首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The inhibitory effect of yuzu (Citrus junos Tanaka) essential oil on the formation of N-nitrosodimethylamine (NDMA) in the presence of vegetables (31 species) or saliva was investigated by HPLC. Most vegetable extracts enhanced the formation of NDMA. However, the formation ratio of NDMA in vegetable extracts was decreased by yuzu oil in the range of 59 to 22%. In the presence of yuzu oil and saliva, its ratio ranged between 62 and 24%. These results indicated that yuzu oil inhibited the formation of NDMA even in vegetables and saliva. The contents of ascorbic acid, nitrate, and nitrite in the 31 vegetable species were 0.3-65 mg/100 g, 3-581 mg/100 g, and 10-750 microg/100 g, respectively. Ascorbic acid and nitrite had little effect on the inhibition or formation of NDMA at their intact levels. Nitrate accelerated the formation of NDMA, and the addition of saliva further enhanced it. The mechanism of inhibition of NDMA formation by alpha-terpinene was studied. It was assumed from the results of LC-MS that a new compound formed by the reaction of alpha-terpinene with nitrite would be a derivative of alpha-terpinene with dinitroso groups. The molecular weight of this compound was 194. It is suggested that terpene hydrocarbons in citrus essential oils would contribute to the decrease of NDMA formation.  相似文献   

2.
The composition of the essential oil of Citrus tamurana Hort. ex Tanaka (Hyuganatsu), isolated by the cold-pressing method, was investigated by capillary GC and GC-MS. The effects of harvesting time, degree of freshness, and size of fruits on the composition of Hyuganatsu peel oils were also determined. A total of 126 volatile constituents were confirmed in the Hyuganatsu oils. The Hyuganatsu oils contained hydrocarbons (95.95-96.95%), aldehydes (0.33-0.62%), alcohols (1.91%-2.64%), ketones (0.40-0.62%), esters (0.28-0.39%), oxides (0.04-0.06%), acids (0.01%), and trace amounts of fugenol methyl ether. Monoterpene hydrocarbons were predominant. Limonene (80.35-82.39%), gamma-terpinene (7.71-9.03%), myrcene (2.11-2.28%), linalol (1.37-2.01%), and alpha-pinene (1.17-1.43%) were the most abundant components in Hyuganatsu oils. The principal sesquiterpene hydrocarbon was trans-beta-farnesene (0.60-1.04%), and its content in Hyuganatsu oils was higher than in oils of other citrus fruits. The number of ketones and the content of l-carvone in Hyuganatsu oils were higher than in other citrus oils.  相似文献   

3.
Thirteen kinds of citrus essential oils and their volatile flavor constituents were investigated for tyrosinase inhibitory activity. Eureka lemon, Lisbon lemon, Keraji, and Kiyookadaidai significantly inhibited the oxidation of L-dihydroxy phenylalanine (L-DOPA) by mushroom tyrosinase. Citral and myrcene among volatile flavor constituents of citrus essential oils exhibited tyrosinase inhibitory activities with Ki values of 0.318 and 2.38 mM, respectively. The inhibition kinetics analyzed by a Lineweaver-Burk plot indicated that citral is a noncompetitive inhibitor and myrcene is a competitive inhibitor. These results indicated that citral and myrcene are responsible for the tyrosinase inhibitory activity of citrus essential oils.  相似文献   

4.
This study was conducted to determine the lipolytic effects of eight kinds of citrus peel oils and their components. All of the citrus peel oils revealed lipolytic effects on olive oil model solution ranging from 10.9 to 73.8%. Hakyul (Citrus natsudaidai Hayata) showed the highest lipolytic effect (73.8%), followed by yuza (Citrus junos Sieb. ex Tanaka, 68.1%) and lemon (Citrus limonium, 63.4%), and their effects were comparable with or stronger than that of 5 mM raspberry ketone (p < 0.05). Among 17 authentic compounds relating to citrus peel oils, octanal (78.6%) showed the highest lipolytic effect, followed by gamma-terpinene (76.3%), limonene (75%), terpinen-4-ol (70.7%), nerol (69.9%), p-cymene (67.7%), and geranyl acetate (67.2%), and their effects were stronger than that of 5 mM raspberry ketone (p < 0.05). Ethyl acetate, alpha-pinene, myrcene, citronellal, linallyl acetate, and citronellol exhibited poor lipolytic effect in the model solution. Lipolytic effect was found to be high when the oils included a higher content of gamma-terpinene and p-cymene. Limonene showed potential lipolytic effect, and its effect is likely to be enhanced by the presence of gamma-terpinene and p-cymene. It is considered that monoterpene hydrocarbons consisting of one or two double bonds would have stronger lipolytic effect than those having three double bonds.  相似文献   

5.
Thirty-four kinds of citrus essential oils and their components were investigated for radical-scavenging activities by the HPLC method using 1,1-diphenyl-2-picrylhydrazyl (DPPH). To examine the oils' relative radical-scavenging activities compared with that of a standard antioxidant, Trolox was employed. All of the essential oils were found to have scavenging effects on DPPH in the range of 17. 7-64.0%. The radical-scavenging activities of 31 kinds of citrus essential oils were comparable with or stronger than that of Trolox (p < 0.05). The oils of Ichang lemon (64.0%, 172.2 mg of Trolox equiv/mL), Tahiti lime (63.2%, 170.2 mg of Trolox equiv/mL), and Eureka lemon (61.8%, 166.2 mg of Trolox equiv/mL) were stronger radical scavengers than other citrus oils. Citrus volatile components such as geraniol (87.7%, 235.9 mg of Trolox equiv/mL), terpinolene (87.4%, 235.2 mg of Trolox equiv/mL), and gamma-terpinene (84.7%, 227.9 mg of Trolox equiv/mL) showed marked scavenging activities on DPPH (p < 0.05).  相似文献   

6.
Aurapten (7-geranyloxycoumarin) has been reported to be an effective inhibitor of chemical carcinogenesis in some rodent models. In the present study, a method for preparing an aurapten-enriched agricultural product has been established. Out of 17 Rutaceae varieties, the aurapten content in hassaku (Citrus hassaku Hort ex Y. Tanaka) fruit peel was marked, as well as that in natsumikan (C. natsudaidai) and grapefruit (C. paradisi). The aurapten content in hassaku peel was most abundant in April. Hassaku fruit peel oil, which was dissolved by heating precipitates including aurapten which had formed after freezing the peel oil at -20 degrees C, was used. After adsorbing aurapten from peel oil onto synthetic adsorbent SP70, the adsorbent was washed with 40% (v/v) ethanol in water to remove essential oils and pigments remaining on the adsorbent. Aurapten was then eluted with 80% (v/v) ethanol. In a laboratory-scale test, the recovery rates of aurapten and total carotenoids from the eluates were 74.3 and 4.6%, respectively. In a pilot-scale test, the recovery rate of aurapten in the aurapten-enriched preparation from dissolved hassaku oil was 91.0%, and its concentration was 64.1% (w/w). When stored for 180 days under sunlight, aurapten in powder form remained at 88.0-89.0% of the initial level, but only 31.3-43.8% in ethanol. The stability of aurapten in the aurapten-enriched preparation was higher than that of purified aurapten. These results suggest that aurapten is readily recovered from hassaku peel oil using SP70, and thus may be used as a food additive.  相似文献   

7.
In Korea, Orostachys japonicus has been used traditionally as a drug and health food. The aim of this study was to investigate possible inhibitory effects of O. japonicus extracts on the formation of N-nitrosodimethylamines (NDMA). Chloroform extraction was the most effective method for recovering the highest number of phenolic compounds and flavonoids; in these extracts the greatest nitrite-scavenging activity and inhibition of NDMA formation occurred at pH 2.5. The chloroform extract was separated into 10 fractions (J1-J10); fraction J4 inhibited NDMA formation by 90.1 +/- 0.4%. This fraction was then separated into five subfractions (J4-1-J4-5) using a silica gel column. Subfractions J4-2 [(+)-catechin] and J4-4 (3,4-dihdroxybenzoic acid) inhibited NDMA formation by 89.5 +/- 0.9 and 77.6 +/- 0.8%, respectively.  相似文献   

8.
The essential oil obtained by hydrodistillation from aerial parts of Satureja cuneifolia Ten., collected in three different maturation stages such as preflowering, flowering, and postflowering, were analyzed simultaneously by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Thymol (42.5-45.2%), p-cymene (19.4-24.3%), and carvacrol (8.5-13.2%) were identified as the main constituent in all stages. At the same time, the essential oils and main components were evaluated for their antimicrobial activity using a microdilution assay resulting in the inhibition of a number of common human pathogenic bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and the yeasts Candida albicans and Candida tropicalis. The minimum inhibitory concentrations (MIC) varied between 62.5 and 250 microg/mL within a moderate antimicrobial activity range. Furthermore, the antioxidant capacity of the essential oils and major components thymol and carvacrol were examined in vitro. The essential oils obtained from S. cuneifolia in three different stages and its main components were interacted with 1,1-diphenyl-2-picrylhydrazyl (DPPH (*)) as a nitrogen-centered stable radical, resulting in IC 50 = 1.6-2.1 mg/mL. In addition, the effects on inhibition of lipid peroxidation of the essential oils were assayed using the beta-carotene bleaching method. All of the tested oils inhibited the linoleic acid peroxidation at almost the same level as butylated hydroxytoluene (BHT) (93.54-94.65%). BHT and ascorbic acid were used as positive controls in the antioxidant assays.  相似文献   

9.
The isolated essential oils from seven air-dried plant species were analyzed by gas chromatography-mass spectrometry (GC-MS). Thymus vulgaris (thyme), Origanum vulgare (oregano), and Origanumdictamus (dictamus) essential oils were found to be rich in phenolic compounds representing 65.8, 71.1, and 78.0% of the total oil, respectively. Origanum majorana (marjoram) oil was constituted of hydrocarbons (42.1%), alcohols (24.3%), and phenols (14.2%). The essential oil from Lavandula angustifolia Mill. (lavender) was characterized by the presence of alcohols (58.8%) and esters (32.7%). Ethers predominated in Rosmarinus officinalis (rosemary) and Salvia fruticosa (sage) essential oils, constituting 88.9 and 78.0%, respectively. The radial growth, conidial germination, and production of Penicillium digitatum were inhibited completely by oregano, thyme, dictamus, and marjoram essential oils at relatively low concentrations (250-400 microg/mL). Lavender, rosemary, and sage essential oils presented less inhibitory effect on the radial growth and conidial germination of P. digitatum. Conidial production of P. digitatum was not affected by the above oils at concentrations up to 1000 microg/mL. Apart from oregano oil, all essential oils were more effective in the inhibition of conidial germination than of radial growth. The monoterpene components, which participate in essential oils in different compositions, seem to have more than an additive effect in fungal inhibition.  相似文献   

10.
The compositions of essential oils isolated from the aerial parts of Artemisia absinthium, Artemisia santonicum, and Artemisia spicigera by hydrodistillation were analyzed by GC-MS, and a total of 204 components were identified. The major components of these essential oils were camphor (34.9-1.4%), 1,8-cineole (9.5-1.5%), chamazulene (17.8-nd%), nuciferol propionate (5.1-nd%), nuciferol butanoate (8.2-nd%), caryophyllene oxide (4.3-1.7%), borneol (5.1-0.6%), alpha-terpineol (4.1-1.6%), spathulenol (3.7-1.3%), cubenol (4.2-0.1%), beta-eudesmol (7.2-0.6%), and terpinen-4-ol (3.5-1.2%). The antifungal activities of these essential oils were tested against 11 plant fungi and were compared with that of a commercial antifungal reagent, benomyl. The results showed that all of the oils have potent inhibitory effects at very broad spectrum against all of the tested fungi. Pure camphor and 1,8-cineole, which are the major components of the oils, were also tested for antifungal activity against the same fungal species. Unlike essential oils, these pure compounds were able to show antifungal activity against only some of the fungal species. In addition, the antioxidant and DPPH radical scavenging activities of the essential oils, camphor, and 1,8-cineole were determined in vitro. All of the studied essential oils showed antioxidant activity, but camphor and 1,8-cineole did not.  相似文献   

11.
The volatile components of Hyuganatsu (Citrus tamurana Hort. ex Tanaka) peel oil, isolated by cold-pressing, were investigated by chemical and sensory analyses. According to chemical analysis by GC and GC-MS, limonene (84.0%) was the most abundant compound, followed by gamma-terpinene (6.9%), myrcene (2.2%), alpha-pinene (1.2%), and linalool (1.0%). Monoterpene hydrocarbons were predominant in Hyuganatsu peel oil. The odor-active volatiles in Hyuganatsu flavor were studied by GC-olfactometry and omission tests. The characteristic flavor was present in the oxygenated fraction. Flavor dilution (FD) factors of the volatile flavor components of the Hyuganatsu cold-pressed oil were determined by aroma extraction dilution analysis (AEDA). Furthermore, relative flavor activity was investigated by means of FD factor and weight percent. Ten kinds of odor compounds having Hyuganatsu-like aroma were detected by AEDA: limonene, linalool, octanol, neral, neryl acetate, tridecanal, trans-carveol, cis-nerolidol, trans,trans-farnesyl acetate, and trans,trans-farnesol. Linalool and octanol were regarded as the most odor-active or key compounds of Hyuganatsu aroma. Diluted solutions of linalool and octanol of approximately 2 ppm gave a fresh and fruity aroma note similar to Hyuganatsu flavor.  相似文献   

12.
Thirteen essential oils were examined for their antioxidant activity using three different assay systems. Jasmine, parsley seed, rose, and ylang-ylang oils inhibited hexanal oxidation by over 95% after 40 days at a level of 500 microg/mL in the aldehyde/carboxylic acid assay. Scavenging abilities of the oils for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical ranged from 39% for angelica seed oil to 90% for jasmine oil at a level of 200 microg/mL. The greatest inhibitory activity toward malonaldehyde (MA) formation from squalene upon UV-irradiation was obtained from parsley seed oil (inhibitory effect, 67%), followed by rose oil (46%), and celery seed oil (23%) at the level of 500 microg/mL. The main compounds of oils showing high antioxidant activity were limonene (composition, 74.6%) in celery seed, benzyl acetate (22.9%) in jasmine, alpha-pinene (33.7%) in juniper berry, myristicin (44%) in parsley seed, patchouli alcohol (28.8%) in patchouli, citronellol (34.2%) in rose, and germacrene (19.1%) in ylang-ylang.  相似文献   

13.
Fruit juice of a new pigmented citrus hybrid named Omo-31 and those of its parents clementine cv. Oroval (Citrus clementina Hort. ex Tan.) and Moro orange [Citrus sinensis (L.) Osbeck] were analyzed during fruit maturation to determine juice yield, total soluble solids (TSS), total acidity (TA), TSS/TA ratio (classical parameters of quality), and potential health beneficial components, such as vitamin C, flavanones, anthocyanins, and phenolic acids. Results showed that juice yield, TA, TSS, and TSS/TA ratio values of Omo-31 were similar to those of the Moro orange. Vitamin C content of the new hybrid was slightly higher than that of clementine and lower than that of the Moro orange, but at maturity stage no differences were observed among the three genotypes. The phenolic compounds content of the new hybrid and those of the parents and their evolution during maturation were studied. At maturity stage the amount of anthocyanins, flavanones, and hydroxycinnamic acids in Omo-31 was found to be notably higher than those of the parents. The high level of antioxidant substances makes this new fruit important for its nutritional benefits.  相似文献   

14.
The volatile oils of the aerial parts and roots from a pasture plant, Elionurus elegans, were studied by GC-MS analyses. Both organs studied contained only terpenic constituents. The main components found in the extract essential oils of the aerial parts were campherenone (43.0%), caryophyllene oxide (4.9%), and bisabolone (4.9%), whereas those found in the root essential oils were campherenone (39.0%), epi-beta-santalene (12.0%), and caryophyllene oxide (4.6%). Furthermore, the oils were tested for antibacterial and antifungal activities. The results obtained led to a nonsignificant inhibitory effect, although an increase of the lag stage was shown for the kinetics growth of Candida albicans, Saccharomyces cerevisiae, Enterococcus hirae, and Staphylococcus aureus. When alpha-tocopherol is used as a control, the antioxidant activities of the oils obtained from the aerial parts and roots were 30 and 46% IC(50), respectively.  相似文献   

15.
Water-distilled essential oils from herbal parts of Micromeria cristata (Hampe) Griseb. subsp. phrygia P. H. Davis (Endemic) (Lamiaceae) collected from three different localities were analyzed by GC-MS. The major component characterized in the three oils was borneol (27-39%). Other main components were determined as camphor (9-15%), caryophyllene oxide (4-6%), and trans-verbenol (4-6%) in the oils. Enantiomeric distributions of borneol and camphor in the oils were determined on a fused silica Lipodex-E capillary column using a multidimensional GC-MS system. The three essential oils and both enantiomers of borneol have been evaluated for their antimicrobial activity. They showed inhibitory effects on Gr (-) and Gr (+) pathogenic microorganisms.  相似文献   

16.
  【目的】  土壤pH影响土壤锰 (Mn) 有效性,酸性土壤易出现Mn过量问题,我国柑橘主要分布在南方红黄壤区,柑橘园酸性或强酸性土壤比例高,柑橘园土壤Mn过量较普遍。为此,我们研究了4种柑橘砧木对Mn过量胁迫的耐受性和生理响应,以期为Mn过量土壤上适宜砧木的选择提供依据。  【方法】  选用枳、资阳香橙、红橘和沙田柚4种常用柑橘砧木苗为材料,采用蛭石与珍珠岩1∶1的基质进行了营养液栽培试验,营养液中Mn处理包括0.01 (对照)、0.05、0.25、1.25和6.25 mmol/L 5个浓度。观察砧木苗的生长反应和中毒症状,处理60天时,测定叶绿素含量和光合参数;处理67天终止处理,测定砧木苗生长量、生物量、过氧化物酶活性、营养元素含量等生理生化指标,并用隶属函数对砧木过量锰的耐受性进行综合评价。  【结果】  柑橘砧木苗出现锰中毒的症状为叶片失绿,出现褐色坏死斑点;根量变少,呈现褐色斑点。4种砧木苗均在Mn 0.25 mmol/L处理时出现Mn中毒症状,其中枳最先出现症状且最严重,资阳香橙最迟出现症状且最轻;4种砧木在Mn 0.05 mmol/L处理时即出现Mn过量胁迫,表现为地上部和地下部鲜重和干重显著下降,根冠比升高 (红橘除外)、叶绿素含量下降、净光合速率降低、气孔开度下降、胞间CO2浓度上升。Mn过量 (> 0.05 mmol/L) 胁迫使4种砧木叶片细胞膜受损,相对电导率和MDA含量上升;清除活性氧的SOD和POD活性上升,CAT活性下降。Mn过量胁迫影响柑橘砧木的营养元素吸收和转运,叶片和根系Mn含量上升,但随Mn胁迫浓度升高,Mn从根系到叶片的迁移率先降低后升高;Mn过量胁迫使砧木叶片K、P、Ca、Mg、Fe、Zn元素含量下降,根系K、P、Fe、Zn含量上升而Ca、Mg含量下降。  【结论】  不同砧木对Mn过量胁迫耐受性存在明显的差异,综合评价耐性强弱顺序为:资阳香橙 > 沙田柚 > 红橘 > 枳,高锰土壤的柑橘园可选用资阳香橙做砧木以减轻锰害。  相似文献   

17.
The essential oil isolated from Turkish tarragon (Artemisia dracunculus) by hydrodistillation was analyzed by GC-MS. Thirty compounds representing 99.5% of total oil were identified. The predominant components in the oil were (Z)-anethole (81.0%), (Z)-beta-ocimene (6.5%), (E)-beta-ocimene (3.1%), limonene (3.1%), and methyleugenol (1.8%). The antibacterial and antifungal activities of the essential oils isolated from A. dracunculus, Artemisia absinthium, Artemisia santonicum, and Artemisia spicigera oils were also evaluated. In general, the oils exhibited potent antifungal activity at a wide spectrum on the growth of agricultural pathogenic fungi. Among the oils, the weakest antifungal activity was shown by the oil of A. dracunculus. In many cases, the oils of A. absinthium, A. santonicum, and A. spicigera completely inhibited the growth of some fungal species. As compared with antibacterial activities of all of tested oils, A. santonicum and A. spicigera oils showed antibacterial activities over a very wide spectrum. However, the essential oils tested showed lower inhibition zones than the inhibition zones of penicillin. In addition, antioxidant and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities of tarragon oil were determined, and weak antioxidant and DPPH radical scavenging activities were found in comparison to butylated hydroxytoluene.  相似文献   

18.
The thermal degradation kinetics of vitamin C, two carotenoids (beta-carotene and beta-cryptoxanthin), and hesperidin, as a function of temperature, were determined for Citrus juice [Citrus sinensis (L.) Osbeck and Citrus clementina Hort. ex Tan]. The influence of dissolved oxygen on the rate of ascorbic acid degradation was also assessed. Analysis of kinetic data suggested a first-order reaction for the degradation of vitamin C and carotenoids. The kinetics parameters Dtheta, z, and Ea have been calculated. Following the Arrhenius relationship, the activation energy of ascorbic acid was 35.9 kJ mol-1 and agreed with the range of literature reported value. The results on vitamin C and carotenoids from citrus juice made it possible to validate the predicting model. Thermal degradation of carotenoids revealed differences in stability among the main provitamin A carotenoids and between these and other carotenoids belonging to the xanthophyll family. The activation energies for the two provitamin A carotenoids were 110 and 156 kJ mol-1 for beta-carotene and beta-cryptoxanthin, respectively. On the other hand, no degradation of hesperidin was observed during thermal treatment. Finally, the vitamin C in citrus juice was not as heat sensitive as expected and the main provitamin A carotenoids present in citrus juice displayed a relative heat stability. The high-performance liquid chromatography-diode array detection-mass spectrometry analysis of degradation products showed that the isomerization of the epoxide function in position 5,6 into a furanoxide function in position 5,8 was a common reaction for several xanthophylls. These findings will help determine optimal processing conditions for minimizing the degradation of important quality factors such as vitamin C and carotenoid in citrus juice.  相似文献   

19.
In this study, the contamination by chloroparaffin of Sicilian and Calabrian citrus essential oils, produced in the crop years 1994-1996, was investigated. The analyses were carried out on 102 lemon oils, 98 orange oils, and 96 mandarin oils, using a dual-channel GC-ECD. It was found that 53% of lemon oil, 33% of orange oil, and 38% of mandarin oil samples were contaminated. The mean contamination levels were 7.1 ppm (lemon), 2.5 ppm (orange), and 5.3 ppm (mandarin). The highest concentration of chloroparaffin found was 60 ppm in a lemon oil sample.  相似文献   

20.
Antilisterial activities of Thymbra capitata and Origanum vulgare essential oils were tested against 41 strains of Listeria monocytogenes. The oil of T. capitata was mainly constituted by one component, carvacrol (79%), whereas for O. vulgare three components constituted 70% of the oil, namely, thymol (33%), gamma-terpinene (26%), and p-cymene (11%). T. capitata essential oil had a significantly higher antilisterial activity in comparison to O. vulgare oil and chloramphenicol. No significant differences in L. monocytogenes susceptibilities to the essential oils tested were registered. The minimum inhibitory concentration values of T. capitata essential oil and of carvacrol were quite similar, ranging between 0.05 and 0.2 microL/mL. Antioxidant activity was also tested, the essential oil of T. capitata showing significantly higher antioxidant activity than that of O. vulgare. Use of T. capitata and O. vulgare essential oils can constitute a powerful tool in the control of L. monocytogenes in food and other industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号