首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
REASON FOR PERFORMING STUDY: There are no detailed studies describing a relationship between hindlimb lameness and altered motion of the back. OBJECTIVES: To quantify the effect of induced subtle hindlimb lameness on thoracolumbar kinematics in the horse. METHODS: Kinematics of 6 riding horses were measured during walk and trot on a treadmill before and during application of pressure on the sole of the left hindlimb using a well-established sole pressure model. Reflective markers were located at anatomical landmarks on the limbs, back, head and neck for kinematic recordings. Ground reaction forces (GRF) in individual limbs were calculated from kinematics to detect changes in loading of the limbs. RESULTS: When pressure on the sole of the hindlimb was present, horses were judged as lame (grade 2 on the AAEP scale 1-5) by an experienced clinician. No significant unloading of this limb was found in the group of horses (unloading was observed in 4 animals, but was not detectable in the other 2), but statistically significant effects on back kinematics were detected. The overall flexion-extension (FE) range of motion (ROM) of the vertebral column was increased at walk, especially in the thoracic segments. Axial rotation (AR) ROM of the pelvis was also increased. At trot, the FE ROM was decreased only in the segment L3-L5-S3. During the stance phase of the lame limb, the segment T6-T10-T13 was more flexed and the neck was lowered at both gaits; the thoracolumbar segments were more extended at walk and trot. There were no significant changes in the stride length or protraction-retraction angles in any of the limbs. CONCLUSIONS: Subtle hindlimb lameness provoked slight but detectable changes in thoracolumbar kinematics. The subtle lameness induced in this study resulted in hyperextension and increased ROM of the thoracolumbar back, but also in decreased ROM of the lumbosacral segment and rotational motion changes of the pelvis. POTENTIAL RELEVANCE: Even subtle lameness can result in changes in back kinematics, which emphasises the intricate link between limb function and thoracolumbar motion. It may be surmised that, when chronically present, subtle lameness induces back dysfunction.  相似文献   

2.
OBJECTIVE: To study the effect of unilateral synovitis in the distal intertarsal and tarsometatarsal joints on locomotion, including the compensating effects within and between limbs. ANIMALS: 4 clinically normal horses. PROCEDURE: Gait analyses including kinematics, force plate, and inverse dynamic analysis were performed at the trot before lameness, after which synovitis was induced by injecting endotoxin into the right distal intertarsal and tarsometatarsal joints. Gait analyses were repeated 24 to 30 hours later during lameness. Differences between the stride variables during the 2 conditions (lame and sound) were identified. RESULTS: Tarsal joint range of motion, peak vertical force, and vertical impulse were decreased during lameness. Mechanical deficits included a decrease in negative work performed by the tarsal extensors during the early stance phase and a decrease in positive work by the tarsal extensors during push off. No compensatory changes in work were performed by other joints within the lame hind limb during the stance phase. Vertical impulse in the diagonal forelimb decreased, but there were no significant changes in forces or impulses in the ipsilateral forelimb or contralateral hind limb. CONCLUSION AND CLINICAL RELEVANCE: Results indicate that horses are able to manage mild, unilateral hind limb lameness by reducing the airborne phase of the stride rather than by increased loading of the compensating limbs.  相似文献   

3.
OBJECTIVE: To determine the validity of using skin-fixated markers to assess kinematics of the thoracolumbar vertebral column in horses. ANIMALS: 5 Dutch Warmblood horses without abnormalities of the vertebral column. PROCEDURE: Kinematics of T6, T10, T13, T17, L1, L3, L5, S3, and both tuber coxae were determined by use of bone-fixated and skin-fixated markers. Three-dimensional coordinate data were collected while horses were walking and trotting on a treadmill. Angular motion patterns were calculated and compared on the basis of 2-dimensional analysis of data from skin-fixated markers and 3-dimensional analysis of data from bone-fixated markers. RESULTS: Flexion-extension of thoracolumbar vertebrae and axial rotation of the sacrum were satisfactorily determined at both the walk and trot, using skin-fixated markers. Data from skin-fixated markers were accurate for determining lateral bending at the walk in the midthoracic and lower lumbar portion of the vertebral column only. However, at the trot, data from skin-fixated markers were valid for determining lateral bending for all thoracolumbar vertebrae. CONCLUSIONS AND CLINICAL RELEVANCE: Caution should be taken when interpreting data obtained by use of skin-fixated markers on lateral bending motions during the walk in horses. For determination of other rotations at the walk and all rotations at the trot, use of skin-fixated markers allows valid calculations of kinematics of the vertebral column. Understanding to what extent movements of skin-fixated markers reflect true vertebral motion is a compulsory step in developing noninvasive methods for diagnosing abnormalities of the vertebral column and related musculature in horses.  相似文献   

4.
REASON FOR PERFORMING STUDY: Although there is anecdotal evidence of clinical effectiveness of chiropractic in treatment of equine back pain, little scientific work has been reported on the subject. OBJECTIVES: To quantify the effect of chiropractic manipulations on back and limb kinematics in horse locomotion. METHODS: Kinematics of 10 Warmblood horses were measured over ground at walk and trot at their own, preferred speed before, and one hour and 3 weeks after chiropractic treatment that consisted of manipulations of the back, neck and pelvic area. Speed was the same during all measurements for each horse. RESULTS: Chiropractic manipulations resulted in increased flexion-extension range of motion (ROM) (P<0.05) at trot in the vertebral angular segments: T10-T13-T17 (0.3 degrees ) and T13-T17-L1 (0.8 degrees ) one hour after treatment, but decreased ROM after 3 weeks. The angular motion patterns (AMPs) of the same segments showed increased flexion at both gaits one hour after treatment (both angles 0.2 degrees at walk and 0.3 degrees at trot, P<0.05) and 3 weeks after treatment (1.0 degrees and 2.4 degrees at walk and 1.9 degrees and 2.9 degrees at trot, P<0.05). The lumbar (L3 and L5) area showed increased flexion after one hour (both angles 0.3 degrees at walk and 0.4 degrees at trot P<0.05), but increased extension after 3 weeks (1.4 degrees and 1.2 degrees , at trot only, P<0.05). There were no detectable changes in lateral bending AMPs. The inclination of the pelvis was reduced at trot one hour (1.6 degrees ) and 3 weeks (3 degrees ) after treatment (P<0.05). The mean axial rotation of the pelvis was more symmetrical 3 weeks after the treatment at both gaits (P<0.05). There were no changes in limb angles at walk and almost no changes at trot. CONCLUSIONS: The main overall effect of the chiropractic manipulations was a less extended thoracic back, a reduced inclination of the pelvis and improvement of the symmetry of the pelvic motion pattern. POTENTIAL RELEVANCE: Chiropractic manipulations elicit slight but significant changes in thoracolumbar and pelvic kinematics. Some of the changes are likely to be beneficial, but clinical trials with increased numbers of horses and longer follow-up are needed.  相似文献   

5.
6.
REASONS FOR PERFORMING STUDY: The compensatory mechanisms of horses with weightbearing hindlimb lameness are still not fully understood. HYPOTHESIS: That weightbearing, unilateral hindlimb lameness would not only alter stride characteristics to diminish structural stress in the affected limb but also induce compensatory load adjustments in the other supporting limbs. OBJECTIVE: To document the load and time shifting mechanisms of horses with unilateral weightbearing hindlimb lameness. METHODS: Reversible lameness was induced in 8 clinically sound horses by applying a solar pressure model. Three degrees of lameness (subtle, mild and moderate) were induced and compared with the nonlame (sound) control measurement. Vertical ground reaction forces were recorded for all 4 limbs simultaneously on an instrumented treadmill. RESULTS: Compared to the sound situation, moderate hindlimb hoof lameness induced a decrease in stride duration (-3.3%) and stride impulse (-3.1%). Diagonal impulse decreased selectively in the lame diagonal stance (-7.7%). Within the diagonal limb pair, vertical impulse was shifted to the forelimb during the lame diagonal stance (+6.5%) and to the hindlimb during the sound diagonal stance (+3.2%). Peak vertical force and vertical impulse decreased in the lame limb (-15%), but only vertical impulse increased in the contralateral hindlimb (+5.7%). Stance duration was prolonged in both hindlimbs (+2.5%). Suspension duration was reduced to a greater extent after push-off of the lame diagonal limb pair (-21%) than after the sound diagonal limb pair (-9.2%). CONCLUSIONS: Four compensatory mechanisms could be identified that served to reduce structural stress, i.e. peak vertical force on the affected limb: 1) reduction of the total vertical impulse per stride; 2) diagonal impulse decreased selectively in the lame diagonal; 3) impulse was shifted within the lame diagonal to the forelimb and in the sound diagonal to the hindlimb; and 4) the rate of loading and peak forces were reduced by prolonging the stance duration. POTENTIAL RELEVANCE: Load shifting mechanisms are not only effective in diminishing peak forces in the affected limb, but also suppress compensatory overload in other limbs. Selected force and time parameters allow the unequivocal identification of the lame limb. Future studies have to examine how far these compensatory mechanisms may be generalised for other defined orthopaedic problems in the hindlimb.  相似文献   

7.
REASONS FOR PERFORMING STUDY: Earlier studies have developed a clinical tool to evaluate objectively the function of the equine back. The ability to differentiate horses with back pain from asymptomatic, fully functioning horses using kinematic measures from this tool has not been evaluated. OBJECTIVES: To compare the kinematics of the back at walk and trot in riding horses with back dysfunction to the same parameters in asymptomatic sport horses. METHODS: The kinematics of the back in 12 horses with impaired performance and back pain were studied at walk and trot on a treadmill. Data were captured for 10 sees at 240 Hz. Range of movement (ROM) and intravertebral pattern symmetry of movement for flexion and extension (FE), lateral bending (LB) and axial rotation (AR) were derived from angular motion pattern data and the results compared to an earlier established database on asymptomatic riding horses. RESULTS: At walk, horses with back dysfunction had a ROM smaller for dorsoventral FE in the caudal thoracic region (T13 = 7.50 degrees, T17 = 7.71 degrees; P<0.05), greater for LB at T13 (8.13 degrees; P<0.001) and smaller for AR of the pelvis (10.97 degrees; P<0.05) compared to asymptomatic horses (FE-T13 = 8.28 degrees, FE-T17 = 8.49 degrees, LB-T13 = 6.34 degrees, AR-pelvis = 12.77 degrees). At trot, dysfunctional horses had a smaller (P<0.05) ROM for FE at the thoracic lumbar junction (T17 = 2.46 degrees, L1 = 2.60 degrees) compared to asymptomatic horses (FE-T17 = 3.07 degrees, FE-L1 = 3.12 degrees). CONCLUSIONS: The objective measurement technique can detect differences between back kinematics in riding horses with signs of back dysfunction and asymptomatic horses. The clinical manifestation of back pain results in diminished flexion/extension movement at or near the thoracic lumbar junction. However, before applying the method more extensively in practice it is necessary to evaluate it further, including measurements of patients whose diagnoses can be confirmed and long-term follow-ups of back patients after treatment. POTENTIAL RELEVANCE: Since the objective measurement technique can detect small movement differences in back kinematics, it should help to clinically describe and, importantly, objectively detect horses with back pain and dysfunction.  相似文献   

8.
The study was performed to obtain a detailed insight into the load and time shifting mechanisms of horses with unilateral weight-bearing forelimb lameness. Reversible lameness was induced in 11 clinically sound horses by applying a solar pressure model. Three degrees of lameness (subtle, mild and moderate) were induced and compared with sound control measurements. Vertical ground reaction force-time histories of all four limbs were recorded simultaneously on an instrumented treadmill. Four compensatory mechanisms could be identified that served to reduce structural stress, i.e. peak vertical force on the affected limb: (1) with increasing lameness, horses reduced the total vertical impulse per stride; (2) the diagonal impulse decreased selectively in the lame diagonal; (3) the impulse was shifted within the lame diagonal to the hindlimb and in the sound diagonal to the forelimb; (4) the rate of loading and the peak forces were reduced by prolonging the stance duration. Except in the diagonal hindlimb, where peak vertical forces increased slightly in the moderate lameness condition, no equivalent compensatory overload situation was observed in the other limbs. Specific force and time information of all four limbs allow the unequivocal identification of the affected limb.  相似文献   

9.
There has been no analysis of a hopping‐type forelimb lameness syndrome seen in ridden horses. The objectives of this retrospective study were to describe the clinical features of this syndrome, response to diagnostic analgesia and imaging findings and to document post mortem findings. Clinical records from 2002 to 2014 were reviewed and data concerning signalment, history, lame limb(s), lameness characteristics, response to diagnostic analgesia and diagnostic imaging were recorded. There were 46 horses from 4 to 13 years of age, 6 of which had a history of known or suspected trauma immediately before the onset of reduced performance or lameness. Lameness seen when ridden was characterised by an intermittent shortened cranial phase of the step of the lame forelimb at the trot and marked elevation of the head as the affected limb was protracted, with the horse appearing to ‘hop’ (on the contralateral limb) as if trying to break to canter. When lameness was at its worst horses were unwilling to trot. Three horses showed sporadic severe stumbling. Local analgesia of the affected limb did not improve the lameness and in 16 horses lameness deteriorated. Three of 5 horses showed some improvement (≥2/8 grades) in the hopping‐type lameness after intra‐articular analgesia of the articular process joints of the sixth and seventh cervical vertebrae, ipsilateral to the lame forelimb. Radiographic, ultrasonographic and nuclear scintigraphic examinations were inconclusive. Two of 4 horses responded to treatment with gabapentin. In 3 horses post mortem examination revealed mild lymphocytic inflammation within or around the dorsal root ganglia of the fifth and sixth cervical nerve roots, sixth cervical nerve root or second thoracic nerve root ipsilateral to the lame limb. Idiopathic hopping‐type lameness syndrome in ridden horses may be a pain‐related condition ± a neurological component and currently has a guarded prognosis.  相似文献   

10.
Saddle–horse interaction is increasingly linked with back pain, performance, and welfare issues. Saddle fit and work quality influence alterations in back shape with exercise at thoracic vertebra 13 level (T13) with exercise. The objectives of experiments were to: determine a repeatable zone and stride point of peak pressure under saddles fitted to industry guidelines; compare peak pressure in this zone and limb kinematics in collected trot between horses own saddles (S) and a saddle designed to reduce pressure at T10–T13 (F); compare thoracolumbar width change after exercise between S and F and with F after 3 months use. Elite dressage (n = 13) horses/riders with no lameness/performance problem had pressure mat data acquired under S, fitted by four qualified saddle fitters, to determine zones of peak pressure. Pressure mat data at T10–T13, forelimb/hindlimb protraction, and carpal/tarsal flexion acquired using simultaneous high-speed motion capture, and difference in thoracolumbar dimensions (T8, T18 at 3, 15 cm) between before and after exercise was compared between S and F. Peak pressures were consistently detected axially around T10–T13 (sensors A4–A7, H4–H7). Peak pressures were significantly less with F than S for each cell and pooled (55%–68% difference. P = .01 to <.0001). Saddle F was associated with 13% greater forelimb and 22.7% hindlimb protraction, 3.5° greater carpal and 4.3° tarsal flexion (P = .02 to .0001), and greater increase in thoracolumbar dimensions after exercise (P = .01 to <.0001). Saddles fitted to published guidelines may still have a nonideal interface with horses. Reducing peak pressures around T10–T13 was associated with improved limb kinematics in trot and greater thoracolumbar expansion after exercise.  相似文献   

11.
OBJECTIVE: To determine movements of the vertebral column of horses during normal locomotion. ANIMALS: 5 young Dutch Warmblood horses that did not have signs of back problems or lameness. PROCEDURE: Kinematics of 8 vertebrae (T6, T10, T13, T17, L1, L3, L5, and S3) and both tuber coxae were determined, using bone-fixated markers. Measurements were recorded when the horses were trotting on a treadmill at a constant speed of 4.0 m/s. RESULTS: Flexion-extension and axial rotation were characterized by a double sinusoidal pattern of motion during 1 stride cycle, whereas lateral bending was characterized by 1 peak and 1 trough. Ranges of motion for all vertebrae were: flexion-extension, 2.8 degrees to 4.9 degrees; lateral bending, 1.9 degrees to 3.6 degrees; axial rotation, 4.6 to 5.8 degrees, except for T10 and T13, where the amount of axial rotation decreased to 3.1 degrees and 3.3 degrees, respectively. CONCLUSION AND CLINICAL RELEVANCE: During locomotion, 3 types of rotations are evident in the thoracolumbar vertebrae. Regional differences are observed in the shape and timing of the rotations. These differences are related to actions of the limbs. The method described here for direct measurement of vertebral column motion provides insights into the complex movements of the thoracolumbar portion of the vertebral column in trotting horses. Information on normal kinematics is a prerequisite for a better understanding of abnormal function of the vertebral column in horses.  相似文献   

12.
Lameness is a highly prevalent condition in horses and is the principal cause of removal from athletic activity in this species. In evidence-based veterinary medicine studies to evaluate non-setoidal anti-inflammatory drug (NSAID) therapies, force plates are commonly used to objectively assess improvement of lameness. The objective of this study was to determine whether breed differences would influence force plate measurements in sound and lame riding horses. Force plate measurements of lame (n = 20) and sound (n = 18) Warmblood and lame (n = 15) and sound (n = 8) Quarter Horses were compared. Lameness was visually scored using the grade 0–5 American Association of Equine Practitioners (AAEP) lameness scale. Trotting sound Warmbloods loaded their frontlimbs with 118% body weight (BW) and their hindlimbs with 96% BW, whereas Quarter Horses only used 101% BW in the front and 92% BW in the hindlimbs (P < .05). Furthermore, it appeared and was estimated that, at trot, front-limb-lame Warmblood horses showed higher peak vertical force (PVF) values (grade 2: 89% BW; grade 3: 69% BW), than front-limb-lame Quarter Horses with similar lameness scores (grade 2: 78% BW; grade 3: 66% BW). In conclusion, peak vertical forces (PVF expressed in % BW) of either lame or sound horses seem to be influenced by breed differences between Warmblood and Quarter Horse riding horses. Possible conformation and gait differences enabled trotting Quarter Horses to demonstrate lower absolute PVF values than Warmbloods, whereas trotting lame Warmbloods showed a relatively larger decrease in frontlimb loading and thus in PVF than lame Quarter Horses at a trot. Thus, in studies in which objective lameness observations are recorded, breed differences should be taken into account when specific grades of lameness of a group of horses are to be objectively compared with another group.  相似文献   

13.
OBJECTIVE: To develop an objective, accurate method for quantifying forelimb ground reaction forces in horses by adapting a human in-shoe pressure measurement system and determine the reliability of the system for shod and unshod horses. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were instrumented with a human in-shoe pressure measurement system and evaluated at a trot (3 m/s) on a motorized treadmill. Maximum force, stance time, and peak contact area were evaluated for shod and unshod horses. Three trials were performed for shod and unshod horses, and differences in the measured values were examined with a mixed model ANOVA for repeated measures. Sensor accuracy was evaluated by correlating measured variables to clinically observed lameness and by a variance component analysis. RESULTS: 4 of 6 horses were determined to be lame in a forelimb on the basis of clinical examination and measured values from the system. No significant differences were observed between shod and unshod horses for maximum force and stance time. A significant decrease in peak contact area was observed for shod and unshod horses at each successive trial. Maximum force measurements provided the highest correlation for detecting lameness (r = 0.91, shod horses; r = 1.0, unshod horses). A variance component analysis revealed that 3 trials provided a variance of 35.35 kg for maximum force (+/- 5.78% accuracy), 0.007 seconds for stance time (+/- 2.5% accuracy), and 8.58 cm2 for peak contact area (+/- 11.95% accuracy). CONCLUSIONS AND CLINICAL RELEVANCE: The in-shoe pressure measurement system provides an accurate, objective, and effective method to evaluate lameness in horses.  相似文献   

14.
REASONS FOR PERFORMING STUDY: Diagnostic infiltration of local anaesthetic solution is commonly used in cases of equine back pain. Evaluation is subjective and it is not known how local analgesia of the back affects horses without clinical signs of back pain. OBJECTIVES: To evaluate the effect of infiltration of local anaesthetics on the movement of the back in horses without clinical signs of back pain, and to evaluate the usefulness of kinematic studies as an objective and quantitative tool in evaluating local analgesia in clinical practice. METHODS: The kinematics of the back in 10 clinically sound horses were measured on 2 occasions at walk and trot before and after injections with mepivacaine and sodium chloride around the interspinous spaces between T16 and L2. The kinematics were compared between the 2 occasions before injections and before and after each injection. RESULTS: The range of motion (ROM) for dorsoventral flexion-extension (FE) of the back was increased significantly in all measured segments other than T10 at walk, as was lateral bending (LB) at T10, L3 and L5 after injection of mepivacaine. For lateral excursion (LE), total movement increased at all measured segments. At trot the only affected segment was L3, where the injection with mepivacaine decreased the ROM for FE. After injection of sodium chloride the ROM for FE increased at T13 and T17 at walk. Lateral bending and LE were not affected at walk. At trot, LB increased at L3 and L5. CONCLUSIONS AND POTENTIAL RELEVANCE: Diagnostic infiltration of local anaesthetic solution affects the function of the back in clinically sound horses, which must be considered when interpreting the use of this clinical aid in assessing clinical cases of back dysfunction. Kinematics can qualitatively and quantitatively evaluate the effect of local analgesia of the back.  相似文献   

15.
Reasons for performing study: Previous studies have suggested that agreement between equine veterinarians subjectively evaluating lameness in horses is low. These studies were limited to small numbers of horses, evaluating movement on the treadmill or to evaluating previously‐recorded videotape. Objectives: To estimate agreement between equine practitioners performing lameness evaluations in horses in the live, over ground setting. Methods: 131 mature horses were evaluated for lameness by 2–5 clinicians (mean 3.2) with a weighted‐average of 18.7 years of experience. Clinicians graded each limb using the AAEP lameness scale by first watching the horse trot in a straight line only and then after full lameness evaluation. Agreement was estimated by calculation of Fleiss' (κ). Evaluators agreed if they picked the same limb as lame or not lame regardless of the severity of perceived lameness. Results: After only evaluating the horse trot in a straight line clinicians agreed whether a limb was lame or not 76.6% of the time (κ= 0.44). After full lameness evaluation clinicians agreed whether a limb was lame or not 72.9% of the time (κ= 0.45). Agreement on forelimb lameness was slightly higher than on hindlimb lameness. When the mean AAEP lameness score was >1.5 clinicians agreed whether or not a limb was lame 93.1% of the time (κ= 0.86), but when the mean score was ≤1.5 they agreed 61.9% (κ= 0.23) of the time. When given the task of picking whether or not the horse was lame and picking the worst limb after full lameness evaluation, clinicians agreed 51.6% (κ= 0.37) of the time. Conclusions: For horses with mild lameness subjective evaluation of lameness is not very reliable. Potential relevance: A search for and the development of more objective and reliable methods of lameness evaluation is justified and should be encouraged and supported.  相似文献   

16.
Movement analysis techniques allow objective and quantitative assessment of kinematic gait analysis. Consistent repeatability of the kinematic data is essential for such assessments. This study investigated whether the repeatability of a standardized Equinalysis Elite gait analysis system is sufficient to allow its use in clinical evaluation of equine lameness with reliable documentation of individual locomotion patterns. The extent to which examinations on different days affected the results when a standardized protocol was used was investigated. The repeatability of distal limb kinematics in nine sound horses over three successive days at one location was investigated. Measurements were performed at the examination area, for three motion cycles at the walk and trot, in each direction per day. Skin markers were placed on the lateral aspect of the coffin joint, forelimb fetlock joint, hindlimb fetlock joint, carpus, tarsus, elbow, and stifle, at clipped sites marked with a permanent marker. The inter-day repeatability of angular measurements of the carpus, tarsus, forelimb fetlock, and hindlimb fetlock joints was determined. A low degree of inter-day repeatability was found with statistically significant (P ≤ .05) differences between findings on different days, observed in the time-angle diagrams of left and right carpus, tarsus, forelimb fetlock, and hindlimb fetlock joints of all horses, at both walk and trot. The standardized Equinalysis Elite system for gait analysis of distal limb kinematics in the horse did not provide highly repeatable data in this setting.  相似文献   

17.
OBJECTIVE: To characterize compensatory movements of the head and pelvis that resemble lameness in horses. ANIMALS: 17 adult horses. PROCEDURE: Kinematic evaluations were performed while horses trotted on a treadmill before and after shoe-induced lameness. Lameness was quantified and the affected limb determined by algorithms that measured asymmetry in vertical movement of the head and pelvis. Induced primary lameness and compensatory movements resembling lameness were assessed by the Friedman test. Association between induced lameness and compensatory movements was examined by regression analysis. RESULTS: Compensatory movements resembling lameness in the ipsilateral forelimb were seen with induced lameness of a hind limb. There was less downward and less upward head movement during and after the stance phase of the ipsilateral forelimb. Doubling the severity of lameness in the hind limb increased severity of the compensatory movements in the ipsilateral forelimb by 50%. Compensatory movements resembling lameness of the hind limb were seen after induced lameness in a forelimb. There was less upward movement of the pelvis after the stance phase of the contralateral hind limb and, to a lesser extent, less downward movement of the pelvis during the stance phase of the ipsilateral hind limb. Doubling the severity of lameness in the forelimb increased compensatory movements of the contralateral hind limb by 5%. CONCLUSIONS AND CLINICAL RELEVANCE: Induced lameness in a hind limb causes prominent compensatory movements resembling lameness in the ipsilateral forelimb. Induced lameness in a forelimb causes slight compensatory movements resembling lameness in the ipsilateral and contralateral hind limbs.  相似文献   

18.
OBJECTIVE: To determine kinematic movements of the vertebral column of horses during normal locomotion. ANIMALS: 5 Dutch Warmblood horses without apparent lameness or problems associated with the vertebral column. PROCEDURE: Kinematics of 8 vertebrae (T6, T10, T13, T17, L1, L3, L5, and S3) and both tuber coxae were determined, using bone-fixated markers. Horses were recorded while walking on a treadmill at a constant speed of 1.6 m/s. RESULTS: Flexion-extension was characterized by 2 periods of extension and flexion during 1 stride cycle, whereas lateral bending and axial rotation were characterized by 1 peak and 1 trough. The range of motion for flexion-extension was fairly constant for vertebrae caudal to T10 (approximately 7 degrees). For lateral bending, the cranial thoracic vertebrae and segments in the pelvic region had the maximal amount of motion, with values of up to 5.6 degrees. For vertebrae between T17 and L5, the amount of lateral bending decreased to <4 degrees The amount of axial rotation increased gradually from 4 degrees for T6 to 13 degrees for the tuber coxae. CONCLUSIONS: This direct measurement method provides 3-dimensional kinematic data for flexion-extension, lateral bending, and axial rotation of the thoracolumbar portion of the vertebral column of horses walking on a treadmill. Regional differences were observed in the magnitude and pattern of the rotations. Understanding of the normal kinematics of the vertebral column in healthy horses is a prerequisite for a better understanding of abnormal function.  相似文献   

19.
Using a system for motion analysis, linear correlation of speed and forelimb lameness was measured in 16 horses trotting on a treadmill at a minimum of three different trotting speeds. Forelimb lameness was determined as asymmetry of vertical head motion during left and right forelimb stance.In seven horses with a moderate forelimb lameness (head motion asymmetry >40%), lameness increased significantly with trotting speed. In a further seven horses with mild or subclinical forelimb lameness (head motion asymmetry <40%) and in two horses with a moderate forelimb lameness, no significant correlation between speed and motion asymmetry was found.The results indicate that moderate forelimb lameness measured as head motion asymmetry depends on the speed at which the measurements are taken. If head motion asymmetry is measured at two trotting speeds, it can be standardized to any speed within the trotting speed range.  相似文献   

20.
The relationship between lameness and crooked tail carriage (CTC) in horses is unclear. The objectives of this study were (i) to determine the association between CTC and lameness; (ii) among lame horses, to determine associations between CTC and lameness diagnosis, saddle slip, thoracolumbar range of motion (ROM), epaxial muscle tension and pain, and sacroiliac joint region (SIJR) pain, and (iii) to determine whether abolition of lameness and SIJR pain by diagnostic anaesthesia modified CTC. In this study, 520 lame and 170 nonlame sports horses were examined for CTC and other characteristics by one clinician (S.J.D.). All horses were evaluated when ridden. Lame horses were also assessed in hand and on the lunge. Crooked tail carriage, its direction, lameness, musculoskeletal and tack-related parameters were recorded as binary variables and analysed using 2 × 2 contingency tables. Sacroiliac joint region pain was diagnosed using local anaesthesia. Standard errors are shown in square brackets. 32.5% of lame horses had CTC, compared with 5.3% of nonlame horses (odds ratio = 8.6 [confidence intervals 4.4, 16.7]; P = 2×10−12). Of 169 lame horses with CTC, 103 (60.9% [3.8%]) held their tail to the left. There was no association between the side of the predominant lame limb and CTC direction. However, CTC was more common (P = 0.005) in horses with hindlimb lameness (35.7% [2.4%], N = 401) compared with forelimb lameness (21.0% [4.1%], N = 100). Crooked tail carriage was associated with SIJR pain (P = 0.0007) and thoracolumbar epaxial muscle tension (P = 0.0007), but not with saddle slip, reduced thoracolumbar ROM or thoracolumbar epaxial muscle pain. Limitations of the study included the facts that nonlame horses were a convenience sample and lameness assessment, other clinical observations and determination of the presence of CTC were subjective, with potential for bias. Video recordings and photographs are available for verification of tail position. It was concluded that CTC is more prevalent in lame horses than nonlame horses. There is a positive association between CTC and hindlimb lameness, SIJR pain and thoracolumbar epaxial muscle tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号