首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 609 毫秒
1.
胡丹 《作物杂志》2022,38(4):83-53
甜荞茎秆纤细和中空是造成甜荞极易倒伏的重要原因,茎秆重心高度和抗折力是影响甜荞倒伏的重要指标。以抗倒伏品种酉荞2号和易倒伏品种乌克兰大粒荞为亲本来配置正、反交组合。P1、P2、F1、B1、B2和F2群体茎秆重心高度和抗折力的遗传分析表明,茎秆重心高度最佳遗传模型为1对加性-显性主基因+加性-显性-上位性多基因模型和2对加性-显性-上位性主基因+加性-显性多基因模型,以加性效应为主,主基因遗传率大于多基因遗传率,环境变异大于遗传变异,可见环境对甜荞茎秆重心高度影响极大,可通过栽培措施降低甜荞茎秆重心高度,提高抗倒伏能力。茎秆抗折力最佳遗传模型为2对加性-显性-上位性主基因+加性-显性-上位性多基因模型和2对加性-显性-上位性主基因+加性-显性多基因模型,以加性效应为主,2对主基因间存在明显的基因互作效应,主基因遗传率大于多基因遗传率,在F2世代没有检测到多基因遗传率,主基因遗传率在F2世代最高,为88.94%,选择率高,可在早期世代进行选择来提高育种效率。  相似文献   

2.
普通丝瓜果皮颜色性状的遗传研究   总被引:1,自引:1,他引:0  
对普通丝瓜的果皮颜色性状进行遗传分析,旨在为果皮颜色控制基因的挖掘及外观品质改良提供理论依据。以绿果皮丝瓜材料YX014和白果皮高代自交系丝瓜材料LJ-01为亲本,配制成P1、P2、F1、F2、B1、B2等6个世代,通过目测的方法对6个世代单株的丝瓜果皮色性状观察和分级处理,应用植物数量性状主基因+多基因混合遗传模型对丝瓜果皮色性状进行遗传规律分析。结果表明,普通丝瓜果皮颜色的最佳遗传模型为B-1,即符合2对主基因控制并表现为加性-显性-上位性遗传模型。B1、B2和F2分离世代的主基因遗传率较高,分别为96.4%、99.1%和99.4%。此外,2对主基因的加性效应分别为-2.50和0.00,显性效应分别为0.50和0.48,说明第一对主基因在加性效应中占主导地位,且为负向效应,2对主基因的显性效应近似相等。控制普通丝瓜果皮色的主效基因的遗传力较高,普通丝瓜果皮色遗传改良可以在早期分离世代时进行。  相似文献   

3.
不结球白菜维生素C含量主基因+多基因遗传分析   总被引:6,自引:0,他引:6  
林婷婷  王建军  王立  陈暄  侯喜林  李英 《作物学报》2014,40(10):1733-1739
以高维生素C含量不结球白菜自交系乌塌菜和低维生素C含量不结球白菜自交系二青杂交获得的6个世代(P1、P2、F1、B1、B2和F2)株系为材料, 应用植物数量性状主基因+多基因混合遗传模型, 对不结球白菜中维生素C含量进行遗传分析。结果显示, 不结球白菜中维生素C含量受1对加性主基因+加性-显性多基因控制, 其中2011年结果中, 主基因的加性效应为13.15, 在B1、B2、F2世代中主基因的遗传率分别为54.38%、38.58%和18.69%, 多基因的遗传率分别为24.69%、36.92%和40.7%; 2013年结果中, 主基因的加性效应为6.04, 在B1、B2、F2世代中主基因的遗传率分别为1.88%、6.41%和45.04%, 多基因的遗传率分别为39.67%、16.57%和16.91%。可见, 不结球白菜维生素C性状受环境影响较大, 在不结球白菜高维生素C含量品种选育过程中, 要注重环境影响, 并可以通过分子标记辅助选择, 对性状进行改良。  相似文献   

4.
对冬瓜果肉叶绿素含量遗传规律进行分析,以期为冬瓜果肉颜色控制基因的挖掘和果肉颜色的改良育种奠定基础。以冬瓜果肉白色纯化自交系(LT-1)为P1,果肉绿色纯化自交系(LT-2)为P2,构建四代遗传群体(P1、P2、F1、F2),利用主基因+多基因混合模型的遗传分析方法,通过分析主基因和多基因对冬瓜果肉种的叶绿素含量影响,探究冬瓜果肉叶绿素含量的遗传规律。结果表明,冬瓜果肉中叶绿素含量是由2对加性—显性—上位性主基因+加性显性多基因遗传模型调控,F2分离群体中的主效基因遗传率为82.0696%,第一对主基因的加性效应da为-1.477,显性效应ha为-1.465,且显性度ha/da接近1,第二对主基因的加性效应db和显性效应hb分别为-0.835、-0.715,显性度ha/da...  相似文献   

5.
甘蓝型油菜苗期耐淹性状主基因+多基因遗传分析   总被引:8,自引:1,他引:7  
金岩  吕艳艳  付三雄  戚存扣 《作物学报》2014,40(11):1964-1972
长江中下游是中国油菜主产区,该地区油菜播栽期间雨水多,易产生湿害,造成产量下降。所以研究甘蓝型油菜苗期耐淹性的遗传规律,对选育耐淹性强油菜新品种,提高油菜产量意义重大。本文应用甘蓝型油菜品种WR-4 (耐淹)和WR-5 (不耐淹)杂交后代衍生的6个世代(P1、F1、P2、B1:2、B2:2、F2:3)群体为材料,全淹6 d后去水恢复生长,去水后第7天调查死苗率,以此为耐淹性指标,于2012和2013年对6个世代群体家系进行耐淹性鉴定。应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法对耐淹性进行遗传分析。结果表明,2个年度该家系群体苗期耐淹性的最适遗传模型分别是E-0和B-3,即2对加性-显性-上位性主基因+加性-显性-上位性多基因和2对加性主基因模型。由此可见,该家系群体甘蓝型油菜苗期耐淹性主要受2对主基因控制,主基因存在加性、显性和上位性效应。当有显性效应存在时(2012年),主基因显性效应值|ha|=0.3475,|hb|=0.0069,大于主基因加性效应值|da|=|db|=0.0036。B1:2、B2:2和F2:3群体的主基因遗传率(h2mg),2012年分别为36.25%、61.40%和61.84%,平均为53.16%;2013年分别为8.30%、30.48%和43.13%;平均为27.30%。2年平均,环境变异占表型变异的59.77%。上述结果表明,甘蓝型油菜苗期耐淹性受2对主基因型控制,但环境对耐淹性状的表型影响较大。F2:3家系群体苗期耐淹性遗传率较高,因此育种上可在早期世代对耐淹性状进行选择。  相似文献   

6.
玉米粒长是培育优良玉米品种的重要选择性状。选取粒长性状表现差异显著的玉米自交系铁7922和E28,及其组建的6个世代群体P1、F1、P2、B1、B2和F2为材料,运用主-多基因混合模型遗传分析方法进行分析,研究玉米粒长的遗传规律。结果表明:粒长性状在F1表现为超亲优势,符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传的E-1-0模型,主基因遗传率为41.22%~80.58%,多基因遗传率为17.68%~24.95%,环境因素决定粒长表型变异的19.42%~41.10%,控制玉米粒长性状的主基因效应高于多基因效应,并且主基因的加性累积效应明显,该性状在育种中可以通过世代累积进行选择。  相似文献   

7.
以超多穗行数DH系15D969和低穗行数自交系PH6WC、X901m组建的2个6世代群体(P1、P2、F1、B1、B2和F2)为材料,运用主-多基因混合模型遗传分析方法对穗行数进行遗传分析。结果表明:材料Ⅰ的F1穗行数平均优势为-1.11%,为2对主基因加、显、上+多基因加、显混合模型,主基因遗传率为12.22%~96.37%,多基因遗传率为0~61.16%;材料Ⅱ的F1穗行数平均优势为1.16%,为2对主基因加+多基因加、显混合模型,主基因遗传率为6.48%~54.18%,多基因遗传率为4.77%~67.23%。说明,穗行数由主基因和多基因共同主导,DH系15D969的超多穗行数由不完全显性多基因控制。  相似文献   

8.
玉米叶绿素含量基因效应分析   总被引:1,自引:0,他引:1  
为了研究控制玉米叶绿素含量的遗传规律,以叶绿素含量存在显著差异的2个普通玉米自交系组配的P1、P2、F1、BC1、BC2、F2 6个世代为试验材料,运用主基因+多基因遗传模型分析方法,探明玉米叶绿素含量的遗传模型,并进行遗传参数估计。结果表明,F1叶绿素含量杂种优势表现为正向离中亲优势,无超亲优势;玉米叶绿素含量的遗传受2对加性-显性-上位性主基因+加性-显性多基因共同控制,以主基因遗传为主,非加性效应大于加性效应;2对主基因与多基因的加性效应均为减效,显性效应均为增效,上位性效应累计为正向;BC1、BC2、F2叶绿素含量主基因的遗传率分别为74.58%、78.62%、20.84%,多基因的遗传率分别2.84%、7.69%、68.11%。  相似文献   

9.
分枝角度是油菜株型重要性状,是油菜品种高产及适合机械化收获理想株型的基本组成之一。为明确油菜分枝角度的遗传,本研究选用油菜分枝角度大的松散型材料6098B和分枝角度小的紧凑型材料Purler配制杂交组合,采用主基因+多基因混合遗传模型方法对该组合6世代(P1、P2、F1、F2、BCP1和BCP2)的分枝角度进行了遗传分析。结果表明,上部第一分枝(顶枝)和基部第一分枝(基枝)角度的最适合遗传模型均为D-0 (1对加性-显性主基因+加性-显性-上位性多基因)。顶枝角的主基因加性效应值为4.939º,显性效应值为–4.156º,主基因遗传率在BCP1、BCP2和F2中分别是34.08%、1.40%和14.99%,多基因遗传率分别为24.43%、61.72%和63.98%;而基枝角的主基因加性效应值为2.217º,显性效应值为–1.941º,主基因遗传率在BCP1、BCP2和F2中分别是7.86%、1.24%和4.84%,多基因遗传率分别为66.46%、58.49%和73.96%。结果发现油菜分枝角度明显存在主效基因,为油菜分枝角度的遗传改良奠定了基础。  相似文献   

10.
果实形状是园艺作物商品性的主要指标之一。明确茄子果实形状的遗传规律可为开发相关分子标记以及选育消费者喜欢的果形新品种提供依据。本研究以卵圆茄BC01和长条茄Rf为亲本,构建P1、P2、F1、F2世代遗传群体,利用主基因+多基因混合遗传模型分析方法对果实纵径、横径和果形指数进行遗传分析。结果表明,茄子果实纵径、横径和果形指数之间呈极显著相关性,F2代的果实纵径、横径和果形指数均呈双峰偏态分布。果实纵径由1对加性-显性主基因控制,遗传效应以加性效应控制为主,主基因起增效作用,在F2代的遗传率为73.41%;果实横径由2对等加性主基因控制,主基因起减效作用,在F2代的遗传率为90.99%;果形指数由1对加性主基因控制,在F2代的遗传率为81.46%。  相似文献   

11.
本研究选用蓖麻YC2×YF1高、矮秆组合的2组6世代群体(P1、P2、F1、B1、B2和F2),对株高性状进行了主基因+多基因混合遗传模型分析。结果表明,蓖麻株高受1对主基因和多基因共同控制。2组群体在B1、B2和F2三个分离世代中主基因遗传率分别为37.05%/49.57%、30.51%/34.48%和43.98%/43.64%;主穗位高和主茎节数均受2对主基因和多基因共同控制,且主基因的互作效应显性效应加性效应。3个分离世代中,2组群体主穗位高主基因遗传率分别为67.91%/92.72%、86.89%/92.13%和60.18%/66.87%,主茎节数主基因遗传率分别为91.83%/91.50%、35.22%/63.37%和85.76%/94.58%。主茎节长由多基因控制,遗传率分别为47.64%/47.64%、38.87%/38.87%和25.25%/52.71%。以上遗传模式决定了蓖麻杂种后代株高、主穗位高和主茎节长的正向超亲遗传,而主茎节数则倾向于低值亲本。因此,主穗位高和主茎节数可以作为株高的早期间接选择指标。  相似文献   

12.
中植棉2号抗黄萎病的主基因+多基因遗传特性分析   总被引:2,自引:1,他引:1  
以感病品种861为父本、抗病品种中植棉2号为母本配制杂交组合,构建6个世代群体(P_1、P_2、F_1、B_1、B_2和F_2),并在田间病圃进行抗病性鉴定,利用主基因 ̄多基因混合遗传模型的多世代联合分析法研究陆地棉抗黄萎病遗传特性。结果表明,中植棉2号抗性遗传符合E-1遗传模型,即2对加性 ̄显性 ̄上位性主基因+加性 ̄显性多基因遗传模型。2对主基因遗传以显性效应为主,且第2对主基因的显性效应比第1对主基因的显性效应大,多基因遗传以加性效应为主。B_1、B_2和F_2的主基因遗传率分别为68.24%、30.71%和82.09%,多基因遗传率分别为0、24.96%和0,环境方差占总表型方差的17.01%~44.33%。  相似文献   

13.
甘蓝型油菜角果长度的主+多基因混合遗传模型   总被引:1,自引:1,他引:0  
角果是油菜产量构成要素中重要的组成部分。本文以长角果品种中双11和短角果材料10D130为亲本配制杂交组合,采用主基因+多基因混合遗传模型分析方法对该组合6世代遗传群体(P1、P2、F1、BCP1、BCP2和F2)的果身长、角果长和果喙长进行遗传分析。结果表明,该组合的3个角果性状均呈连续分布,其中,果身长最适遗传模型为E-0 (2对加性-显性-上位性主基因+加性-显性-上位性多基因模型),2对主基因加性效应值分别是1.75和–0.06,显性效应值分别是–0.59和–0.86,主基因遗传率在BCP1、BCP2和F2中分别是51.10%、74.23%和66.93%,多基因遗传率分别为29.16%、17.11%和23.96%。角果长的最适遗传模型为E-1 (2对加性-显性-上位性主基因+加性-显性多基因模型),其中,第1对主基因加性效应为0.34,显性效应为–0.81,第2对主基因加性效应为0.34,显性效应为–0.47,主基因遗传率在BCP1、BCP2和F2中分别是47.63%、68.51%和79.45%,多基因遗传率分别为29.40%、20.89%和12.47%。果喙长的最适遗传模型为E-3模型(2对加性主基因+加-显多基因遗传模型),2对主基因加性效应值分别是0.2和–0.2,主基因遗传率在BCP1、BCP2和F2中分别是33.71%、72.75%和52.25%,多基因遗传率分别为40.08%、5.37%和27.60%。  相似文献   

14.
以食葵不育系17-A26为母本、恢复系17-C19为父本,构建P1、P2、F1、F2、B1和B2 6个世代群体,研究了产量相关性状盘径、单株总粒数、结实率、百粒重、粒长和粒宽的后代变异及遗传率。结果表明,6个性状均为数量性状,变异幅度排序为单株总粒数>粒长>盘径>结实率>百粒重>粒宽,狭义遗传率排序为百粒重>粒长>单株总粒数>粒宽>盘径>结实率。根据遗传进度结果,百粒重、粒长、单株总粒数和粒宽宜早代根据表型选择,盘径宜晚代选择,结实率宜晚代结合多环境联合选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号