首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flying start, then a slow slip   总被引:1,自引:0,他引:1  
Bilham R 《Science (New York, N.Y.)》2005,308(5725):1126-1127
The human tragedy caused by the Sumatra-Andaman earthquake (moment magnitude 9.3) on 26 December 2004 and its companion Nias earthquake (moment magnitude 8.7) on 28 March 2005 is difficult to comprehend. These earthquakes, the largest in 40 years, have also left seismologists searching for the words and tools to describe the enormity of the geological processes involved. Four papers in this issue discuss aspects of a rupture process of surprising complexity, the first such event to test the sensitivity and range of many new technologies. A surprising feature of the earthquake is that after the initial rapid rupture, subsequent slip of the plate interface occurred with decreasing speed toward the north.  相似文献   

2.
3.
The magnitude 7.3 Landers earthquake of 28 June 1992 triggered a remarkably sudden and widespread increase in earthquake activity across much of the western United States. The triggered earthquakes, which occurred at distances up to 1250 kilometers (17 source dimensions) from the Landers mainshock, were confined to areas of persistent seismicity and strike-slip to normal faulting. Many of the triggered areas also are sites of geothermal and recent volcanic activity. Static stress changes calculated for elastic models of the earthquake appear to be too small to have caused the triggering. The most promising explanations involve nonlinear interactions between large dynamic strains accompanying seismic waves from the mainshock and crustal fluids (perhaps including crustal magma).  相似文献   

4.
The Morgan Hill, California, earthquake (magnitude 6.1) of 24 April 1984 ruptured a 30-kilometer-long segment of the Calaveras fault zone to the east of San Jose. Although it was recognized in 1980 that an earthquake of magnitude 6 occurred on this segment in 1911 and that a repeat of this event might reasonably be expected, no short-term precursors were noted and so the time of the 1984 earthquake was not predicted. Unilateral rupture propagation toward the south-southeast and an energetic late source of seismic radiation located near the southeast end of the rupture zone contributed to the highly focused pattern of strong motion, including an exceptionally large horizontal acceleration of 1.29g at a site on a dam abutment near the southeast end of the rupture zone.  相似文献   

5.
The parkfield, california, earthquake prediction experiment   总被引:1,自引:0,他引:1  
Five moderate (magnitude 6) earthquakes with similar features have occurred on the Parkfield section of the San Andreas fault in central California since 1857. The next moderate Parkfield earthquake is expected to occur before 1993. The Parkfield prediction experiment is designed to monitor the details of the final stages of the earthquake preparation process; observations and reports of seismicity and aseismic slip associated with the last moderate Parkfield earthquake in 1966 constitute much of the basis of the design of the experiment.  相似文献   

6.
The Landers earthquake, which had a moment magnitude (M(w)) of 7.3, was the largest earthquake to strike the contiguous United States in 40 years. This earthquake resulted from the rupture of five major and many minor right-lateral faults near the southern end of the eastern California shear zone, just north of the San Andreas fault. Its M(w) 6.1 preshock and M(w) 6.2 aftershock had their own aftershocks and foreshocks. Surficial geological observations are consistent with local and far-field seismologic observations of the earthquake. Large surficial offsets (as great as 6 meters) and a relatively short rupture length (85 kilometers) are consistent with seismological calculations of a high stress drop (200 bars), which is in turn consistent with an apparently long recurrence interval for these faults.  相似文献   

7.
Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude 相似文献   

8.
The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.  相似文献   

9.
Two years of local earthquake, temperature, and rainfall data taken near a tiltmeter site were used in a study of the numerical relation between these phenomena and the recorded tilt response. A least-squares shaping and predictive error filter approach was used. The relations were ranked in part according to the root mean square (r.m.s.) error of fit across the entire sample space. The tilt data with an annual range of tilt of approximately 10 microradians were fitted to the combined weather data of temperature and rainfall with a 0.75-microradian r.m.s. error. The best fit of earthquakes to these same tilt data is the subclass of events with magnitude (M) > 2.5 within 30 kilometers of the tilt site. The filter that mapped earthquakes to tilt yielded a 1.03-microradian r.m.s. error. The most unusual tilt anomaly over the entire 2-year period has the best fit of rainfall to the data for any single month of the entire data set. This unusual anomaly was the basis of an erroneously predicted earthquake (M approximately 5). These data indicate that if there are premonitory earthquake signals, they are buried in local meteorlogical noise. Separating an earthquake anomaly from the response to surface phenomena becomes more difficult as the earthquake anomaly lead time approaches the rise time of the soil to weather and seasonal variations.  相似文献   

10.
Precursory chemical changes in ground water: kobe earthquake, Japan   总被引:1,自引:0,他引:1  
Chloride (Cl(-)) and sulfate (SO(4)(2-)) ion concentrations of ground water issuing from two wells located near the epicenter of the Kobe earthquake in Japan fluctuated before the disastrous magnitude 7.2 event on 17 January 1995. The samples measured were pumped ground water packed in bottles and distributed in the domestic market as drinking water from 1993 to April 1995. Analytical results demonstrate that Cl(-)and SO(4)(2-) concentrations increased steadily from August 1994 to just before the earthquake. Water sampled after the earthquake showed much higher Cl(-) and SO(4)(2-) concentrations. The precursory changes in chemical composition may reflect the preparation stage of a large earthquake.  相似文献   

11.
Low-frequency spectra for the 1989 Macquarie Ridge earthquake (magnitude 8.2) show an amplitude increase and a phase-delay decrease below 6 millihertz that require a short-term slow precursor. This earthquake can be modeled as a compound event in which a fast-rupturing, ordinary earthquake was initiated by an episode of slow, smooth deformation that began more than 100 seconds before the main shock. The moment released in the slow precursor was large, about 3 x 10(20) newton-meters, equivalent to an event of magnitude 7.6. The data are consistent with the precursor being generated in a region of the oceanic upper mantle below the main rupture.  相似文献   

12.
Aftershocks of the 29 November 1978 Oaxaca, Mexico, earthquake (surface-wave magnitude Ms = 7.8) define a rupture area of about 6000 square kilometers along the boundary of the Cocos sea-plate subduction. This area had not ruptured in a large (Ms >/= 7), shallow earthquake since the years 1928 and 1931 and had been designated a seismic "gap." The region has also been seismically quiet for small to moderate (M >/= 4), shallow (depth 相似文献   

13.
《Science (New York, N.Y.)》1994,266(5184):389-397
The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.  相似文献   

14.
Peltzer G  Rosen P 《Science (New York, N.Y.)》1995,268(5215):1333-1336
Satellite synthetic aperture radar (SAR) interferometry shows that the magnitude 6.1 Eureka Valley earthquake of 17 May 1993 produced an elongated subsidence basin oriented north-northwest, parallel to the trend defined by the aftershock distribution, whereas the source mechanism of the earthquake implies a north-northeast-striking normal fault. The +/-3-millimeter accuracy of the radar-observed displacement map over short spatial scales allowed identification of the main surface rupture associated with the event. These observations suggest that the rupture began at depth and propagated diagonally upward and southward on a west-dipping, north-northeast fault plane, reactivating the largest escarpment in the Saline Range.  相似文献   

15.
It is necessary to understand ground-motion amplification by sediment, defined as the ratio of ground motions at sediment sites to those at rock sites, to predict seismic loadings for earthquake engineering. At sediment sites, observed weak-motion amplifications from magnitude 3 to 4 aftershocks of the 1994 Northridge earthquake were twice as large as magnitude 6.7 mainshock amplifications. Amplitude-dependent (nonlinear) amplification by sediment is one explanation. However, earthquake simulations with empirical impulse responses and elastic finite-difference calculations with weakly heterogeneous, random three-dimensional (3D) crustal velocity variations show that linear wave propagation can explain observed (apparently nonlinear) sediment responses. Random 3D velocity variations also reproduce the observed log-normal dispersion of peak ground motions. Deterministic wave propagation models are not adequate to quantify the scaling and dispersion of near-source ground motions.  相似文献   

16.
Ryall A  Ryall F 《Science (New York, N.Y.)》1983,219(4591):1432-1433
Intensive microearthquake swarms with the appearance of volcanic tremor have been observed in the southwest part of Long Valley caldera, southeastern California. This activity, possibly associated with magma injection, began 6 weeks after several strong (magnitude 6+) earthquakes in an area south of the caldera and has continued sporadically to the present time. The earthquake sequence and magmatic activity are part of a broad increase in tectonic activity in a 15,000-square-kilometer region surrounding the "White Mountains seismic gap," an area with high potential for the next major earthquake in the western Great Basin.  相似文献   

17.
Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra   总被引:1,自引:0,他引:1  
Continuously recording Global Positioning System stations near the 28 March 2005 rupture of the Sunda megathrust [moment magnitude (Mw) 8.7] show that the earthquake triggered aseismic frictional afterslip on the subduction megathrust, with a major fraction of this slip in the up-dip direction from the main rupture. Eleven months after the main shock, afterslip continues at rates several times the average interseismic rate, resulting in deformation equivalent to at least a M(w) 8.2 earthquake. In general, along-strike variations in frictional behavior appear to persist over multiple earthquake cycles. Aftershocks cluster along the boundary between the region of coseismic slip and the up-dip creeping zone. We observe that the cumulative number of aftershocks increases linearly with postseismic displacements; this finding suggests that the temporal evolution of aftershocks is governed by afterslip.  相似文献   

18.
Conspicuous changes in gas composition were observed at a fumarole and a mineral spring just before the occurrence of an inland earthquake (magnitude, 6.8) in central Japan in September 1984; the fumarole and spring were 9 and 50 kilometers, respectively, from the earthquake's epicenter. Deep-seated fluids emitted as a result of the compressional stress of the earth tide had been observed previously at this mineral spring and at a lava lake in Hawaii. By analogy, the gas anomaly observed before the earthquake in Japan probably resulted from deepseated fluids being squeezed to the surface by the tectonic stress that caused the earthquake.  相似文献   

19.
Segall P  Harris R 《Science (New York, N.Y.)》1986,233(4771):1409-1413
A network of geodetic lines spanning the San Andreas fault near the rupture zone of the 1966 Parkfield, California, earthquake (magnitude M = 6) has been repeatedly surveyed since 1959. In the study reported here the average rates of line-length change since 1966 were inverted to determine the distribution of interseismic slip rate on the fault. These results indicate that the Parkfield rupture surface has not slipped significantly since 1966. Comparison of the geodetically determined seismic moment of the 1966 earthquake with the interseismic slip-deficit rate suggests that the strain released by the latest shock will most likely be restored between 1984 and 1989, although this may not occur until 1995. These results lend independent support to the earlier forecast of an M = 6 earthquake near Parkfield within 5 years of 1988.  相似文献   

20.
A delay in the arrival times of compressional or P waves of 0.15 to 0.2 second from deep distant earthquakes has been detected at the closest seismograph station to the 20 November 1975 earthquake at Kalapana, Hawaii (surface-wave magnitude MS = 7.2). This delay appeared approximately 3.5 years prior to the quake, and travel times returned to normal several months before it. The P-wave arrival times at other nearby stations remained constant during this period, an indication that the decreased velocity implied by the delay in travel time was associated with this normal-faulting earthquake and was confined to distances less than 20 kilometers from the epicenter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号