首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
通过系统辨识实验得到车辆转向系统动态特性方程,结合车辆预瞄运动学模型和二自由度转向动力学模型建立基于视觉预瞄的转向动力学控制数学模型,根据线性二次型最优控制理论设计的最优控制器能稳定跟踪直线路径。采用模糊控制快速跟踪弧线导航路径,结合车辆转向系统当前状态和最快动态响应能力建立车辆弧线跟踪时的变结构控制输出集。针对JLUIV-V型区域交通智能车辆部分状态变量的不可测性,根据Kalman滤波理论构造状态观测器。仿真和试验结果表明:该控制技术在区域交通智能车辆户外路径跟踪过程中平稳、可靠。  相似文献   

2.
基于改进粒子群优化模糊控制的农业车辆导航系统   总被引:9,自引:0,他引:9  
以采用机器视觉导航的农业车辆为研究对象,提出了一种基于改进粒子群优化自适应模糊控制的农机导航控制方法。建立了车辆2自由度转向模型和视觉预瞄模型,对车辆横向控制进行状态描述。对粒子群算法进行了改进,提高了粒子群算法的收敛速度,降低了算法计算时间。构建了自适应模糊控制器,在模糊控制器中引入加权因子,以横向偏差和航向偏差时间误差绝对值积分(ITAE)之和作为系统目标函数,通过粒子群算法计算得到最优加权因子,进而调整控制规则实现导航车辆的自适应控制。仿真和导航试验结果表明,提出的控制方法可以迅速消除横向误差,具有超调量小、响应速度快等特点,既保留了模糊控制算法的优点,又提高了系统控制品质。在相同参数条件下,与常规模糊控制相比,改进模糊控制算法导航精度显著提高。当车速为0.8/s时,直线路径跟踪最大横向偏差不超过4.2 cm,曲线路径跟踪最大横向偏差不超过5.9 cm,能够较好地满足农业车辆导航作业要求。  相似文献   

3.
考虑控制时滞的车辆主动悬架随机预瞄控制   总被引:1,自引:0,他引:1  
采用随机预瞄控制策略对存在控制时滞的车辆主动悬架系统进行了研究。路面不平度被看作过滤白噪声随机过程,通过安装在车辆前部的预瞄传感器来量测车轮前方一定距离的路面变化信息。在控制器设计中,采用包含车身加速度、悬架动行程、轮胎动位移和控制力加权的连续形式性能指标,假定只有部分状态变量可以量测,而且量测噪声不能忽略。通过将连续形式的状态方程和性能指标进行离散化,并对状态向量和量测向量进行增维,这种考虑控制时滞的基于输出反馈的随机最优预瞄控制问题可以转换为不显含时滞和预瞄时间的标准LQG控制问题。数值仿真结果表明,对存在时滞的车辆悬架系统进行预瞄控制器设计时,时滞量应该得到重视,尤其是在时滞量较大时。如用不考虑时滞时所设计的控制器对存在时滞的车辆悬架系统进行控制,悬架系统可能发生不稳定现象,而且预瞄时间的增长还可能导致控制效果的恶化。  相似文献   

4.
智能车辆自主导航神经网络控制器设计   总被引:2,自引:2,他引:0  
针对自主设计、制造的智能车辆,提出了设计新的神经网络控制器来实现对车辆导航路径的自主跟踪控制。分析了神经网络导向控制器的设计方法,选择了神经网络导向控制器的输入、输出变量,并建立了神经网络导向控制器的结构。在此基础上,采用人工驾车采集的数据对控制器进行了训练。完成了计算机仿真和实际路径跟踪控制试验,试验结果表明该神经网络控制器能够很好地实现对导航路径的自主跟踪控制。  相似文献   

5.
水稻生产田间管理机械自动跟踪水稻行是提高水稻生产田间管理自动化程度的关键。为避免田间管理机械碾压水稻行,本文融合机器视觉和2D激光雷达信息识别水稻行,并进行水稻行跟踪导航控制。首先分别利用机器视觉和激光雷达提取水稻行中心点,并统一空间坐标和目标区域,再采用稳健回归算法拟合水稻行中心线,获取导航基准线并计算出导航参数。然后设计了预瞄追踪PID控制器,最后搭建了水稻行跟踪导航试验平台并进行试验研究。试验结果表明,跟踪模拟水稻行的曲线导航试验标准差为27.51 mm;跟踪机械移载的水稻行导航试验横向偏差标准差为43.03 mm,航向偏差标准差为3.38°。  相似文献   

6.
智能车辆换道与超车轨迹跟踪控制   总被引:3,自引:0,他引:3  
智能车辆换道过程中须同时考虑车辆的横向控制和纵向控制,为实现智能车辆对预定轨迹的稳定跟踪,根据智能车辆的车辆运动学简化模型,建立基于刚体的车辆模型.选取车辆当前位姿和参考位姿构造动态的位姿误差.建立智能车辆轨迹跟踪闭环控制系统的状态空间数学模型.基于Backstepping控制算法选取Lyapunov函数设计智能车辆换道及超车轨迹跟踪控制器.仿真和试验结果表明,所设计的控制器能够快速跟踪参考轨迹.控制器在智能车辆换道及超车控制过程中平稳、可靠.  相似文献   

7.
为降低履带式联合收获机导航路径跟踪转向控制频率和提高控制系统的稳定性,提出了一种预瞄-切线局部跟踪路径动态规划算法。规划的局部跟踪路径由平滑连接的两段弧线组成,第1段圆弧由收获机当前位姿与1/2横向偏差线上的预瞄点确定,第2段圆弧由收获机在1/2横向偏差线的实际位姿与期望路径的几何关系确定;基于收获机实际转向运动特性建立了相适应的转向控制模型,左转、右转控制模型拟合的决定系数R2分别为0.978、0.980。田间直线导航跟踪对比试验表明:当前进速度为0.4、0.8m/s时,横向偏差的标准差分别为0.0489、0.0507m,航向偏差的标准差分别为3.94°、4.66°,转向控制次数分别为19、12次;与传统纯追踪算法相比,横向偏差的标准差分别减小19.04%、31.30%,航向偏差的标准差分别减小25.94%、9.16%,转向控制次数分别减少47.22%、42.86%。本研究可为履带式农机车辆导航控制器设计提供参考。  相似文献   

8.
李进  陈无畏 《农业机械学报》2012,43(6):19-24,152
为提高导航路径识别的鲁棒性和实时性,采用了分区阈值二值化、噪声点搜索及滤波等图像处理方法,并对导航路径进行分区逐段识别;在路径跟踪方面,在获取的导航路径图像中选取远端路径和近端路径,以远端路径和近端路径的方位偏差量作为确定目标路径的依据,使提取的导航参数能适应导航路径的变化。根据四轮智能车辆模型进行路径跟踪仿真计算。在此基础上,采用两块数字信号处理器,对基于路径导航的视觉智能车辆进行了设计和试验验证。试验结果表明采用该方法设计的智能车辆具有较好的路径识别和跟踪控制效果。  相似文献   

9.
路径跟踪是自动驾驶汽车的核心技术,许多控制算法已被广泛应用于路径跟踪任务。为了提高路径跟踪在不同速度下的自适应能力,提出了一种结合预测轨迹和模糊控制的自适应Stanley路径跟踪控制器。参考人类驾驶员经验,模糊控制器根据车辆的横纵向速度实时调整预瞄距离,预测轨迹根据纵向速度实时调整预测时间进行提前控制。最后设计了自适应邻域的粒子群算法来对控制器参数进行优化。通过Simulink-CarSim的联合仿真验证,证明自适应Stanley控制器可以显著提高对不同速度的适应性和跟踪性能。  相似文献   

10.
为提高农机路径跟踪时的精确性,提出了一种基于滑模变结构的路径跟踪控制算法,并运用滑模变结构算法设计了自动驾驶控制器,通过简化农机车辆模型与线性化二自由度模型,求解出滑模变结构控制器的控制规律。通过在Simulink与CarSim中建立联合仿真模型验证控制器的可行性,结果表明:基于滑模变结构的农机路径跟踪控制算法的车辆作业转弯时横向偏差可控制在0.45m之内,实际行走路径与预设路径基本吻合,较加入预瞄模块的PID控制算法控制精度得到提高,满足自动驾驶农机路径跟踪精度及实时性的需求,可为农机路径跟踪控制的研究提供参考。  相似文献   

11.
为解决由于行驶环境较大的不确定性影响车辆横向运动控制系统对于车道中心线的跟随性能问题,通过状态预测方法,结合最优控制策略设计了车辆横向控制算法。本文通过基于状态预测的横向车辆模型的建立和控制器的设计,预测了车-路偏差,提高了控制系统的控制精度。试验结果说明,采用本文建立的基于状态预测的最优控制算法能够有效降低被控车辆在行使环境变化范围较大工况下的车-路偏移量,在该工况下系统具有良好的跟随性能。  相似文献   

12.
插秧机导航路径跟踪改进纯追踪算法   总被引:11,自引:0,他引:11  
插秧机田间行驶路径包括直线作业段和地头曲线转弯段,因此需要对传统的纯追踪算法进行改进,使其满足曲线路径跟踪。以约翰迪尔Starfire3000型接收机、GS2630型显示器和ATU200型电动方向盘为主要硬件设备,针对给定的曲线路径,提出了一种路径跟踪控制算法,并通过模型仿真和田间试验相结合的方法,对该导航控制算法进行了验证分析。该导航控制算法首先根据车辆速度和路径弯曲程度来动态调整前视距离,其次在利用预见控制求得车辆目标点的基础上,利用改进的纯追踪算法设计控制器,最后按照插秧机作业时的路径进行仿真和试验。试验结果表明,车辆以1 m/s的速度行驶且在转弯半径为0.9 m时,最大跟踪误差可控制在0.159 m以内。  相似文献   

13.
基于动力学模型的自动引导车智能导航控制研究   总被引:7,自引:0,他引:7  
提出了一种基于动力学模型的智能控制方法,将导航系统得到的信息输入智能控制器,由它输出自动引导车动力学模型所需要的控制量。因为该控制器记忆了自动引导车的动力学特性,所以使用此智能控制器的自动引导车能够较平稳地避开动态和静态障碍物。仿真实验结果表明,装有此系统的自动引导车能有效避开动态和静态障碍物,安全、可靠、平稳地驶向指定的目标,从而验证了本文提出的方法是正确和有效的。  相似文献   

14.
基于机器视觉的农业车辆路径跟踪   总被引:2,自引:0,他引:2  
简述了一种基于机器视觉的农业车辆自动导航系统.提出了直线检测算法,显著降低了内存需求和时间消耗;以横向偏差和航向偏差作为输入量,构建了二维模糊决策器,对期望前轮转角进行决策;构建了基于PID的转向控制器,实现前轮转向控制,并采用简化的两轮车运动学模型进行了仿真.仿真和实验结果表明,该导航系统可以有效地实现直线路径跟踪.当车速为0.3m/s时,最大跟踪横向偏差不超过5cm,平均偏差不超过2cm;当车速为0.6m/s时,最大跟踪横向偏差不超过8cm,平均偏差不超过4cm.  相似文献   

15.
针对目前车道保持系统中车速变化较大时,被控车辆偏移量较大的问题,通过状态预测方法,设计了用于单目视觉车道保持系统的状态预测模型.单目摄像头识别预瞄点处车一路偏差,考虑车辆经过预瞄时间后的状态变化量,设计基于车辆状态的预瞄点处车一路偏差模型.通过仿真与实车试验验证,说明提出的车辆预测模型能够准确预测出预瞄点处的车一路偏差,减小预测模型误差,提高车道保持系统控制精度和准确性,一般工况下,能够使车-路偏移量控制在10 cm以下.与目前采用的简化车路偏差模型相比较,能够提高被控车辆对于车道中心线的跟随性能.  相似文献   

16.
农机自动导航控制决策方法与软件系统   总被引:2,自引:0,他引:2  
魏爽  季宇寒  曹如月  李世超  张漫  李寒 《农业机械学报》2017,48(S1):30-34,171
为实现农机自动导航控制,兼顾系统成本和作业效率,对农机自动导航控制决策方法进行了研究,并设计开发了一种导航软件系统。首先,系统根据获取的农田边界、农田形状及作业需求进行路径规划。其次,采用简化二轮车运动学模型,采用模糊控制进行导航决策控制,模糊控制器的输入参数为农机横向偏差和航向偏差,输出参数为前轮转角信息。最后,导航系统根据转角信息,由PLC控制器控制方向盘转动,从而实现导航控制。导航软件采用模块化设计思想,由串口数据通讯、数据分析与处理、数据与图形显示和数据存储4个模块构成,基于C++/MFC语言编写实现。系统还可在导航结束后,对导航偏差数据进行保存,便于试验后进行误差分析。试验结果表明:农机自动导航控制决策方法可以实现较好的控制精度,软件系统界面友好、通讯稳定、功能较为齐全,满足农机田间自动导航作业的需求。  相似文献   

17.
农业机械(农机)运动学模型的精度影响导航控制精度和稳定性,为提高农机路径跟踪控制器精度,提出了一种基于运动特性的农机导航控制器设计方法。该方法主要是对传统二轮车运动学模型建模方法进行改进,针对传统二轮车模型小角度近似替代(方向角等于横摆角)的缺点,采用加入侧偏角的方法优化农机运动学建模过程。采用相同的控制方法(状态反馈控制)和不同的运动学模型设计控制器进行对照实验。直线路径跟踪时,侧偏角对模型精度影响较小,引入侧偏角可以在一定程度上影响农机的跟踪精度;曲线路径跟踪时,侧偏角对方向角的变化影响较大,可以大幅影响路径跟踪精度。以安装有自动导航设备的拖拉机为实验平台进行实地实验,结果表明:直线行驶的最大横向误差平均值为0.0454m,绝对平均误差平均值为0.0149m,标准差平均值为0.0119m;曲线行驶的最大横向误差平均值为0.1613m,绝对平均误差平均值为0.0688m,标准差平均值为0.0434m;基于本文提出的优化模型设计的路径跟踪控制器对直线路径跟踪有一定提升,对曲线跟踪精度有大幅提升。  相似文献   

18.
引入分层控制概念设计了横摆力矩控制和滑移率控制相结合的车辆稳定性控制系统.建立了侧偏角和横摆角速度具有最佳输出响应的车辆理想模型,采用前馈与反馈控制相结合跟踪理想模型的控制策略,基于最优控制理论设计横摆力矩控制器.通过设计理想滑移率分配模块确定下层滑移率控制器理想值,基于模糊控制理论设计滑移率控制器.在Matlab/Simulink平台上建立8自由度非线性车辆模型,分别在低附着和高附着路面条件下进行了仿真分析.结果表明:采用分层控制可以很好地实现车辆所需横摆力矩,有效地控制车辆质心侧偏角和横摆角速度跟踪理想模型,瞬态及稳态响应良好,改善了车辆操纵稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号