oxidation with KIO(3). In the new method, hydrolyzable tannins (gallotannins and ellagitannins) are reacted at 85 degrees C for 20 h in methanol/sulfuric acid to quantitatively release methyl gallate. Dried plant samples can be methanolyzed under the same conditions to convert hydrolyzable tannins to methyl gallate. Oxidation of the methyl gallate by KIO(3) at pH 5.5, 30 degrees C, forms a chromophore with lambda(max) 525 nm, which is determined spectrophotometrically. The detection limit of the method is 1.5 microg of methyl gallate, and with plant samples, relative standard deviations of less than 3% were obtained.  相似文献   

8.
High-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) and tandem mass spectrometry (MS(n)) were used to investigate the phenolic constituents in methanol, water, and methanol/water extracts of Eucalyptus globulus Labill. bark. Twenty-nine phenolic compounds were identified, 16 of them referenced for the first time as constituents of E. globulus bark, namely, quinic, dihydroxyphenylacetic, and caffeic acids, bis(hexahydroxydiphenoyl (HHDP))-glucose, galloyl-bis(HHDP)-glucose, galloyl-HHDP-glucose, isorhamentin-hexoside, quercetin-hexoside, methylellagic acid (EA)-pentose conjugate, myricetin-rhamnoside, isorhamnetin-rhamnoside, mearnsetin, phloridzin, mearnsetin-hexoside, luteolin, and a proanthocyanidin B-type dimer. Digalloylglucose was identified as the major compound in the methanol and methanol/water extracts, followed by isorhamnetin-rhamnoside in the methanol extract and by catechin in the methanol/water extract, whereas in the water extract catechin and galloyl- HHDP-glucose were identified as the predominant components. The methanol/water extract was shown be the most efficient to isolate phenolic compounds identified in E. globulus bark.  相似文献   

9.
The polyphenolic patterns of carob pods (Ceratonia siliqua L.) and derived products were identified and quantified using high-performance liquid chromatography-UV absorption-electrospray ion trap mass spectrometry after pressurized liquid extraction and solid-phase extraction. In carob fiber, 41 individual phenolic compounds could be identified. In addition, spectrophotometric quantification using the Folin-Ciocalteu and vanillin assays was performed, and the antioxidative activity was determined as the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Carob pods contain 448 mg/kg extractable polyphenols comprising gallic acid, hydrolyzable and condensed tannins, flavonol-glycosides, and traces of isoflavonoids. Among the products investigated, carob fiber, a carob pod preparation rich in insoluble dietary fiber (total polyphenol content = 4142 mg/kg), shows the highest concentrations in flavonol-glycosides and hydrolyzable tannins, whereas roasted carob products contain the highest levels of gallic acid. The production process seems to have an important influence on the polyphenolic patterns and quantities in carob products.  相似文献   

10.
The objective of the present investigation was to examine the oral astringency and protein-binding activity of four structurally well-defined tannins, namely, procyanidin [epicatechin16(4-->8)catechin], pentagalloyl glucose (1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose), castalagin, and grandinin, representing the three main structural categories of tannins, the proanthocyanidins, the gallotannins, and the ellagitannins. Astringency threshold and dos/response were determined by the half-tongue test using a trained human panel. Protein-binding stoichiometry and relative affinity were determined using radioiodinated bovine serum albumin in precipitation or competitive binding assays. Procyanidin and pentagalloyl glucose were perceived as highly astringent compounds and had relatively steep dose/response curves, but castalagin and grandinin had a lower mass threshold for detection. In vitro, procyanidin was the most effective protein-precipitating agent and grandinin the least. Increasing the temperature increased protein precipitation by the hydrolyzable tannins, especially grandinin. All four polyphenols had higher relative affinities for proline-rich proteins than for bovine serum albumin.  相似文献   

11.
The chemical constituents of green tea prepared from the leaves of Camellia taliensis (W. W. Smith) Melchior (Theaceae) were investigated for the first time. Of these, 19 phenolic compounds including 8 hydrolyzable tannins (1-8), 6 catechin derivatives (9-14), 3 quinic acid aromatic esters (15-17), and 2 simple phenolics (18, 19) were identified, along with caffeine (20). Their antioxidant activities were evaluated by DPPH radical scavenging and tyrosinase inhibitory assays. Moreover, the chemical composition was compared with that in the cultivated tea plant, C. sinensis var. assamica, by HPLC analysis. It was noted that C. taliensis has similar chemical features with the cultivated tea plant; that is, both of them contain rich flavan-3-ols and caffeine. In addition, there are abundant hydrolyzable tannins as specific characteristic constituents contained in the leaves of C. taliensis. Therein, 1,2-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-beta-D-glucopyranose (8), as a major compound in C. taliensis, showed remarkable antioxidant activity. The results suggested that C. taliensis could be a valuable plant resource for the production of tea.  相似文献   

12.
The antioxidant activity of pomegranate juices was evaluated by four different methods (ABTS, DPPH, DMPD, and FRAP) and compared to those of red wine and a green tea infusion. Commercial pomegranate juices showed an antioxidant activity (18-20 TEAC) three times higher than those of red wine and green tea (6-8 TEAC). The activity was higher in commercial juices extracted from whole pomegranates than in experimental juices obtained from the arils only (12-14 TEAC). HPLC-DAD and HPLC-MS analyses of the juices revealed that commercial juices contained the pomegranate tannin punicalagin (1500-1900 mg/L) while only traces of this compound were detected in the experimental juice obtained from arils in the laboratory. This shows that pomegranate industrial processing extracts some of the hydrolyzable tannins present in the fruit rind. This could account for the higher antioxidant activity of commercial juices compared to the experimental ones. In addition, anthocyanins, ellagic acid derivatives, and hydrolyzable tannins were detected and quantified in the pomegranate juices.  相似文献   

13.
The hydrothermal stability of the collagen matrixes treated with plant polyphenols (tannins) depends on not only the strength of the polyphenol-collagen interactions but also the distribution uniformity of polyphenolic molecules within the collagen fibrils. Traditional methods of uniformity tests rely heavily on the expertise of workers and are thus subjective. This paper describes a differential scanning calorimetry (DSC) study of the sheepskin collagen samples treated with hydrolyzable tannins, including two commercial tannins' extracts (chestnut and valonea), two pure ellagitannins (vescalagin and castalagin), and six synthetic gallotannins (di-galloyl-ethylene glycol (DGE), tri-galloyl-glycerol, tetra-galloyl-meso-erythritol, penta-galloyl-adonitol, penta-galloyl-glucose, and hexa-galloyl-ducitol). The collagen sample without polyphenol treatment and the sample treated with DGE showed a single sharp peak in their DSC thermogram with a full peak width at half height (fwhh) of 3-4 degrees C. The samples treated with other tannins all showed multiple peak DSC profiles with the fwhh of each peak at about 3-4 degrees C. These multiple peak profiles imply that in these polyphenol-treated samples, there is a distribution of collagen molecules having different hydrothermal stability. The results have demonstrated that DSC offers an objective method to detect the stability heterogeneity of collagen matrixes in the solid state, providing a useful tool for the leather industry to evaluate the uniformity of leather tanning.  相似文献   

14.
Red koji has been recognized as a cholesterol-lowering diet supplement because of it contains fungi metabolites, monacolins, which reduce cholesterol synthesis by inhibiting HMG-CoA reductase. In this study, water extracts of red koji were loaded onto a C(18) cartridge, and the acetonitrile eluate was collected as test fraction. Red koji water extracts and its C(18) cartridge acetonitrile eluent had total phenols concentrations of 5.57 and 1.89 mg/g of red koji and condensed tannins concentrations of 2.71 and 1.20 mg/g of red koji, respectively. Both exhibited an antioxidant activity and an inhibitory activity to mushroom tyrosinase. The higher antioxidant activity of the red koji acetonitrile eluent was due to the existence of a high percentage of condensed tannins. The results from the kinetic study for inhibition of mushroom tyrosinase by red koji extracts showed that the compounds in the extracts competitively inhibited the oxidation of tyrosine catalyzed by mushroom tyrosinase with an ID(50) of 5.57 mg/mL.  相似文献   

15.
Tulare walnut, a cultivar highly resistant to aflatoxin formation, was investigated for endogenous phytochemical constituents capable of inhibiting aflatoxigenesis in Aspergillus flavus. The activity, located entirely in the pellicle (seed coat), was extractable to various degrees with polar solvents, although some activity remained unextractable, indicating that the bioactivity resided in a complex of hydrolyzable tannins. These tannins can be hydrolyzed by a fungal tannase present in A. flavus, yielding gallic acid and ellagic acid, testing of which showed that only gallic acid had potent inhibitory activity toward aflatoxin biosynthesis. Comparison of the gallic and ellagic acid content in the pellicle of Tulare and Chico cultivars, over the 2002 and 2003 growing seasons, showed that the gallic acid content increased rapidly with maturation of the nut and was 1.5-2 times higher in Tulare than in Chico. Gallic acid content in the pellicle at maturity of a series of commercial English walnut cultivars, and two black walnut species, was determined as an indicator of potential for inhibition of aflatoxigenesis. Regulation of gallic acid levels in the hydrolyzable tannins of walnuts by conventional breeding or genetic manipulation has the potential to provide new cultivars with high resistance to aflatoxigenesis.  相似文献   

16.
Some tannins, plant-derived polyphenolic compounds, can rapidly affix to soil and affect the solubility of labile soil-N but a more complete understanding of the nature and persistence of tannin-soil interactions is needed. Forest and pasture soils from two depths were treated for 1 h with cool (23 °C) water (Control) or solutions that added 10 mg g−1 soil tannic acid (TA), an imprecisely defined mixture of galloyl esters, gallic acid (GA), a phenol, or β-1,2,3,4,6-penta-O-galloyl-d-glucose (PGG), a hydrolyzable tannin. Soluble-C and N, in treatment supernatants, was measured to uncover evidence for sorption of treatments or effects on extraction of soil-N. Significant amounts of soluble-C, added with treatments, were not recovered in supernatants indicating sorption of nearly 90% of the PGG-C, about 75% of the TA-C but less than 25% of the GA-C in surface soil. Disappearance of soluble-C from treatment supernatants was accompanied by a corresponding reduction of total phenolic content. Treatments added a negligible amount of N to soil; but while PGG and TA reduced soluble-N, in extracts from surface soil, GA had little effect. Soluble-N in extracts was composed mainly of organic-N. Effects of tannins persisted in surface soil through 12 washings with hot water (80 °C), suggesting the formation of stable complexes with soil. The proportion of initial soil-C and N remaining after all extractions was higher in samples treated with PGG or TA than either the Control or GA treatment. We conclude PGG readily sorbs to soil and reduces the solubility of soil organic-N unlike GA, its simple monomeric constituent. These differences could be especially important near the surface where quantities of soil organic matter and biological activity are comparatively large and most easily affected by management.  相似文献   

17.
Phenolic compounds produced by plants enter the soil by leaching and litter decomposition. The goal of this work is to determine the effect of phenolic compounds on solubility of plant macronutrients and metals in agroforestry systems. Soils from forest and pasture systems were repeatedly extracted with water (control) or phenolic solutions and then compared to a Mehlich 3 reference. The phenolics were aqueous solutions of tannic acid or β –1,2,3,4,6‐penta‐O‐galloyl‐D‐glucose (PGG) (hydrolyzable tannins), procyanidin (condensed tannin), or small phenolics catechin, gallic acid, or methyl gallate. The concentration of the macronutrients Ca, Mg, K, P, and S, and the metals Fe, Al, Mn, and Zn in the supernatants was determined by inductively‐coupled plasma spectroscopy. Cumulative extraction of macronutrients was generally similar to or less than the amount obtained by the Mehlich 3 extraction with the lowest recoveries obtained with the water control, PGG, and procyanidin. Metals tended to be somewhat more extractable from forest soil, especially with gallic acid, tannic acid or PGG treatments. Three mechanisms affected extraction of analytes by phenol‐containing solutions: (1) pH‐driven dissolution (Ca and Mg), (2) chelation of the metal (Al) by the polyphenol, or (3) reduction of the metal (Fe and Mn). Relatively low extraction of nutrients by some polyphenols is attributed to the tendency of some phenols to sorb to soil. This study demonstrates that tannins and related compounds change the solubility of macronutrients and metals in soils by a complex process that is not easily predictable from simple chemical properties of the phenolics.  相似文献   

18.
Isothermal titration microcalorimetry (ITC) has been applied to investigate protein-tannin interactions. Two hydrolyzable tannins were studied, namely myrabolan and tara tannins, for their interaction with bovine serum albumin (BSA), a model globular protein, and gelatin, a model proline-rich random coil protein. Calorimetry data indicate that protein-tannin interaction mechanisms are dependent upon the nature of the protein involved. Tannins apparently interact nonspecifically with the globular BSA, leading to binding saturation at estimated tannin/BSA molar ratios of 48:1 for tara- and 178:1 for myrabolan tannins. Tannins bind to the random coil protein gelatin by a two-stage mechanism. The energetics of the first stage show evidence for cooperative binding of tannins to the protein, while the second stage indicates gradual saturation of binding sites as observed for interaction with BSA. The structure and flexibility of the tannins themselves alters the stoichiometry of the interaction, but does not appear to have any significant affect on the overall binding mechanism observed. This study demonstrates the potential of ITC for providing an insight into the nature of protein-tannin interactions.  相似文献   

19.
Tannins are purported to be an important factor controlling nitrogen cycling in forest ecosystems, and the ability of tannins to bind proteins in protein-tannin complexes is thought to be the primary mechanism responsible for these effects. In this study, we examined the influence of well-characterized tannins purified from five different plant species on C and N dynamics of a forest soil A horizon. Tannic acid, a commonly used and commercially available hydrolyzable tannin (HT), and cellulose were also included for comparison. With the exception of tannins from huckleberry (Vaccinium ovatum), the amendments increased respiration 1.4-4.0 fold, indicating that they were acting as a microbial C source. Tannic acid was significantly more labile than the five purified tannins examined in this study. All treatments decreased net N mineralization substantially, through greater N immobilization and decreased mineralization. The six tannins inhibited gross ammonification rates significantly more than cellulose. This suggests that added tannins had effects in addition to serving as an alternative C source. Tannins purified from Bishop pine (Pinus muricata) were the only tannins that significantly inhibited potential gross nitrification rates, however, rates were low even in the control soil making it difficult to detect any inhibition. Differences in tannin structure such as condensed versus HTs and the hydroxylation pattern of the condensed tannin B-ring likely explain differences observed among the tannin treatments. Contrary to other studies, we did not find that condensed tannins were more labile and less inhibitory than HTs, nor that shorter chained tannins were more labile than longer chained tannins. In addition to supporting the hypothesis that reduced N availability in the presence of tannins is caused by complexation reactions, our data suggests tannins act as a labile C source leading to increased N immobilization.  相似文献   

20.
Flavonoids and hydrolyzable tannins isolated from Pelargonium reniforme were evaluated for their antioxidant ability using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical generating system and a luminol-dependent chemiluminescence assay. In both assays, the polyphenols tested showed higher radical scavenging activities than the reference antioxidant, ascorbic acid (IC50 2.6-32.9 microM vs 40.9 microM in the DPPH test, and 2-25 times stronger effects in the chemiluminescence assay). A comparison of the flavonoids and the tannins showed that the latter have more potential than the former. Structural requirements for marked antioxidant activities of hydrolyzable tannins were the presence of galloyl and hexahydroxydiphenoyl groups, and apparently carbonyl (ester) functionalities in oxidatively modified dehydrohexa-hydroxydiphenoyl moieties. For flavonoids, it appeared that a catechol (3',4'-dihydroxy) element in the B-ring were important determinants and that O-glycosides were more effective than flavone-based C-glucosyls. Conspicuously, introduction of a galloyl group significantly enhanced their potentials. The demonstrated marked antioxidant effects of the polyphenols provide a clue for beneficial effects of P. reniforme in the treatment of liver disorders among several ethnic groups in areas of southern Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号