首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NERICA are interspecific rice varieties from crossing between the high-yielding Asian rice ( Oryza sativa spp. Japonica) with locally adapted African rice ( Oryza glaberrima). In this study, we analyzed grain qualities of 7 NERICA varieties (NERICA 1 to 7) and genetic derivation of quality-related genes. Quality analyses of NERICA grains showed that 7 NERICA varieties were clearly classified into two groups based on the difference of amylose content, and the difference influenced the pasting and physical properties of grains. Genetic analysis of the gene encoding granule-bound starch synthase I (GBSSI), which is known as a key enzyme on amylose synthesis in rice grain, revealed that varieties with higher amylose content ( approximately 29%) have the gene derived from O. glaberrima parent, and group 2 with lower amylose content ( approximately 22%) have the gene from O. sativa parent. These results indicated that the difference in amylose content as well as grain properties among 7 NERICA varieties is mainly determined by the genetic derivation of GBSSI. Further genetic analysis of starch synthesis-related genes suggested that the genetic derivation of SSIIa also influences the chain length of amylopectin in 7 NERICA varieties.  相似文献   

2.
Food products that are high in fiber and low in glycemic impact are healthier. Amylose is a form of resistant starch that mimics dietary fiber when consumed. A durum wheat (Triticum durum) line was created that lacks starch synthase IIa (SSIIa) activity, a key enzyme in amylopectin biosynthesis, by identifying a null mutation in ssIIa‐B following mutagenesis of a line that has a naturally occurring ssIIa‐A null mutation. Our objective here was to compare seed, milling, pasta, and nutritional characteristics of the SSIIa null line with a wild‐type control line. The SSIIa null line had increased amylose and grain protein with lower individual seed weight and semolina yield. Refined pasta prepared from the SSIIa null semolina absorbed less water, had increased cooking loss, had a shorter cook time, and was considerably firmer even after overcooking compared with the wild‐type line. Color of the SSIIa null cooked and uncooked pasta was diminished in brightness compared with the wild type. Nutritionally, the SSIIa null pasta had increased calories, fiber, fat, resistant starch, ash, and protein compared with the control line, along with reduced total and available carbohydrates. Pasta made from high‐amylose durum wheat provides a significant nutritional benefit along with enhanced end‐product quality via firmer pasta that resists overcooking.  相似文献   

3.
Eight soft spring wheat (Triticum aestivum L.) genotypes representing the four granule bound starch synthase I (GBSSI) classes were evaluated with respect to flour/starch characteristics and pasting behaviors. Native starch was isolated from genotype straight‐grade flours (94.8–98.1% of starch recovered) to approximate the starch populations of the parent flours. As anticipated, amylose characteristics varied among the genotypes according to GBSSI class and accounted for the primary compositional difference between genotypes. Total (TAM), apparent (AAM), and lipid‐complexed (LAM) amylose contents ranged from 1.0–25.5 g, 0.7–20.4 g, and 0.3–5.6 g/100 g of native starch, respectively, and gradually decreased with the progressive loss of active Wx alleles. In addition, genotype flour total starch (FTS) and A‐type starch granule contents, which ranged from 81.7–87.6 g/100 g of flour (db) and 61.6–76.8 g/100 g of native starch (db), respectively, generally decreased with an increase in waxy character in parallel with amylose characteristics, as likely secondary effects of Wx gene dosage. Though amylose characteristics predominantly accounted for the majority of genotype flour pasting properties, FTS content and ratios of A‐ to B‐type granules also exhibited significant influence. Thus, loss of one or more Wx genes appeared to induce measurable secondary effects on starch characteristics and properties.  相似文献   

4.
The amylose concentration in starch from 16 quinoa (Chenopodium quinoa Willd.) genotypes grown under identical conditions was 4–20%. Based on the amylose content, a selection of six genotypes was made. Starch granule‐bound proteins were extracted from six genotypes and analyzed using denaturing gel electrophoresis. Two major polypeptides with apparent molecular masses of 56 and 62 kDa were present in all genotypes. Both were identified as granule‐bound starch synthase I (GBSSI) using immunoblot analysis and internal peptide sequencing. The content of the two GBSSI isoforms in starch granules from the six genotypes, as determined by densiometry of the peptide bands, was positively correlated with the concentration of amylose in starch from mature seed. Starch synthase activity in developing seed was positively correlated to starch concentration in seed and amylose concentration in starch during seed development.  相似文献   

5.
The quality of Tombul (Round) hazelnut, grown in the Giresun province of Turkey, was determined by measuring proximate composition, minerals, vitamins, dietary fiber, amino acids, and taste active components (free amino acids, sugars, and organic acids). Fat was the predominant component in Tombul hazelnut (approximately 61%). The major minerals were potassium, phosphorus, calcium, magnesium, and selenium. Hazelnut was also found to serve as an excellent source of vitamin E (24 mg/100 g) and a good source of water soluble (B complex) vitamins and dietary fiber. The major amino acids were glutamic acid, arginine, and aspartic acid. The three nonessential amino acids and the essential amino acids contributed 44.9 and 30.9% to the total amino acids present, respectively, while lysine and tryptophan were the limiting amino acids in Tombul hazelnut. Twenty-one free amino acids, six sugars, and six organic acids were positively identified; among these, arginine, sucrose, and malic acid predominated, respectively. These taste active components may play a significant role in the taste and flavor characteristics of hazelnut. Thus, the present results suggest that Tombul hazelnut serves as a good source of vital nutrients and taste active components.  相似文献   

6.
The variability in grain and starch characteristics and their relationship with the accumulation of starch granule associated proteins were investigated in five maize landraces of Northwest Mexico (Blando de Sonora, Chapalote, Elotero de Sinaloa, Reventador, and Tabloncillo). Significant differences were observed in grain hardness related traits, starch physicochemical properties, and structural properties. Blando de Sonora showed very soft grains, whereas the hardest grains were observed for Chapalote and Reventador. Starch granules isolated from landraces with hard grains contained more amylose and showed polygonal shapes, lower crystallinity and enthalpy of gelatinization, and greater retrogradation and proportion of long amylopectin chains. Proteomic analysis identified the enzymes granule‐bound starch synthase I (GBSSI), starch synthase I and IIa, starch branching enzyme IIb, sucrose synthase 1, and pyruvate phosphate dikinase 2 as granule‐associated proteins. The abundance of GBSSI correlated significantly with amylose content, consistent with the positive correlation observed between amylose and grain hardness. These results showed that the variability in the characteristics evaluated was mainly related to changes in the proportion of amylose in the starch granules, which were associated with differences in the expression of GBSSI. This information may be useful to define strategies for the exploitation and conservation of the landraces.  相似文献   

7.
为明确玉米籽粒营养成分的分布差异及不同部位富集特征,应用快速缓苏、微量着水半湿法分层破胚剥皮技术,结合靶向代谢组学方法,对郑单958玉米不同部位的营养成分及基础代谢物质进行分析与比较。结果表明玉米籽粒不同部位的淀粉、脂肪、矿物元素和膳食纤维等营养物质含量存在显著差异(P<0.05)。该研究中的玉米内皮层可能主要由种皮、糊粉层及部分外胚乳构成,该部位营养成分的种类及含量均较为丰富,其中水溶性膳食纤维含量显著高于其他部位(P<0.05),可作为玉米水溶性膳食纤维的提取分离来源。K、P和Mg元素是玉米中含量最高的矿物元素,主要存在于胚芽中,Fe、Zn、Mn和Cu元素在胚芽和玉米皮层中均有较多分布,精制加工会导致这些矿物元素的损失。玉米胚芽中水解氨基酸种类较其他部位丰富且含量较高(P<0.05),甜味氨基酸占总游离氨基酸含量的24.49%,高于玉米皮层部位、显著高于胚乳部位。研究结果为玉米营养健康食品的创制、玉米精深加工及相关专用装备的研发提供参考。  相似文献   

8.
This report shows the effect of rye flour extraction rate on Maillard reaction, antioxidant activity, and acrylamide formation during toasting of rye bread crisps. Four rye flours with extraction rates of 70, 85, 95, and 100% were tested. Maillard reaction development was studied by measuring browning development, hydroxymethylfurfural (HMF), and glucosilisomaltol (GIM) formation, as well as antioxidant activity. Results showed that HMF and GIM concentrations in toasted bread crisps were higher as the flour extraction rate increases. Antioxidant activity increased during toasting as a consequence of antioxidant Maillard reaction product formation. Acrylamide concentration was clearly affected by free asparagine content of flour, while no effect of dietary fiber and natural antioxidant content of flours had an effect on acrylamide formation. Overall data suggest that the rate of Maillard reaction is higher in whole flours because of their higher free amino acid and protein content.  相似文献   

9.
Buckwheat (Fagopyrum esculentum), a highly nutritious pseudocereal rich in bioactive compounds, is principally cultivated in central and eastern European countries. Buckwheat groats and husks of 10 cultivars were subjected to nutritional composition analysis and in vitro starch digestibility determination. Significant genetic variation was detected in buckwheat groats for 1,000‐kernel weight (16.5–39.8 g), protein content (10.2–17.9%), soluble dietary fiber (1.4–3.4%), insoluble dietary fiber (2.3–8.6%), total dietary fiber (3.6–10.6%), free phenolics (4.5–17.1 mg of gallic acid equivalent [GA]/g), and total phenolics content (6.8–20.7 mg of GA/g). The buckwheat husks exhibited large differences between cultivars in protein content (3.0–6.5%), bound phenolics (6.7–26.1 mg of GA/g), and total phenolics content (32.4–58.6 mg of GA/g), which was 1.5–8 times higher than in the groat. Cooked and cooled buckwheat groats exhibited lower starch digestibility and greater resistant starch content than raw buckwheat groats. Buckwheat cultivars with unique nutritional composition, such as Co901 and Ta‐1, were identified for future breeding.  相似文献   

10.
A high‐tannin sorghum cultivar with 3.96% tannin content was used to study the effects of germination on its ethanol fermentation performance in a laboratory dry‐grind process. High‐tannin sorghum sample was germinated for 3 and 4 days. Original and germinated samples were analyzed for tannin, starch, protein, free amino nitrogen (FAN), and glucose content. Endosperm structures and flour pasting properties of germinated and nongerminated sorghum samples were examined using a scanning electron microscope (SEM) and rapid visco analyzer (RVA). Germination reduced tannin content from 3.96% to negligible levels. The free fermentable sugars (glucose, maltose, and maltotriose) in the germinated samples were significantly higher than those in the nongerminated control. Judged by the starch (starch plus dextrin) and free amino nitrogen contents in the mashed samples, germination improved degree of hydrolysis for starch by 13–20% and for protein by 5‐ to 10‐fold during mashing. Germination significantly shortened the required fermentation time for ethanol production by 24–36 hr, increased ethanol fermentation efficiency by 2.6–4.0%, and reduced the residual starch content in the distillers dried grain with solubles (DDGS) compared to the nongerminated control. Ethanol yield for the 3‐day germinated samples was 2.75 gallons/bushel, which was 3.1% higher than the 2.67 gallons for the nongerminated control. Ethanol yield for the 4‐day germinated sorghum was 2.63 gallons/bushel due to excessive loss of starch during germination.  相似文献   

11.
Methods were developed to efficiently isolate legume cotyledon fibers with relatively high yields and purities. Seeds of pea (Pisum sativum), chickpea (Cicer arientinum), and lentil (Lens culinaris) were roller milled into flour and fractionated into prime starch, tailings starch, and water solubles. Insoluble dietary fiber was isolated from tailings starch by wet screening on sieves with openings ranging from 53 to 90 μm. Yield of insoluble fiber using a sieve with 53‐μm openings ranged from 49.7 to 59.2% of insoluble fiber in flour with purities ranging from 85.5 to 87.3%. Soluble dietary fiber was isolated from the water‐soluble fraction following acid precipitation of soluble protein at pH 4. Soluble fiber yield ranged from 83.3 to 89.6% of flour soluble fiber with purities ranging from 64.5 to 70.6%. Glucose was the most common sugar component of hulls and soluble cotyledon fibers, while arabinose was the main sugar in insoluble fibers. Insoluble fiber exhibited significantly higher swelling capacities and water and oil binding capacities in comparison to hulls and soluble cotyledon fibers. Apparent viscosities of soluble cotyledon fibers ranged from 3.13 to 3.43 Pa•sec and exhibited Newtonian characteristics.  相似文献   

12.
Pigeon pea (Cajanus cajan var. aroíto) seeds were fermented in order to remove antinutritional factors and to obtain functional legume flour to be used as pasta ingredients. Fermentation brought about a drastic reduction of alpha-galactosides (82%), phytic acid (48%), and trypsin inhibitor activity (39%). Fermented legume flours presented a notable increase of fat and total soluble available carbohydrates, a slight decrease of protein, dietary fiber, calcium, vitamin B2, vitamin E, and total antioxidant capacity, and a decrease of soluble dietary fiber, Na, K, Mg, and Zn contents. No changes were observed in the level of starch and tannins as a consequence of fermentation. The fermented flour was used as an ingredient to make pasta products in a proportion of 5, 10, and 12%. The supplemented pasta products obtained had longer cooking times, higher cooking water absorptions, higher cooking loss, and higher protein loss in water than control pasta (100% semolina). From sensory evaluations, fortified pasta with 5 and 10% fermented pigeon pea flour had an acceptability score similar to control pasta. Pasta supplemented with 10% fermented pigeon pea flour presented higher levels of protein, fat, dietary fiber, mineral, vitamin E, and Trolox equivalent antioxidant capacity than 100% semolina pasta and similar vitamins B1 and B2 contents. Protein efficiency ratios and true protein digestibility improved (73 and 6%, respectively) after supplementation with 10% fermented pigeon pea flour; therefore, the nutritional value was enhanced.  相似文献   

13.
gamma-Irradiation was investigated as a technique to improve the hygienic quality of cocoa husk. Cocoa husk is a byproduct of cocoa bean processing industry. It contains approximately 57.5% (w/w) dietary fiber (nonstarch polysaccharides plus lignin), 15% (w/w) crude protein, 10.7% (w/w) mineral elements, 2.32% (w/w) cocoa butter, and 2.8% (w/w) carbohydrates (free sugars plus starch). The effect of irradiation on the growth rates of microorganisms are reported. Total counts, enterobacteriaceae, coliforms, Staphylococcus aureus, Streptococcus "D" of Lancefield, and yeast and mold counts before and after irradiation at 5, 8, and 10 kGy were determined. Cocoa husk was irradiated in open containers. An irradiation dose of 5 kGy was already sufficient to decrease the microbial counts to a very low level. No alteration in dietary fiber was measured in the irradiated product and no significant differences were detected between irradiated and nonirradiated cocoa husk.  相似文献   

14.
Among common cereals, barley is a low glycemic index food. In an attempt to better understand this character, the nutritional properties of glycemic carbohydrates and dietary fiber concentrations of nine cultivars were evaluated. The cultivars were selected based on botanical variations and commercial value to investigate the impact of pearling and cooking on nutritional properties. Each cultivar was pearled into four fractions ranging from hull removal only to hull, bran, germ, and crease removal. The study showed that botanical class and degree of pearling significantly affect the carbohydrate composition and digestion indices of barley. Waxy starch cultivars had less total starch and more rapidly digestible starch (RDS), rapidly available glucose (RAG), and β‐glucan than the other nonwaxy cultivars. Regardless of the barley type, the less pearled kernels had significantly lower total starch and higher total low molecular weight sugars, insoluble, and total fiber. However, β‐glucan content was fairly comparable in the whole grain and pearled fractions. Cooking had a significant effect on nutritional properties of Celebrity and AC Klinck cultivars. The only consistent significant difference between raw and cooked barley was resistant starch (RS), which increased after cooking regardless of cultivar or fraction. The study showed that barley cultivar and carbohydrate composition significantly affected starch digestion with some cultivar fractions holding a promise for the development of low glycemic index foods.  相似文献   

15.
Two different germplasms of a white variety and one germplasm of a black variety of Mucuna pruriens var. utilis were evaluated for their physicochemical properties as well as their nutritional and antinutritional characteristics. All germplasms had higher grain weight, density, hydration, and swelling capacity than other common legumes. The dehulled samples contained 303.2-335.5 g(-1) protein and 46.1-53.5 g x kg(-1) lipid, and these values were higher than the respective whole seeds. The levels of macro- and microelements in both whole and dehulled seeds were comparable to those in common pulses. All germplasms had a high dietary fiber content (18-19.5%), made up of mainly insoluble dietary fiber (DF). Seed lipids were high in unsaturated fatty acids (64.7-66.9%), specifically linoleic acid (48-49%). Whole and dehulled seeds of the white variety from Salem were particularly rich in sulfur-containing amino acids with significantly higher levels of in vitro protein digestibility than the other two germplasms. All germplasms had high levels of total phenols and phytate, trypsin, and chymotrypsin inhibitor activities, but were low in tannins, saponins, and alpha-amylase inhibitor activity. Only weak hemagglutinating activity against cow erythrocytes and no hemagglutinating activity against human erythrocytes (O) was observed in all the samples. Dehulled seeds were higher in total starch, including resistant starch and oligosaccharides (with verbascose as the major fraction) than the respective whole seeds. Both whole and dehulled samples of the white variety of Salem germplasm showed significantly lower concentrations of L-dopa, nonmethylated, and methylated tetrahydroisoquinolines than the respective whole and dehulled samples of other germplasms. In general, dehulling didn't affect the overall nutritional status in any of the presently investigated samples.  相似文献   

16.
《Cereal Chemistry》2017,94(1):98-103
Dehulled and/or germinated black bean flours were physicochemically characterized, including pasting properties, along with the trypsin inhibitor and antioxidant phenolics. To our best knowledge, this is the first study that, using nonparametric correlations and principal component analysis, identifies the parameters affecting the pasting properties of germinated black bean flour. The carbohydrate loss observed after black bean germination was indirectly correlated with the crude fiber content. Therefore, germination increased the protein and crude fiber contents compared with raw seeds (from 19.1 and 2.4% to 24.0 and 5.1%, respectively). Additionally, the highest protein digestibility was obtained in dehulled germinated black bean flour (78.4%), followed by whole germinated seed flour (74.1%). The dehulling process increased the total starch content 13.5 and 18.8% compared with raw and germinated whole bean flours, respectively. Dehulling decreased both trypsin inhibitor activity and antioxidant phenolics. Germination reduced by twofold the peak and final viscosities of black bean flours. Interestingly, both viscosities were negatively correlated with protein and positively correlated with fat and insoluble dietary fiber. Although resistant starch content was not affected by germination or dehulling, its interactions with fat and insoluble dietary fiber were responsible of the changes observed in pasting properties of germinated black bean flour.  相似文献   

17.
Barley m38 mutant was selected for its high level of mixed‐linkage (1,3),(1,4)‐β‐d ‐glucan (MLG) in the grain. This elevated level of MLG was found to be associated with decreased amylose accumulation as well as other chemical composition alterations. Molecular characterization results revealed m38 as a new allele of the Waxy gene, encoding an endosperm‐specific granule‐bound starch synthase I (GBSSI). Additional mapping data from amylose phenotype and GBSSI gene specific markers supported the conclusion of the GBSSI mutation in m38. The m38 locus contains a nucleotide alteration that would result in the substitution of glycine at position 263 with serine in the putative adenosine‐5′‐diphosphate‐glucose binding domain. This amino acid substitution alters loop structures on the exterior surface of the folded protein and may affect its enzyme activity. Characterizations of m38 in this report provide for a new allele of the Waxy gene and additional evidence of pleiotropic effects on other chemical components including increased MLG, fructans, and fats and decreased amylose and protein.  相似文献   

18.
Manipulation of starch composition in cereals and particularly in wheat is receiving increasing attention due to recognition of its important role in food and nonfood applications. The amylose/ amylopectin ratio influences the physicochemical properties of starches and nutritional value of derived end products. Identification of the key enzymes involved in the starch biosynthetic pathway has opened new avenues for altering the amylose and amylopectin content in durum and bread wheat. The granule bound starch synthases (GBSSI), or waxy proteins, are the enzymes responsible for amylose synthesis in storage tissues; amylopectin is produced by the concerted action of different enzymes, including starch synthases (SS), branching (SBE), and debranching enzymes (DBE). By altering the level of key enzymes involved in the regulation of starch synthesis, it is possible to generate novel starches with unique functional properties. In this respect, both low and high amylose starches are particularly interesting because they are associated with industrial and processing properties as well as with human health and nutrition. So far, major attention has addressed the manipulation of starch composition in bread wheat, whereas durum wheat has been investigated to a much lesser extent. Approaches currently available to alter amylose/amylopectin ratio and tailor starch composition in durum wheat are presented.  相似文献   

19.
Nutritional composition of oat kernels from 18 genotypes grown in six environments in North Dakota, U.S.A., was analyzed by chemical means. Of the macronutrients, mean starch concentration was 56.5%, protein was 18.1%, oil was 7.9%, neutral detergent fiber (insoluble fiber) was 6.0%, β‐glucan (soluble fiber) was 5.2%, ash was 1.9%, and soluble carbohydrate was 0.6%. These add up to 96.2%, which appears to account for most of the mass of the oat kernel. Protein amino acid analysis indicated 4.5% lysine and 1.8% methionine. Free amino acid analysis indicated 1,129 μg of asparagine per gram of flour. The 18:1 and 18:2 fatty acids were the most abundant in oat lipids. Mean micronutrient concentrations in oat kernels included potassium (3,419 ppm), magnesium (1,416 ppm), calcium (441 ppm), iron (52 ppm), zinc (26 ppm), and selenium (0.38 ppm). Analysis of variance indicated significant genotypic and environmental variation, as well as significant genotype × environmental interaction for most of the nutritional components. In general, protein was higher in drier, hotter environments, whereas oil, β‐glucan, and starch were higher in wetter, cooler environments. The results provide a unique database of a collection of compositional components for specific oat genotypes in diverse environments.  相似文献   

20.
The aim of this research was to optimize mixtures of fibers from different sources and degree of processing meeting acceptable dough viscometric standards to design low‐calorie wheat bread formulations. Effects of soluble (inuline [FN]), partially soluble (sugar beet [FX]), pea cell wall (SW), and insoluble (pea hull [EX]) dietary fibers on wheat dough pasting and gelling profiles have been investigated. Impact of fibers added singly and in associated mixtures at different levels on the investigated viscometric parameters retrieved from a Rapid Visco Analyser curve has been assessed by response surface methodology, and the thermal parameters derived from the cooking and cooling functional profile were correlated. Flour replacement up to 34% by fibers significantly provided a deleterious effect on pasting and gelling viscosity profiles of the resulting hydrated high fiber‐flour blends. The magnitude of the reduction in dough viscometric characteristics during gelatinization, pasting, and setback closely depended on the nature of the fibers in the blend and on the extent of the flour substitution. A delayed and restricted swelling of starch granules and amylose leaching process preferentially achieved by the pair FN‐FX resulted in higher pasting temperatures and reduced peak viscosities during cooking and a sharp decrease of the setback on cooling. Single addition of FX, FN, and EX, respectively, provided a significant decrease in both breakdown viscosity and viscosity at the end of 95°C. Simultaneous presence of FN and EX that exhibit medium or low hydration properties allowed a partial restoration of initial breakdown viscosity and a simultaneous decrease in holding strength. Caution should be paid to the pairs FN‐FX and EX‐SW because of the adverse extra decline they induced in the viscosities of both hot paste and cold gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号