首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Improvement of Salt Tolerance in Maize by Selection and Breeding   总被引:3,自引:0,他引:3  
M. Ashrai  T. McNelly   《Plant Breeding》1990,104(2):101-107
Genetic variation for NaCl tolerance at the vegetative stage was assessed in nutrient solution culture in maize (Zea mays L.). Shoot growth, and plant fresh and dry weight of the two cultivars, Akbar and Sadat were severely reduced after three weeks growth in 120, 150, and ISO mol m?3 NaCl. There was however considerable variability between seedlings. Ten-thousands seeds of cv. Akbar were therefore screened for shoot growth at 180 mol m?3 NaCl after four weeks growth in sand culture. A selection intensity of 0.42 % was achieved. Eighteen selected plants were polycrossed for estimation of narrow-sense heritability based on female parent-progeny regression. A narrow-sense heritability estimate of 0.54 was obtained. The progeny of the salt-tolerant selection line and selfed progeny plants of the unselccted control lines of cvs Akbar and Sadat were grown for six weeks in 0, 30, 60, 90, 120, 150, and 180 mol m?3 NaCl in sand culture. The tolerant line produced significantly greater fresh and dry biomass and had greater shoot length than the unselected cv. Akbar, but the selection line derived from cv. Akbar was equal to the salt tolerant cv. Sadat in all the growth parameters measured. These data suggest that in maize, improvement in salt tolerance could be obtained through further cycles of selection and breeding.  相似文献   

2.
Sixty Nicotiana species were examined for tolerance against various osmotica for seed germination and seedling growth in vitro. The species showed a wide variety of tolerance, and based on the results of the in vitro tests, 31 species were selected and further evaluated for salt and drought tolerance in a glasshouse. The degrees of tolerance of germination among the 57 species toward NaCl were approximately related to those toward mannitol, indicating that the osmolarity plays a majorrole in seed germination. However, the responses during the seedling growth differed in NaCl and mannitol or drought, and there was no correlation between salt and drought tolerance. Based on the responses in vitro and in the glasshouse, N. paniculata and N. excelsior were selected as the salt tolerant species, and N. arentsii as the salt sensitive species. The degrees of accumulation of dry matter and of Na+ in the leaves were different in the two tolerant species; during NaCl treatment, N. paniculata and N. arentsii accumulated less dry matter relative to the control plants than N. excelsior, and N. paniculata accumulated more Na+ in its leaves than N. excelsior and N. arentsii. It is assumed that the two salt tolerant species have different mechanisms for tolerance to the salt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Assessment of tolerance to salt stress in Kenyan tomato germplasm   总被引:1,自引:0,他引:1  
Tomato is an important vegetable crop in Kenya and the development of salt tolerant cultivars would enhance its productivity in the vast marginal areas of the country. This study was aimed at determining the magnitude of genotypic variability for salt tolerance in the Kenyan tomato germplasm. Pot experiments with 22 landraces and 9 market cultivars were laid out as a two and four replicate split-plot design in glasshouse in Experiments 1 and 2, respectively. Salt treatments in Experiment 1 were 0 and 5 g NaCl kg-1 resulting into 0.5 and 9.1 dS m-1 of the soil saturation extracts, respectively. In Experiment 2 the treatments were 0, 4, and 8 g NaCl kg-1 soil corresponding to 0.5, 7.4, and 14.2 dS m-1, respectively. Data were recorded on agronomic and biochemical parameters. The germplasm showed large variation for salt tolerance. Fruit and seed production at soil salinity of 14.2 dS m-1 demonstrated that these tomatoes are fairly tolerant of NaCl. Osmotic adjustment was achieved by higher fruit electrical conductivity, brix and total titratable acidity. Low and high contents of K+, Ca2+ and Mg2+ within tomato tissues and soil, respectively, under salt treatment, confirmed competition and antagonism involving Na+ and these cations. Low Na+ and Cl- contents in the fruit at 7.4 dS m-1 revealed their exclusion and ensured production of physiologically normal seeds and nutritionally healthy fruits. Two landraces ‘Chwerotonglo’ and ‘Nyanyandogo’ were identified as salt tolerant. Comparatively, the market cultivars showed superior fruit yields despite their susceptibility to salinity. Accordingly, tolerance of landraces in combination with superior yields of the market cultivars is suitable for tomato improvement for salt tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Inter‐accession variation for salt tolerance of Panicum miliaceum (proso millet) was appraised using leaf proline content and activities of antioxidant enzymes as selection criteria. Eighteen accessions of proso millet were grown under control conditions and after 14 days subjected to saline (120 mm NaCl) stress for 4 weeks. Salt stress substantially decreased relative water content (RWC), while increased leaf free proline and malondialdehyde (MDA) and activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of all accessions of proso millet. The difference among the accessions of P. miliaceum was significant in yield as well as in the activities of antioxidant enzymes analyses. On the basis of seed yield (expressed as per cent of control), of 18 accessions, three were categorised as salt‐tolerant (008211, 008214 and 008226), seven as moderately tolerant (008210, 008213, 008216, 008220, 008222, 008223 and 008242) and eight as salt‐sensitive (008208, 008215, 008217, 008218, 008221, 008225, 008230 and 008236). Of all P. miliaceum accessions, 008211, 008226, 008215 and 008218 were relatively higher in proline, 008214 and 008221 in MDA contents, 00812, 008225, 008236, 008222 and 008242 in SOD activity and 008218, 008220, 008211 and 008226 in POD and CAT enzyme activities. Thus, because of differential response of high or low seed yielded accessions in accumulation of proline and antioxidant enzyme activities, these variables were not found effective criteria for discriminating the P. miliaceum accessions for salt tolerance.  相似文献   

5.
Assessment of salt tolerance at all growth stages is crucial to determine the overall tolerance of a crop. Salt tolerance of five tolerantILL 5845, ILL 6451, ILL 6788, ILL 6793 andILL 6796, three moderately tolerant ILL 6431. ILL 6770 andILL 6784, and three sensitiveILL 6210, ILL 6439 andILL 6778 accessions selected at the germination and seedling stages was assessed at the adult stage using sand culture sahnized with 0, 30, or 60 mol m?3 NaCl. A positive correlation was observed between degrees of salt tolerance at different growth stages in three tolerant accessionsILL 6451, ILL 6788 andILL 6793 which produced significantly higher seed yield than the other accessions. This was also affirmed in three sensitive and two moderately tolerant accessions (ILL 6770 andILL 6784) whose salt sensitivity was conferred consistently at all growth stages. In contrastILL 5845, andILL 6796 which were highly salt tolerant andILL 6431 which was moderately tolerant at the early growth stages had relatively low seed yield, hence showing a negative correlation between tolerances at different growth stages. High yielding accessionsILL 6451, ILL 6788 andILL 6793 in general, accumulated higher Na+ and higher or moderate Cl? in their shoots compared with the other accessions, thus showing a typical halophytic mechanism of salt inclusion. K/Na ratios of all the tolerant, moderately tolerant and sensitive accessions exceptILL 6784 andILL 6778 were less than 1, a suggested minimum level for normal functioning of many metabolic processes in plants. The present study shows that salt tolerance observed previously at the early growth stages is conferred at the adult stage in most of the accessions of lentil examined here; but for others in which no positive correlation was observed between different growth stages suggests that a combination of certain characters can be used as selection criterion for improving salinity tolerance in lentil through exploitation of inter- and intra-cultivar/line variation.  相似文献   

6.
Screening sorghum genotypes for salinity tolerant biomass production   总被引:1,自引:0,他引:1  
Genetic improvement of salt tolerance is of high importance due to the extent and the constant increase in salt affected areas. Sorghum [Sorghum bicolor (L.) Moench] has been considered relatively more salt tolerant than maize and has the potential as a grain and fodder crop for salt affected areas. One hundred sorghum genotypes were screened for salinity tolerance in pots containing Alfisol and initially irrigated with a 250-mM NaCl solution in a randomized block design with three replications. Subsequently 46 selected genotypes were assessed in a second trial to confirm their responses to salinity. Substantial variation in shoot biomass ratio was identified among the genotypes. The performance of genotypes was consistent across experiments. Seven salinity tolerant and ten salinity sensitive genotypes are reported. Relative shoot lengths of seedlings were genetically correlated to the shoot biomass ratios at all stages of sampling though the relationships were not close enough to use the trait as a selection criterion. In general, the whole-plant tolerance to salinity resulted in reduced shoot Na+ concentration. The K+/Na+ and Ca2+/Na+ ratios were also positively related to tolerance but with a lesser r 2. Therefore, it is concluded that genotypic diversity exists for salt tolerance biomass production and that Na+ exclusion from the shoot may be a major mechanism involved in that tolerance.  相似文献   

7.
The effects of NaCl on the growth, ion relations and physiological characteristics at early stages of growth of bread wheat (Triticum aestivum) varieties ‘Chinese Spring’ and ‘Glennson 81’, ‘Chinese Spring’ lines tetrasomic for chromosomes 5A, 2B and 5B, ‘Chinese Spring’ disomic addition lines for chromosomes 2Eb and 5Eb from Thinopyrum bessarabicum (formerly Agropyron junceum), and amphiploids between ‘Chinese Spring’ and Thinopyrum bessarabicum and ‘Chinese Spring’ and Lophopyrum elongatum (formerly Agropyron elongatum) were examined. Plants were grown in a controlled environment cabinet, in nutrient solution with or without addition of 200 mol m?3 NaCl. Growth in terms of leaf area, shoot and root weights was reduced by salt treatment. Salinity conditions gradually reduced the osmotic potential, though there was little effect on water potential. Turgor pressure was not much affected by salt. There was variation between genotypes for all the characteristics studied, especially in the extent of Na accumulation by leaves and roots. The amphiploids and 5Eb addition line accumulated the least Na in comparison with other genotypes. Generally roots accumulated lower quantities of Na than leaves. Genotype K contents were not affected by salt treatment. Stomatal conductance also declined whilst the ABA content increased in the salt treated seedlings. With respect to growth, the amphiploids and 5Eb addition line were most tolerant to salt while ‘Glennson 81’, tetrasomic 2B and tetrasomic 5B lines were most susceptible. The addition of homoeologous group 2 and 5 chromosomes reduced the tolerance to salt relative to ‘Chinese Spring’ euploid. It is concluded that chromosome 5Eb of Thinopyrum bessarabicum carries gene(s) for tolerance to salt and this tolerance may be due to the ability to exclude Na ions from the leaves and roots.  相似文献   

8.
Forty-five accessions of sunflower collected from different countries were screened for salinity tolerance after 2 weeks growth in sand culture salinized with 150 meq l?1 of NaCl2+ CaCl2 (1:1 ratio equivalent wt. basis) in half strength Hoagland's nutrient solution. The results for plant biomass of 45 accessions show that there was considerable variation in salinity tolerance. In a further greenhouse experiment, the salinity tolerance of three tolerant (HO-1, Predovik, Euroflor) and two sensitive (SMH-24, 9UO-985) lines (selected on the basis of their performance in the seedling experiment) was assessed at the adult stage to evaluate the consistency of salinity tolerance at different growth stages. All three salt tolerant accessions produced significantly greater plant biomass, seed yield and seed oil content than the salt sensitive accessions. The tolerant accessions accumulated less Cl? and more K+ in the leaves under saline conditions compared with the salt sensitive accessions. The salt tolerant accessions also maintained relatively high leaf K:Na ratio and K+ versus Na+ selectivity. Although statistically nonsignificant, all three tolerant accessions had greater soluble carbohydrates, soluble proteins, total free amino acids and proline in the leaves than the sensitive accessions. A field trial conducted in a salt-affected field confirmed the greenhouse results of the selected accessions. This study shows that salinity tolerance of sunflower does not vary with stage of plant cycle, so selection for increased salt tolerance can be carried out at the initial growth stage. Secondly, it is found that there is great variation of salt tolerance in sunflower. Low uptake of Cl?, high uptake of K+, and maintenance of high K:Na ratios and K+ versus Na+ selectivity in the leaves and possibly the accumulation of organic osmotica such as soluble carbohydrates, soluble proteins, proline and free amino acids seem to be the important components of salt tolerance in sunflower.  相似文献   

9.
Summary Embryogenic calli isolated from immature embryos of four wheat cultivars were subjected to three in vitro selection methods for salt tolerance. The effect of NaCl on the selected and unselected cell lines has been investigated. The results indicated that the relative growth rate of callus decreased as the concentration of NaCl increased in both callus lines. The selected callus line gave a higher growth weight in the presence of NaCl in the medium and was highly significant as compared with unselected callus line across medium protocols in all wheat cultivars. The dry weight of both kinds of callus lines of all wheat cultivars increased markedly with increasing NaCl concentration in most cases. The Na+ and Cl- contents of both callus lines were increased with increasing salinity levels while K+ content was decreased. The selected callus line of each cultivar at the same salinity level produced significant amounts of Na+, K+ and Cl- higher than the unselected callus line in most salinity levels. However, the unselected callus lines of the cultivars Giza-157 and Sakha-90 at the same salinity level produced significant amounts of K+ higher than the selected callus line in most salinity levels. The proline content of both kinds of callus lines for all wheat cultivars was increased with increasing salinity level. However, the selected callus line gave a significantly higher proline content than the unselected callus line in all wheat cultivars at the same Salinity level. Results from the in vitro selection for NaCl tolerance showed that the stepwise method of increasing NaCl in the medium was more effective for plant regeneration than other methods.  相似文献   

10.
High germination percentage with vigorous early growth is preferred for harvesting good wheat stand under saline soils. Therefore, an attempt for rapid screening of wheat genotypes for salt tolerance was made in this study. Eleven wheat genotypes including salt tolerant check Kiran-95were subjected to salinity (120 and 160 mMNaCl) along with non-saline control. Results showed a gradual decrease in seed germination and restricted seedling growth in tested wheat genotypes in response to increasing NaCl concentration in nutrient solution. Among the genotypes, NIA-AS-14-6 and NIA-AS-14-7 exhibited more sensitivity towards the salt stress at the germination stage but NIA-AS-14-6 performed quite satisfactorily later on at the seedling stage. Wheat genotypes NIA-AS-14-2, NIA-AS-14-4, NIA-AS-14-5, NIA-AS-14-10, and Kiran-95 showed better performance in term of root-shoot length, plant biomasses (fresh and dry), K+:Na+ ratio with least Na+ content, and high accumulation of K+ at higher levels of NaCl stress. On the basis of overall results, the categorization of genotypes was carried out as sensitive, moderately tolerant, and tolerant. Wheat genotypes NIA-AS-14-2, NIA-AS-14-4, NIA-AS-14-5, NIA-AS-14-10, and Kiran-95 grouped as tolerant, moderately salt tolerant group comprised of NIA-AS-14-1, NIA-AS-14-3, NIA-AS-14-6, and NIA-AS-14-8, whereas, NIA-AS-14-7 and NIA-AS-14-9 were found sensitive to salt stress. Principal component analysis revealed that components I and II contributed 70 and 16.5%, respectively. All growth parameters are associated with each other except RDW. In addition to growth traits, low Na+ and improved K+ content with better K+:Na+ ratio may be used for screening of salt tolerance in wheat as potential physiological criteria.  相似文献   

11.
Lines of Triticum aestivum cv. Chinese Spring carrying an additional chromosome 5Eb from Thinopyrum bessarabicum or having chromosome 5A or 5D replaced by chromosome 5Eb were screened in hydroculture for tolerance to salt. The previously reported tolerance of the 5Eb addition line was confirmed and the two substitution lines were shown to have a higher level of survival in 175 mol/m3 NaCl than both the addition and the ‘Chinese Spring’ parent. Reasons for the better tolerance of the substitutions are discussed.  相似文献   

12.
The role of phosphorus application on growth and yield of rice under saline conditions was studied in a set of two experiments, one in nutrient and the other in soil culture. In experiment 1, the effect of inorganic phosphate (Pi) on the growth and ionic relations of four rice cultivars, varying in salt tolerance and phosphorus use efficiency, grown in nutrient solution with and without 50 mol m?3 NaCl was measured in a 2 week trial. The growth of all rice cultivars was affected to different degrees due to external P, in the presence of salt. External P, concentration up to 100 μM in the presence of NaCl caused stimulation of all growth parameters (shoot, root, tillering capacity), above this concentration P, had an inhibitory effect. Salt-induced P toxicity was exhibited at a much lower P, concentration (10 μM) by the salt sensitive cultivar. Increasing the supply of phosphorus (from 1 to 100 μM Pi) to the saline medium tended to decrease the concentrations of Na1 and CI in all cultivars except IR 1561. Shoot concentrations of these saline ions were much lower in the salt tolerant and moderately salt tolerant rice cultivars. Shoot P and Zn concentrations showed an increasing trend in the presence of external P, and salt in the rooting nr -idium but most strikingly P: Zn ratio was lower in salt tolerant and moderately salt tolerant cultivars. Significantly higher concentrations of Na+, P and CI, and lower concentrations of Zn, were determined in the shoots of salt sensitive cultivars when exposed to salt stress in the presence of Pi Results were confirmed in naturally salt-affected soils of two different types (saline-sodic and saline) where paddy yield of NIAB 6 (salt tolerant) and IR 1561 (salt sensitive) showed improvement through moderate phosphorus supply (18 kg P ha?1).  相似文献   

13.
Summary Four cultivars of Medicago sativa L. were subjected to selection for improved salt tolerance using a salinized solution culture technique at 250 mM NaCl. Selections were made after two weeks growth, based upon seedling shoot length differences. High (shoot lengths 14–31 mm) and low (7–12 mm) selection lines were established. Unselected shoot lengths ranged from 0–11 mm. Selection intensities ranged from 0.17% to 0.22% for the high selection lines, and from 0.30% to 1.05% for the low selection lines.Eleven selected plants from cv. CUF 101, and 10 from Local Syria were grown on and polycrossed. A sample of progeny seed from each was grown at 8 NaCl concentrations in solution cultures. Selected line seedlings produced shoots at 225, 250, 260, and 275 mM NaCl, whereas unselected material failed to grow above 225 mM NaCl. A second cycle of selection at 280 mM NaCl with these two cultivars achieved selection intensities of 0.21% and 0.45% for high and low selection lines, respectively. Selected lines grew and produced shoots at 300 mM NaCl.Seedlings derived from 1st and 2nd selection cycles and unselected control material were grown for 6 weeks at 0, 150, 175, and 200 mM NaCl in a sand culture experiment. The high selection line produced significantly greater shoot fresh weight, dry weight, and % live shoot weight than the unselected control material. Clearly selection as practised here can isolate individual seedlings having enhanced genetically based tolerance to NaCl, which is manifest in mature plants derived from polycrossing those selected individuals.  相似文献   

14.
Crop tolerance to salinity is of high importance due to the extent and the constant increase in salt-affected areas in arid and semi-arid regions. Pearl millet (Pennistum glaucum), generally considered as fairly tolerant to salinity, could be an alternative crop option for salt affected areas. To explore the genotypic variability of vegetative-stage salinity tolerance, 100 pearl millet lines from ICRISAT breeding programs were first screened in a pot culture containing Alfisol with 250 mM NaCl solution as basal application. Subsequently, 31 lines including many parents of commercial hybrids, selected from the first trial were re-tested for confirmation of the initial salinity responses. Substantial variation for salinity tolerance was found on the basis of shoot biomass ratio (shoot biomass under salinity/ non-saline control) and 22 lines with a wide range of tolerance varying from highly tolerant to sensitive entries were identified. The performance of the genotypes was largely consistent across experiments. In a separate seed germination and seedling growth study, the seed germination was found to be adversely affected (more than 70% decrease) in more than half of the genotypes with 250 mM concentration of NaCl. The root growth ratio (root growth under salinity/control) as well as shoot growth ratio was measured at 6 DAS and this did not reflect the whole plant performance at 39 DAS. In general, the whole plant salinity tolerance was associated with reduced shoot N content, increased K+ and Na+ contents. The K+/Na+ and Ca++/Na+ ratios were also positively related to the tolerance but not as closely as the Na+ content. Therefore, it is concluded that a large scope exists for improving salt tolerance in pearl millet and that shoot Na+ concentration could be considered as a potential non-destructive selection criterion for vegetative-stage screening. The usefulness of this criterion for salinity response with respect to grain and stover yield remains to be investigated.  相似文献   

15.
Comparison of salt tolerance of GPert and non-GPert barleys   总被引:1,自引:0,他引:1  
A salt tolerance experiment was performed to study the effect of the GPert mutation in different genetic backgrounds of spring barley, Hordeum vulgare. L. Twenty-one lines carrying GPert along with 20 related non-GPert lines were grown for 4 weeks in low salt (25 mol m?3 NaCI) and salt stress (175 mol m?3 NaCI) hydroponic cultures. Shoot Na+ content was taken as a measure of salt tolerance. Salt tolerance of the two groups (GPert versus non-GPert) was compared, as was the performance of individual GPert lines with their non-GPert parental lines. The results show that GPert has a general positive effect on salt tolerance in reducing shoot Na+ content, but that this is regulated by genetic background.  相似文献   

16.
Salinity reduces crop yield by limiting water uptake and causing ion‐specific stress. Soybean [Glycine max (L.) Merr.] is sensitive to soil salinity. However, there is variability among soybean genotypes and wild relatives for salt tolerance, suggesting that genetic improvement may be possible. The objective of this study was to identify differences in salt tolerance based on ion accumulation in leaves, stems and roots among accessions of four Glycine species. Four NaCl treatments, 0, 50, 75 and 100 mm , were imposed on G. max, G. soja, G. tomentella and G. argyrea accessions with different levels of salinity tolerance. Tolerant genotypes had less leaf scorch and a greater capacity to prevent Na+ and Cl? transport from soil solution to stems and leaves than sensitive genotypes. Magnitude of leaf injury per unit increase in leaf Na+ or Cl? concentrations was lower in tolerant than in susceptible accessions. Also, plant injury was associated more with Na+ rather than with Cl? concentration in leaves. Salt‐tolerant accessions had greater leaf chlorophyll‐meter readings than sensitive genotypes at all NaCl concentrations. Glycine argyrea and G. tomentella accessions possessed higher salt tolerance than G. soja and G. max genotypes.  相似文献   

17.
以营养液栽培‘中蔬四号’番茄(Solanum lycopersicum Mill.)为研究材料,研究不同时期的盐胁迫下叶面喷施5 mmol/L还原型谷胱甘肽(reduced glutathione,GSH)和1 mmol/Lγ-谷氨酰半胱氨酸合成酶抑制剂(inhibitor of gamma-glutamylcysteine synthetase,BSO)对番茄幼苗叶片GSH和抗坏血酸(ascorbic acid,As A)水平、抗氧化酶活性及谷胱甘肽化抗氧化酶活性的影响。结果表明:盐胁迫、盐胁迫+BSO两种处理下喷施外源GSH显著升高了番茄幼苗叶片中GSH和As A含量、GSH/GSSG和As A/DHA比率以及超氧化物歧化酶(superoxidase dismutase,SOD)、过氧化物酶(peroxidase,POD)、过氧化氢酶(catalase,CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase,APX)、脱氢抗坏血酸还原酶(dehydroascorbate reductase,DHAR)、单脱氢抗坏血酸还原酶(monodehydroascorbate reductase,MDHAR)、谷胱甘肽还原酶(glutathione reductase,GR)和谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)的活性(NaCl+GSH处理除15 d的MDHAR活性;NaCl+BSO+GSH处理除15 d的DHAR活性);添加GSSG诱导的谷胱甘肽化修饰使盐胁迫下番茄幼苗叶片的SOD、MDHAR(15 d)、DHAR(5和15 d)、GR(5和10 d)、GPX(5和15 d)活性显著增加,同时GSH处理能够诱导上述酶发生去谷胱甘肽化修饰,从而维持细胞内的氧化还原平衡。由此表明外源GSH能够通过蛋白质谷胱甘肽化修饰对植物进行氧化还原(Redox)调控,以维持番茄体内Redox平衡,从而缓解盐害对番茄幼苗叶片造成的氧化胁迫,减少NaCl对植株造成的伤害。本研究为明确GSH/GSSG与番茄耐盐性的关系及其潜在生理机制,有效缓解番茄盐害提供了一定的理论支持。  相似文献   

18.
Chloride tolerance in soybean and perennial Glycine accessions   总被引:2,自引:0,他引:2  
Diversity for chloride tolerance exists among accessions of perennial Glycine. Accessions whose tolerance thresholds exceed those of Glycine max cultivars may be useful germplasm resources. Soybean cultivars including ‘Jackson’ (sensitive) and ‘Lee’ (tolerant) and 12 accessions of perennial Glycine were evaluated for sodium chloride tolerance after 14 days in hydroponic culture at 0, 5, 10, and 15 g L-1 NaCl. Sodium chloride had adverse effects on the growth of G. max cultivars and perennial Glycine accessions; however differential responses to salinity were observed among accessions. Considerably greater variation in sodium chloride tolerance existed among the perennial Glycine accessions than among the G. max cultivars. Sodium chloride tolerance thresholds ranged from 3.0 to 17.5 g L-1 NaCl for the perennial accessions but only ranged from 5.2 to 8.0 g L-1 for the cultivars, based on a Weibull model of leaf chlorosis. All G. max cultivars were severely injured or killed by NaCl at 10 g L-1 and above. Five tolerant perennial Glycine accessions, G. argyrea 1626, G. clandestina 1388 and 1389, and G. microphylla 1143 and 1195, were significantly lower in leaf chlorosis score than any of the G. max cultivars at the 10 g L-1 NaCl treatment. Two accessions, G. argyrea 1626 and G. clandestina 1389 were able to tolerate 15 g L-1 NaCl with only moderate visual injury while all other accessions were severely injured or killed at this salt level. Variability for chloride tolerance observed among the perennial Glycine accessions has potential utility for developing enhanced salt tolerance in soybean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
土壤盐渍化是影响农业生产的重要问题,筛选耐盐大豆资源对于大豆主产区盐渍化土壤的利用具有重要意义。以中黄35、中黄39、Williams82、铁丰8号、Peking和NY27-38为供试材料,以蛭石为培养基质,设0、100和150 mmol L?1 NaCl 3个处理,进行出苗期耐盐性鉴定,分析与生长相关的6个指标,旨在明确大豆出苗期耐盐性鉴定指标和评价方法。结果表明, 150 mmol L?1NaCl处理显著降低大豆的成苗率、株高、地上部鲜重、根鲜重、地上部干重和根干重,并且不同材料间差异显著。基于幼苗生长发育状况的耐盐指数方法与耐盐系数方法对6份种质耐盐性评价结果显著相关。耐盐指数法对植株无损坏、可省略种植对照,节约人力和物力,提高种质鉴定的效率。因此,以150 mmol L?1 NaCl作为出苗期耐盐鉴定浓度,以耐盐指数作为大豆出苗期耐盐鉴定评价指标,鉴定27份大豆资源,获得出苗期高度耐盐大豆(1级) 3份、耐盐大豆(2级) 7份,其中4份苗期也高度耐盐(1级),分别为运豆101、郑1311、皖宿1015和铁丰8号。本研究建立了一种以蛭石为基质,利用150 mmol L?1 NaCl处理,以耐盐指数作为评价指标的大豆出苗期耐盐性鉴定评价的简便方法,并筛选出4份出苗期和苗期均耐盐的大豆,对耐盐大豆种质资源的高效鉴定和耐盐大豆新品种培育具有重要意义。  相似文献   

20.
The complexity and polygenic nature of the salt tolerance trait in plants needs to develop a multiple indicator in the screening process. The mentioned issue led us to carry out an experiment to identify tolerant genotypes through multiple parameters in Andrographis paniculata. For this purpose, the 40-days seedlings were grown in different salinity levels (control, 4, 8, 12 and 16?dS?m?1) on Hoagland??s medium. The results indicated that salinity had a significant effect on the morphological, physiological and biochemical traits. All measured morphological traits, and chlorophyll, K+ and Ca2+ content were significantly decreased with increasing salinity levels, while proline and Na+ content increased. The present exploration revealed that, salt tolerance index (STI), using the multiple regression model, demonstrated a more stable trend than the single variable assay (total dry weight). Furthermore, STI based on multiple regression analysis gives an accurate definition of salt-tolerant individuals. Under salt stress, tolerant accessions had high STI and produced higher proline, K+ and Ca2+, and lower Na+ content than sensitive accessions. Cluster analysis based on related traits to STI, indicated high similarity in each group. These outcomes can be utilized to evaluate the salt tolerance threshold in the species and may have a great advantage over conventional methods. Probably, our upshots can be applied in the next breeding programs to develop salt-tolerant varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号