首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In order to clarify mechanisms of canopy recruitment of Fagus japonicastems of sprout origin, age structure and growth dynamics were studied for stems within beech stools in two stands of old growth forests on the Pacific side of central Japan. The DBH vs. height and age relationships of the beech stems showed continuous distribution from small-young, understory stems to large-old, canopy ones. There were one to seven definable periods of suppression prior to canopy recruitment in F japonica.Prior to canopy recruitment number and length of release episodes were fewer and shorter than those of suppression. E japonicastems of sprout origin can endure suppression for a long time. Continuous emergence and the alternation of fast and slow growth in F. japonicastems suggest the sprouting ability for the beech canopy can play an important role in the successful closure of canopy openings. Canopy stems showed patterns of suppression and release that were often synchronous with other canopy stems within the same beech stool. Minor disturbances such as single crown falls can play an important role in the maintenance of the multi-stem structure of beech stools in old growth forests.  相似文献   

2.
To better understand tree regeneration trajectories and the resultant coexistence of Abies with co-dominants, Picea jezoensis var. hondoensis, Tsuga diversifolia and Betula ermanii, in an old-growth subalpine forest, we investigated spatial mortality patterns during the regeneration of Abies mariesii and A. veitchii, which are abundant in the understory reflecting their shade tolerance. Regeneration of these Abies spp. from shaded understory to canopy status is affected by other canopy co-dominants. Snags of understory Abies spp. were common, suggesting that the primary mortality agent is suppression by the overstory. Although live, small Abies trees in the understory were positively associated with a Picea canopy, the long-term survival was reduced among Abies trees close to the canopy, suggesting that shading by large Picea in the overstory negatively affects understory Abies plants. The existence of shade-intolerant canopy co-dominants such as Picea and also Tsuga, which are larger and longer lived than the shade-tolerant Abies, may play an important role in preventing the Abies spp. from competitively displacing these other tree species, which are much rarer in the understory, though common in the canopy. Moreover, in spite of the fact that Betula canopies fostered recruitment and growth of Abies saplings, Abies showed no association with Betula canopy and their survival at later-stage was rather reduced near or beneath Betula canopies at the subsequent understory small tree stage. Based on spatially significant events related to tree death, this study detected such “habitat shifts” in the trajectory of tree regeneration. Accordingly, it can be concluded that careful consideration of the regeneration habitat is required for a fuller understanding of ecological processes in spatially complex old-growth forest systems.  相似文献   

3.
Regeneration of beech (Fagus crenata) forests depends on the formation of canopy gaps. However, in Japan Sea-type beech forests, a dwarf bamboo (Sasa kurilensis) conspicuously occupies sunny gaps. Therefore,F. crenata seedlings must escape the severe interference ofS. kurilensis in the gaps and persist beneath a closed canopy of the beech forest. We hypothesized that the growth ofF. crenata seedlings in the understory would be favored by their being more plastic thanS. kurilensis in photosynthetic and morphological traits, which would support the matter production ofF. crenata seedlings in a wide range of light availabilities. To examine this hypothesis, the photosynthetic-light response of individual leaves and the biomass allocation in aboveground parts (i.e., the culm/foliage ratio) were surveyed at sites with contrasting light availabilities in a Japan Sea-type beech forest in central Japan. InF. crenata, photosynthetic light utilization efficiency at relatively low light was greater, and the dark respiration rate was smaller in the leaves of seedlings (10 cm in height) beneath the closed canopy than in the leaves of saplings at the sunny forest edge. The culm/foliage (C/F) ratio of theF. crenata seedlings at the shady site was small, suggesting effective matter-production beneath the beech canopy. On the other hand,S. kurilensis both in the gap and beneath the beech canopy showed low plasticity in photosynthesis and the culm/foliage ratio. Because the shoot density ofS. kurilensis was smaller beneath the beech canopy than in the gap, the light availability at the bottom of theS. kurilensis layer was greater beneath the beech canopy. These results suggest that the photosynthetic productivity of theF. crenata seedlings would be enough for the seedlings to survive in the understory with a low density ofS. kurilensis shoots beneath the closed beech canopy.  相似文献   

4.
We experimentally investigated interacting effects of canopy gaps, understory vegetation and leaf litter on recruitment and mortality of tree seedlings at the community level in a 20-year-old lowland forest in Costa Rica, and tested several predictions based on results of previous studies. We predicted that experimental canopy gaps would greatly enhance tree seedling recruitment, and that leaf litter removal would further enhance recruitment of small-seeded, shade-intolerant seedlings in gaps. We created a large (320–540 m2) gap in the center of 5 out of 10 40 m × 40 m experimental plots, and applied the following treatments bimonthly over a 14-month-period in a factorial, split–split plot design: clipping of understory vegetation (cut, uncut), and leaf litter manipulations (removal, addition, control). As expected, experimental gaps dramatically increased tree seedling recruitment, but gap effects varied among litter treatments. Litter addition reduced recruitment in gaps, but enhanced recruitment under intact canopy. Species composition of recruits also differed markedly between gap treatments: several small-seeded pioneer and long-lived pioneer species recruited almost exclusively in gaps. In contrast, a few medium-to-large-seeded shade-tolerant species recruited predominantly under intact canopy. Leaf litter represents a major barrier for seedling emergence and establishment of small-seeded, shade-intolerant species, but enhances emergence and establishment of large-seeded, shade-tolerant species, possibly through increased humidity and reduced detection by predators. Periodic clipping of the understory vegetation marginally reduced tree seedling mortality, but only in experimental gaps, where understory vegetation cover was greatly enhanced compared to intact canopy conditions. Successful regeneration of commercially valuable long-lived pioneer trees that dominate the forest canopy may require clear-cutting, as well as weeding and site preparation (litter removal) treatments in felling clearings. Management systems that mimic natural canopy gaps (reduced-impact selective logging) could favor the regeneration of shade-tolerant tree species, potentially accelerating convergence to old-growth forest composition. In contrast, systems that produce large canopy openings (clear-cutting) may re-initiate succession, potentially leading to less diverse but perhaps more easily managed “natural plantations” of long-lived pioneer tree species.  相似文献   

5.
The old-growth forest remnants of Western Carpathians provide a unique possibility to study the disturbance regimes of forest ecosystems without human influence. This study investigated the gap dynamics in beech-dominated old-growth forest Badínsky prales in Central Slovakia. Considering the decline of silver fir in last decades, the study analyzed the main characteristics of disturbance regime with the emphasis on the role of fir. On a 5-ha research plot, the dominant tree species was beech, the proportion of fir reached about 10%. However, a significantly higher proportion of fir (>30%) was observed in the coarse woody debris. In total, 45 canopy openings were recorded. Canopy gaps and expanded gaps covered 11.3 and 37.9% of the forest area, respectively. Despite the highest frequency of small gaps <100 m2, their proportion of the overall gap area reached only 20%, what suggests the important role of intermediate and large gaps in the gap dynamics as well. The analysis of gapmakers’ crown projections confirmed a rather low contribution of fir (14.6%) to the gap formation despite its relatively intensive mortality. A high variability of the next generation age between the gaps (6–44 years) was recorded what suggests a large temporal variation of the disturbance events. The lateral expansion of adjacent trees was found to be the determining process for the closure of small canopy openings. The intermediate and large gaps are more likely closed by the height growth of natural regeneration and understory trees that are present on the majority of the area.  相似文献   

6.
Abstract

Processes and mechanisms of large-gap creation in an old-growth beech forest on Mt. Garyu in southwestern Japan by Typhoon 9119 are discussed. In the large gap of 4,100 m2, damaged trees were mostly Fagus crenataand the main cause of gap creation was uprooting of tall, large diameter, canopy trees. Also in the other parts of the beech forest, the main cause of gap creation was uprooting of canopy trees. The large gap was created by the sequential and domino-like fall of multiple canopy trees blown down by windstorms that followed the passage of the typhoon itself. In the large gap, it is possible that the windstorm which attacked and moved over the slope was strengthened by topography. In addition, the risk of gap enlargement will increase on steep slopes more than on gentle slopes when the up-slope is on the leeward of the wind. The large-scale disturbance caused by Typhoon 9119 as a catastrophic windstorm may influence the pattern and process in forest regeneration.  相似文献   

7.
To clarify the mechanism by which overstory trees shade understory saplings, we investigated the relationships among light conditions of the saplings (measured as indirect site factor; ISF and direct site factor; DSF), the calculated competition effects of overstory trees on the saplings (W), and relative height growth rate of the saplings (RHGR). We calculated several W values in order to find a W value which can express the light conditions as appropriately as possible, and the results indicated that W explained only 21.9%–24.7% of the total variance of light conditions in the cases where W gave the best fit. In this study, W was calculated based on the basal areas of overstory trees. However, it is known that canopy structure also affects the light regimes in the forest understory, and this might yield the possible errors even within W representing the shading effects most adequately. Therefore, although W significantly represents the shading effect from overstory trees, a great proportion of the variance remained without being explained by W. RHGR was negatively correlated with W, and the W value which had the most adequate explanation of the shading effect also showed the best negative correlation with RHGR. This provides the evidence that the competitive effect of overstory trees on sapling growth is mediated by the shading effect, indicating that competition for light clearly exists within this forest. Such competition for light may closely relate to the well-known phenomenon of gap regeneration in subalpine forests in central Japan.  相似文献   

8.
Spatial pattern of recruitment is an important factor influencing population dynamics of plant communities. The spatial pattern is determined by seed dispersal and by the spatial variability of germination and initial survival. In the process of forest expansion following farmland abandonment, mid- and late-successional species are often dispersed in pioneer forests by birds. This could result in an aggregated spatial pattern of seeds that could influence the dynamics of these species in mixed pioneer forests. In the sub-Mediterranean area, mid- and late-successional species such as Quercus pubescens (downy oak) and Fagus sylvatica (European beech) are expected to replace pioneer Pinus species. Using a point sampling method we demonstrated that beech and oak seedlings (height <2 m) have a clumped distribution in the understorey of pine. This could result from an aggregated dispersal by jays (dispersal effect) or from preferential recruitment in particular habitats (habitat effect). To test these hypotheses we proposed a statistical analysis of spatial patterns of regeneration of beech and oak. Ground cover variables (i.e. cover by rock outcrops, herbs, box shrubs, mosses or pine) did not differ significantly around seedlings as compared with random sample plots. Likewise, clumped seedlings had growth similar to isolated seedlings, thus refuting the hypothesis of preferential location in the most favourable microsites. Aggregated dispersal seems to be involved in the process of regeneration. Since beech and oak seedlings have contrasting ecological demands, we discuss the implication of this pattern for the replacement dynamics of pine by these species.  相似文献   

9.
Interactions between forest canopy characteristics and plants in the forest understory are important determinants of forest community structure and dynamics. In the highlands of southwestern, China the dwarf bamboo Bashania fangiana Yi is an understory dominant beneath a mixed canopy of the evergreen Abies faxoniana (Rheder & Wilson) and the deciduous Betula utilis (D. Don). The goal of this study was to better understand the role of bamboo dominance, canopy characteristics, and periodic bamboo dieback on forest development. To achieve this goal, we measured tree seedling, tree saplings, and trees, forest canopy characteristics, and bamboo cover in permanent forest (n = 4) and gap plots (n = 31) in a mixed A. faxoniana and B. utilis forest in Sichuan, China. Dwarf bamboos died off in 1983 in the gap plots, and in three of the four forest plots. Forest development was assessed for the period 1984–1996. The seedling bank in forest and gap plots increased after bamboo die-off. A. faxoniana seedlings increased more than B. utilis in forest plots; the opposite pattern characterized gap plots. The proportion of seedlings on raised micro-sites on the forest floor also changed and new seedling were more abundant on the forest floor. By 1996, bamboo seedling cover and biomass had recovered to ca. 45% or their pre-flowering values. Rates of bamboo seedling recovery were faster beneath canopy gaps and deciduous trees than beneath forest or evergreen trees. Tree mortality exceeded recruitment in plots with dense bamboo; the opposite pattern was found in the plot with little bamboo. The mortality rate for B. utilis trees (2.4% year−1) was higher than that for A. faxoniana (0.8% year−1) and forests with dense bamboos became more open over the census period. Tree mortality was size-dependent and intermediate sized trees had the lowest rates of mortality. Stand basal area increased mainly due to greater basal area gain than loss for A. faxoniana. Interactions between tree species life history, canopy type, and bamboo life-cycles create heterogeneous conditions that influence tree and bamboo regeneration and contribute to the coexistence of A. faxoniana and B. utilis in old-growth forests in southwestern China.  相似文献   

10.
It was hypothesized that soil respiration can be affected by canopy composition. Hence, admixture of trees as a common forest management practice may cause significant change in the carbon cycling. This study was conducted in a mixed spruce-beech stand at Solling forest in central Germany to investigate the effect of canopy composition on soil respiration. The canopy cover was classified in four major canopy classes (pure beech, pure spruce, mixed and gap), and the area under each canopy class was identified as a sub-plot. Soil respiration in each sub-plot (n=4) was measured monthly from Jun 2005 to July 2006. Results show significant difference in annual soil respiration between the beech (359 g·m−2·a−1 C) and gap (211 g·m−2·a−1 C) sub-plots. The estimation of the total below-ground carbon allocation (TBCA) based on a model given by Raich and Nadelhoffer revealed considerably higher root CO2 production in the beech sub-plot (231 g·m−2·a−1 C) compare to the gap sub-plot (51 g·m−2·a−1 C). The contribution of the root respiration to the total soil respiration was higher in the soil under the beech canopy (59%) compared with the soil in the gap (29%). The findings suggested that the condition under the beech canopy may cause more desirable micro-site for autotrophic respiration and consequently higher CO2 release into the atmosphere.  相似文献   

11.
Growth of regenerating trees in different light environments was studied for the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were silver fir (Abies alba Mill.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected and measured in different stands from two different geographical locations. Regenerating trees were measured for height and diameter growth during the summer of 2002. For each seedling/sapling, percentage of above canopy light (PACL) and stand basal area (BA) were used to assess available and occupied growing space respectively. Regeneration growth was compared against these two variables and regression relationships were developed. Using these models, we predicted the dynamics of regeneration as both growth and species composition. Our results showed that in low-light environments (PACL<20–35%; BA>30 m2/ha), shade tolerant fir and beech clearly outcompeted the spruce. Therefore, in dense stands, spruce could be eliminated by the shade tolerant species. For intermediate levels of cover (PACL=35–70%; BA=15–35 m2/ha) the spruce grew at comparable rates as the beech and fir. All three species showed similar growth rates in open conditions (PACL>80–90%; BA<15–20 m2/ha) with the spruce having a tendency to outgrow the others. However, in terms of establishment, such conditions favor spruce and inhibit fir and beech.  相似文献   

12.
13.

Understanding how species-specific disturbances affect the dynamics of mixed forests is becoming increasingly important due to rapidly changing disturbance regimes. This study estimated the effect of Norway spruce (Picea abies (L.) Karst.) mortality on the disturbance processes in two mixed beech stands of the Western Carpathians that were affected by a bark beetle outbreak. We evaluated the size distribution, fraction of canopy and expanded gaps, the characteristics of gapmakers and the contribution of different species to gap size. The measured canopy gap fraction was <5%, and most canopy gaps were small (<100 m2). Spruce was the most abundant gapmaker, and its share among gapmakers was 3–6 times higher than its share in the canopy. We found that the increase in spruce mortality due to the outbreak resulted in a fine-scale mortality pattern. However, spruce gapmakers did not contribute much to gap area size, as shown by a weak correlation between the number of spruce gapmakers and the area of expanded gaps. Diameter distribution of living versus recently dead trees showed that beech mortality occurred disproportionately in large size classes. However, dead spruce trees were equally frequent in all diameter classes, which means beetles did not exclusively attack larger trees in these stands during the outbreak. We conclude that spruce mortality may have influenced successional processes by giving a competitive advantage to two other species that were not affected by the outbreak, provided that a high deer browsing intensity does not hinder the regeneration of new seedlings.

  相似文献   

14.
The effects of canopy gaps on seedling emergence and growth ofCornus controversa andPrunus grayana were studied in a 21-year-oldCryptomeria japonica plantation. The seeds of the two species were sown in December 1995 and their fate was followed until March 2000.P. grayana germinated in 1996, butC. controversa germinated in 1997. In both species studied, more than 70% of the seedlings survived in the forest edge until the end of the experiment, although none survived in the forest understory in the first growing season. In the gap, the survival rate was higher inP. grayana than inC. controversa. In this experiment, some trees were cut to enlarge the area of the gap, in which the growth rate increased markedly forC. controversa seedlings, but not forP. grayana seedlings after the cutting. These two species showed substantial differences in the patterns of seedling emergence, survival and growth in aCr. japonica plantation which had a canopy gap.  相似文献   

15.
Spatial variation in tree-regeneration density is attributed to the specialization of tree species to light availability for germination and growth. Light availability,in turn, varies across the gap-understorey mosaic. Canopy gaps provide an important habitat for the regeneration of tree species that would otherwise be suppressed in the understory. In subtropical forests, there is still a knowledge-gap relating to how canopy disturbances influence tree-regeneration patterns at local scale, and if they disproportionately favor regeneration of certain species. We aim to analyze whether canopy gaps promote tree regeneration, and tree species are specialized to gaps or understory for germination and growth. We sampled vegetation in 128 plots(0.01 ha), equally distributed in gaps and below canopy, in two subtropical Shorea robusta Gaertn.(Sal) forests in Nepal, recording the number of tree seedlings and saplings in each plot. We compared the regeneration density of seedlings and saplings separately between gaps and the understorey. The mean densities of seedlings and saplings were higher in the gaps at both sites;although there was no difference in the seedling density of the majority of the species between the habitats. No species were confined to either gap or understorey at the seedling stage. We conclude that gaps are not critical for the germination of tree species in Sal forests but these are an important habitat for enabling seedlings to survive into saplings. The classification of trees into regeneration guilds mainly based on germination does not apply to the majority of tree species in subtropical Sal forests. Our results reaffirm that gap creation promotes tree regeneration by favouring seedling survival and growth and can influence forest management for conservation, as well as for plantations.  相似文献   

16.
This article reports the regeneration dynamics of a temperate Abies–Tsuga forest in Kirishima Yaku National Park, southwestern Japan, and examines the influence of species coexistence mediated by gap disturbances on biomass production. All trees taller than 2 m in a 1-ha plot were monitored over four growing seasons. Three growth-form groups occupied different vertical layers. Evergreen conifers and deciduous broad-leaved trees tended to be spatially segregated from evergreen broad-leaved trees, which formed thickets in the understorey. The regeneration of understorey evergreen broad-leaved trees was affected by canopy gaps. The recruitment of conifers and deciduous broad-leaved species was not observed during the four growing seasons. This suggests that regeneration is sporadic and the present environmental conditions are not favorable for these canopy species. The mortality and unsuccessful recruitment of conifers and deciduous trees appeared to cause fluctuations in the productivity of the stand. However, an abundance of canopy gaps accelerates the regrowth of shorter species, and the fluctuation of productivity resulting from the population dynamics of canopy species would be partly mitigated by the regeneration of evergreen understorey species. The horizontal and vertical heterogeneity of the temperate mixed forest was a result of the patch structures of the three growth-form groups. The different regeneration patterns among the three groups, which were driven by interactions of species-specific regeneration niches and disturbance regimes, might be an important factor in maintaining the aboveground productivity in a transitional mixed forest between warm-temperate and cool-temperate zones.  相似文献   

17.
In autumn 2001, 15 canopy gaps were selected for study in RumerhedgeWood, a semi-natural, mesotrophic beechwood in southern England.The gaps were located in mature, beech-dominated stands, andhad originated from openings created during a thinning in theearly 1980s and wind damage in 1987/1990 and/or the consequentsalvage operations. The extent of each gap and surrounding treeswere mapped. Tree/shrub regeneration, ground vegetation, bareearth, leaf litter and canopy openness (using a canopy-scope)were measured within and around the gaps using a 5 x 5-m gridand placing a 1 x 1-m quadrat at each grid intersection (totalnumber of quadrats = 400). Most of the gaps were <75 m2 inarea. The largest was 241 m2. They were generally irregularin shape and there was little or no understorey present. Mostsurrounding trees were beech Fagus sylvatica L. Bramble Rubusfruticosus L. formed a moderate to dense ground vegetation belowmost gaps and declined around the edges only once the gap openingwas substantially obscured. Apart from a few larger saplings,most regeneration was small and of beech. Most of the latterappeared to be in their fifth or sixth growing season, were10–35 cm tall, had an erect base and flat top, had increasedby <5 cm in height during 2001 and were not browsed by deer.Their height and growth form was related to (1) their positionwithin gaps, (2) the degree of canopy openness and (3) the coverof ground vegetation. This was translated into the followingzonation—(1) around the centre of larger gaps: canopyopenness increased to >15 per cent; bramble cover was nearcomplete; litter depth was low; many places had no beech seedlings,but some of the few present were among the tallest, most uprightand fastest growing; (2) towards the edges of the large gapsor directly below smaller gaps: canopy openness was about 4–10per cent; bramble cover was slightly less; beech seedlings weremoderately abundant but patchy, generally shorter, more flattopped and slow growing than in the gap centre, albeit somewere still among the tallest, most upright and fastest growing;(3) beyond the edge of the large/medium gaps (with the gap onlypartially visible) or directly below very small gaps: canopyopenness was only about 2–3 per cent; bramble was muchreduced; beech seedlings were at their most abundant but stillpatchy in distribution and even shorter, more flat topped andslower growing than in the above zone; (4) in an outer zonebeyond or almost beyond the sight of the gaps: canopy opennesswas <2 per cent; bramble was weak and sparse; beech seedlingswere mostly at low densities and predominately short, slow growingand flat topped. This ring pattern of beech regeneration appearedto relate mainly to (1) differences in light availability affectingthe survival, growth rate and form of seedlings; (2) competitionfrom bramble and possibly (3) limited dispersal of beech seedinto gaps. Recommendations are given for managers who wish touse natural regeneration to restock beech woodland.  相似文献   

18.
闽楠天然次生林自然更新的影响因子研究   总被引:3,自引:0,他引:3       下载免费PDF全文
[目的]分析闽楠天然次生林自然更新与环境因子之间的关系,为其科学经营及保护提供参考依据。[方法]以江西省吉安市闽楠天然次生林为研究对象,通过标准地调查获取数据,运用多元数量化模型I建立闽楠幼树幼苗重要值与环境因子的关系模型,采用单因素方差分析单个环境因子对闽楠幼树幼苗更新的影响。[结果]研究表明:密度(闽楠下种母树株数、郁闭度、株数密度)、坡位、腐殖质层厚度、坡向、林下植被盖度、凋落物层厚度是影响闽楠天然次生林自然更新的主要因素,偏相关系数在0.325 7 0.715 7之间,t检验结果为极显著或显著;模型复相关系数为0.966,F检验结果为极显著(F=30.96~(**))。[结论]闽楠下种母树株数对其幼树幼苗的更新起着最主要的作用,而郁闭度与株数密度过高或过低、凋落物层越厚、腐殖质层越薄、林下植被盖度越大均不利于其自然更新,同时,半阴坡、下坡位条件下的闽楠幼树幼苗的更新好于其它坡向与坡位。为促进闽楠幼树幼苗的自然更新,林分中闽楠下种母树应保留200株·hm~(-2)以上,以及对郁闭度、林下植被盖度及凋落物层厚度等实施相应的调控措施。  相似文献   

19.

Key message

The position of trees in the canopy impacts xylem structure and its inter-annual variation. After canopy release, the increase in the hydraulic conductivity of growth rings was driven by an increase in radial growth in large trees, and by both an increase in radial growth and changes in xylem structure in saplings.

Context

Forest canopies are frequently subjected to disturbances that allow understory trees to access the upper canopy. The effect of canopy release on xylem anatomy has been assessed in juvenile trees and saplings, while the potential acclimation of larger trees remains poorly documented.

Aims

We estimated the potential hydraulic conductivity of growth rings in large understory trees compared to overstory trees, and evaluated the responses to canopy release in large trees and in saplings.

Methods

We recorded radial growth, wood density, and vessel structure in beech trees according to their position within the canopy and their size. Xylem traits were followed during 6 years after canopy release for large trees, and during 2 years for saplings. Vessel diameter and frequency as well as ring area were used to compute the potential annual ring hydraulic conductivity.

Results

Large understory trees displayed lower radial growth increments and lower potential annual ring hydraulic conductivity than overstory trees. After canopy release, potential annual ring hydraulic conductivity increased in large trees, due exclusively to increased radial growth without any change in specific hydraulic conductivity. It increased in saplings due to both increased radial growth and increased specific conductivity.

Conclusion

Tree size impacted xylem structure and resulted in plasticity of the potential hydraulic conductivity of the annual tree ring following canopy release.
  相似文献   

20.
Eastern white pine (Pinus strobus L.) is a moderately shade-tolerant species that co-occurs with hardwood tree species in many forests of the eastern United States, as well as in pure stands. The species is valued for its timber, as well as for wildlife and recreation. Regeneration of this species is somewhat unpredictable and often occurs in patches of similarly-aged cohorts. We described the regeneration patterns of this species and examined their relation to environmental variables within hardwood forests of southwestern Virginia, USA. An average of 5.3 white pine patches per ha were observed in this study. The majority of patches consisted of saplings (85%), with 9% of patches in pole size classes, and 6% in seedling size classes. The average density of patches was 43.5 stems with an average age of 20 years. The size of patches averaged 80.6 m2. The total density of seedlings and the number of regeneration patches of all sizes of regeneration (seedlings, saplings, and poles) in plots was related to the surrounding density of large white pine trees (potential seed trees). The density of seedlings or patches was not significantly related to current vegetation cover or soil surface cover variables, but more than half of regeneration patches were located in or adjacent to old canopy gaps, most of which were old logging gaps. While seedling regeneration may occur within the understory of these forests near seed trees, advancement to the sapling and pole stage appears to be associated with canopy gap formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号