首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 213 毫秒
1.
以螺旋离心泵为研究对象,采用计算流体力学方法,对叶轮内部流场进行数值计算,分析了叶片工作面和背面轮毂、轮缘处的压强和速度分布。定义Rothalpy值作为能量损失定量评价的指标,对输送介质为清水和固相体积分数为20%、颗粒粒径为0.076 mm的固液两相含沙水在螺旋离心泵叶轮域的能量变化进行了分析,得出叶轮不同位置处能量变化规律。结果表明:叶轮螺旋段头部是整个叶轮域能量转换的过渡区域,螺旋段是叶轮域流体介质能量增加的主要区域,螺旋段中部的壁面摩擦损失对螺旋段做功能力有一定影响,液流在离心段能量损失最大;较输送清水,当输送固相体积分数为20%、颗粒粒径为0.076 mm的含沙水时,叶轮做功能力有所提高,在叶轮出口处,两类流体介质的能量趋于均匀。  相似文献   

2.
李仁年  邓育轩  韩伟  杨文洁 《农业机械学报》2012,43(11):134-137,133
根据固液两相流在螺旋离心泵叶轮内通过螺旋段和离心段的不同运动特性,以及螺旋离心泵的结构特征,推导了螺旋离心泵的变倾角叶片型线方程.该方程避免了螺旋离心泵一元设计理论对设计经验的依赖性和叶轮轴面流线分点的复杂性,可通过改变型线方程中的参数来改变流体从轴向至径向过渡时液流的轴面速度分布,从而找到最佳的轴面速度分布,对该类型泵的计算机辅助设计、内部流场数值模拟以及泵性能改善有重要意义.  相似文献   

3.
基于PIV测试的螺旋离心泵内部流动特性研究   总被引:2,自引:0,他引:2  
权辉  李仁年  苏清苗  韩伟  蒋雷  金毅 《农业机械学报》2015,46(4):28-32,58
为了研究螺旋离心泵内部流体流动机理,通过对螺旋离心泵改造和透明化处理,应用PIV测试技术,取螺旋离心泵轴截面和径向截面分阶段获得各截面上速度变化,进而得到各个截面上的流动信息,揭示螺旋离心泵内部流动状态。结果表明:整个轴向截面中,物理参量扰动大于径向截面,尤其在叶轮流道的轴截面,有明显的涡旋出现。在深入蜗壳的叶轮流道中,涡旋数量明显增加,这是因为该区域的流体方向在叶轮旋转和蜗壳使其变化过程中,同时受力分配促进了这种变化;在径向截面上,能明显看到速度方向和流线沿一个方向旋转,同时,流体均有由中心向外运动的趋势,这是叶轮螺旋段螺旋推进作用后又一个重要组成部分离心段的离心力作用决定的,叶轮的螺旋段螺旋推进作用和离心段的能量转换相互配合,构成了螺旋离心泵工作的过程。  相似文献   

4.
为了定量分析螺旋轴流式多相混输泵叶轮各区域的能量转换特性,在清水介质和气液两相介质下分别对螺旋轴流式多相混输泵进行数值模拟计算,通过分析叶轮域的能量变化规律来揭示流量和混输泵进口气体体积分数对多相混输泵叶轮各区域做功的影响规律.研究结果表明:叶轮所携带的机械能主要在叶轮中部传递给流体介质,大部分转换成了流体介质的静压能,且从叶轮进口到出口做功能力先增强后减弱;在清水介质下,随着流量的增大,叶轮前半部分做功能力逐渐增强,后半部分做功能力逐渐减弱;在气液两相介质下,随着进口含气率的增大,叶轮做功能力逐渐减弱,且进口含气率主要影响叶轮前半部分做功能力,而对后半部分影响较小.研究结果可为螺旋轴流式多相混输泵过流部件的优化设计提供一定的参考依据.  相似文献   

5.
低比转数离心泵叶轮内能量转换特性   总被引:4,自引:0,他引:4  
对比转数为60的离心泵内部流场进行数值模拟计算,从叶轮做功过程和能量损失过程两方面分析了叶轮内能量转换特性.将叶轮按径向尺寸分为8个区域,展示了不同工况、不同区域中压力和粘性力做功大小、功率密度分布、湍动能耗散率分布、能量损失组成及分布等能量转换相关特征.结果表明,叶轮进口区域能量转换效率相对较低且受叶片进口安放角影响,叶轮中部区域是叶轮做功和流体获得能量的关键区域,叶轮出口区域对叶轮性能有显著影响,壁面摩擦损失是叶轮内能量损失的主要组成部分.  相似文献   

6.
在理想流体欧拉方程的基础上,根据动量矩定理推导转速稳定和不稳定时的离心泵基本方程式,给出叶轮旋转加速和流体加速对性能影响的数学描述方程。研究离心泵非稳定工况下。叶轮内部流体的流动情况。  相似文献   

7.
双叶片螺旋离心泵非定常压力脉动数值分析   总被引:2,自引:0,他引:2  
为了分析双叶片螺旋离心泵内部流动压力脉动特性,以ZJ200 - 25型螺旋离心泵为研究对象,采用Navier- Stokes方程和标准SST k -ε湍流模型对其内部流场进行了多工况全流道非定常数值模拟.在叶轮与蜗壳耦合面上以及泵进出口处设置了7个监测点,计算得出了各监测点的压力脉动时域及频谱特性.计算结果表明,各工况...  相似文献   

8.
中比转速离心泵叶轮的优化设计及数值模拟   总被引:3,自引:0,他引:3  
谭磊  曹树良 《排灌机械》2010,28(4):282-285,290
基于流体流动的连续方程和运动方程,通过两类相对流面的迭代计算,实现中比转速离心泵叶轮内准三维正问题的数值计算,得到了轴面速度分布.应用逐点积分法进行叶片骨线绘型,在轴面上加厚叶片,在保角变换平面上修圆叶片头部,实现了离心泵叶轮的反问题设计.正反问题进行迭代计算求解直至收敛,得到最终设计的叶轮.采用RNGk-ε湍流模型和SIMPLEC算法,对离心泵叶轮内三维流场进行数值模拟,得到了叶轮内压力和速度分布.模拟结果表明设计得到的叶轮内部压力分布非常均匀,流动稳定无分离,叶轮出口能量分布合理,所设计的叶轮具有优越的水力性能.  相似文献   

9.
螺旋离心泵叶轮叶片型线方程   总被引:1,自引:1,他引:1  
为了使螺旋离心泵能够具有更优良的性能,传统的设计方法已经不能很好地满足要求.根据螺旋离心泵叶轮结构特征,推导出螺旋离心泵叶轮叶片的型线方程,并用型线方程绘制螺旋叶轮,避免了一元理论水力设计方法中手工作图的繁杂和依赖经验的欠缺,对螺旋离心泵的快速叶片绘型、提高设计精度、计算机辅助设计与三维内部流场的数值模拟有重要意义.通过例证,用型线方程获得的流线,在方格网上变化均匀、光滑,出口角接近于计算值,数值模拟所得结果与原型实验结果基本一致,从而验证了这种方法具有可行性.  相似文献   

10.
叶轮外径对离心泵内流影响的CFD分析   总被引:2,自引:0,他引:2  
谈明高  刘厚林  王勇  王凯  董亮 《排灌机械》2009,27(5):314-318
采用FLUENT,在双参考坐标系下,利用有限体积法对雷诺时均Navier-Stokes方程进行数值离散,选用标准k-ε湍流模型,SIMPLEC方法求解,对6台离心泵在不同叶轮外径下的内部流场进行了叶轮和蜗壳的耦合数值模拟.根据数值模拟结果对6台离心泵的能量性能进行了预测,并分析了叶轮外径变化对泵内部流场的影响.性能预测结果与切割定律计算结果的对比表明,随着叶轮外径的变化,泵扬程和轴功率的变化基本符合切割定律,但效率存在一定的波动.内部流场分析表明,叶轮外径变化对叶轮进口静压和总压分布的影响较小,对叶轮出口和蜗壳内静压及总压分布有着明显的影响;叶轮外径变化还对泵内尤其是蜗壳割舌附近的绝对速度分布有较大影响;当叶轮切割量大于4%后,蜗壳扩散段的流动分离现象就会逐渐消失.  相似文献   

11.
为研究叶顶间隙对低比转数半开式高速离心泵内部流动及性能的影响,基于雷诺时均Navier-Stokes方程和Spalart-Amaras湍流模型,在叶顶间隙分别为0.5,1.1和2.5 mm时对一台比转数为19.3的半开式高速离心泵内部流动进行三维紊流数值计算,并进行外特性试验验证.研究结果表明:叶顶间隙可以改善叶轮内部的流动情况,但较大间隙的叶轮内部的循环流动引起的水力损失大于较小间隙内的循环流动和回流引起的水力损失;因此随着叶顶间隙的增大,离心泵扬程及效率均减小;而且在叶片中部和尾部的叶顶间隙层内,相对速度和静压随着叶顶间隙的增大而减小,且相对速度受叶顶间隙的影响尤为明显,静压沿着叶轮半径近似呈线性增加;叶轮流道内沿轴向分布的切向速度和径向速度随着叶顶间隙的增大分别减小,但切向速度较为均匀,减小量相对较小;数值模拟与试验得到的外特性曲线变化趋势一致.  相似文献   

12.
为了优化旋流泵输送含复杂介质、固相颗粒流体的能力和提高固液两相流输送效率,在叶轮前加置具有导向和推进作用的螺旋离心式诱导轮.通过对150WX-200-20型旋流泵进行数值计算及试验,获得了有、无诱导轮式旋流泵的性能变化,在此基础上,将旋流泵的力学特性与流动特性结合起来,分析螺旋离心式诱导轮对旋流泵力学特性的影响.研究结果表明,无叶腔内流体在诱导轮作用下,流体的运动形态发生变化,产生了旋涡、二次流等现象,加剧了压力脉动的强度,但压力脉动幅值有减小的趋势;蜗壳内压力脉动强度不仅与监测点和隔舌的相对位置有关,也和监测点所在流面的截面面积存在一定联系,当监测点所在断面面积既能保证流体受蜗壳的约束,且流体流动更加均匀时,该监测点的压力脉动越小;加置诱导轮后,进入叶轮流体由轴向运动转为径向运动,从而削弱轴向力的大小,同时,单叶片诱导轮非对称结构也会加剧波动变化.这一研究对了解旋流泵内的压力脉动变化、削弱轴向力及提高泵运行的稳定性具有重要意义.  相似文献   

13.
基于FLUENT的单-双涡室离心泵径向力分析   总被引:1,自引:0,他引:1  
以某电厂3715L型脱硫泵为模型,应用商业软件FLUENT,采用标准k-ε湍流模型和SIMPLEC算法,对单-双涡室离心泵内部流场进行模拟,分析了这两种泵静压力和速度场的分布规律,并对径向力进行了计算分析.通过对比分析发现,单涡室离心泵在非设计工况点时隔舌两侧区域出现较大压差,作用于叶轮产生径向力,小流量时叶轮出口出现不对称的高速流体;双涡室结构能够有效地改善非设计工况点时压水室能量的转化,小流量时叶轮出口的高速液体呈对称分布,从而降低了压水室压差,起到了平衡径向力的作用;通过计算发现,偏离工况点时双涡室结构设计能有效地减小径向力.数值模拟的结果与现有理论的基本吻合,实际运行情况稳定,可以为更好地认识和设计双涡室离心泵提供依据.  相似文献   

14.
为探究修锉叶片出口对离心泵非定常性能的影响,对一台比转速为180的离心泵叶片出口的压力面和吸力面分别进行两种厚度修锉,采用ANSYS-CFX软件的标准k-ε湍流模型对各方案进行非定常数值模拟,对比分析不同叶片出口修锉方案对离心泵外特性、内部流场、压力脉动以及径向力的影响。研究结果表明:离心泵叶片出口压力面修锉方案PS1、PS2使离心泵的水力效率分别提高1.1%和1.5%,但在一定程度上会降低扬程,吸力面修锉方案SS1、SS2使离心泵的扬程分别提高6.3%和7.1%,但在一定程度上会降低水力效率;对吸力面进行修锉可以提高蜗壳扩散段壁面和蜗壳出口的静压值,同时降低叶轮及蜗壳流道中速度分布的均匀性,但对压力面进行修锉则相反;4种修锉方案均能在一定程度上改善离心泵蜗壳流道内的压力脉动,减小压力脉动的能量损耗,其中方案PS2效果最好;修锉方案PS2、SS1、SS2均能在一定程度上减小叶轮径向力同时增大隔舌径向力,其中方案SS2的影响效果最为明显。综合分析,叶片出口压力面修锉方案PS2使离心泵性能最佳。  相似文献   

15.
流固耦合作用对离心泵内部流场影响的数值计算   总被引:10,自引:1,他引:9  
采用双向同步求解的方法对离心泵内流场和叶轮结构响应进行联合求解,研究了叶轮流固耦合作用对离心泵内部流场的影响.流场模拟基于Reynolds时均化N-S方程和标准k-ε两方程湍流模型,采用多重坐标系法;结构响应基于弹性体结构动力学方程.并将计算所得的流道网格变形、流场静压和速度的分布以及径向力等结果与非流固耦合计算的流场进行对比分析.分析结果表明,流固耦合作用使得流体和固体区域计算网格发生微小变形,这不仅会改变流体对固体载荷的分布,而且会影响结构对流体的做功作用,从而影响流场的分布;叶片相对隔舌不同位置时,叶轮出口处和蜗壳流道内流场的静压分布变化趋势不同;流场速度变化主要出现在叶片和叶轮出口附近;各时间点上径向力的大小和方向变化较明显.  相似文献   

16.
前置导轮自身具有优良的进口性能,能够改善主叶轮的进口条件,使用盒式滤波器将连续方程和动量方程经空间滤波得到大涡模型.采用CFD软件,对设计工况下带有前置导轮轴流泵进行三维不可压缩湍流数值模拟.分析了前置导轮内部流场的压力、速度和流线分布情况.结果表明,导轮叶片静压由进口到出口不断增大,提高了轴流泵抗汽蚀性能;叶片进口背面有一个低压区,此处易发生汽蚀;叶片表面的压力分布不仅沿叶片导程的方向逐渐增加,径向上也有增加,且没有发生较大的冲击和二次流现象;流线沿导轮型线良好地缠绕,没有出现回流、漩涡等现象.结果对轴流泵的设计、改进和优化提供有益的参考.  相似文献   

17.
为了探究交错叶轮双吸离心泵的空化性能,结合Rayleigh-Plesset空化模型和RNGk-ε湍流模型,对一叶轮两侧叶片进行交错布置结构的双吸离心泵内部空化流动进行了数值模拟,分析了空化对泵内压强分布的影响,绘制了空化特性曲线,并分析了不同工况下叶轮所受径向力,同时研究了空化对叶轮叶片空泡体积分数及泵内湍动能分布的影响。结果表明,交错叶轮双吸离心泵空化特性同常规离心泵空化特性具有一致性,空化对叶轮所受径向力大小以及湍动能分布都有较大影响。  相似文献   

18.
为全面地研究超低比转数离心泵的内部流动和非定常特性,以一台比转数ns=25的超低比转数离心泵为研究对象,对其进行三维非定常数值计算,并与试验结果进行对比,进而对内部流场、叶轮上的径向力和蜗壳各断面的压力脉动进行分析.研究结果表明:在不同流量工况下,叶轮流道内存在数量不等、大小不一的旋涡;靠近隔舌的2个相邻流道内,在叶轮出口边工作面的位置存在高流速区域,随着流量的增大,此处高流速区域逐渐消失;在大流量工况下,低速区面积逐渐减小,旋涡区的范围和数量逐渐减少,叶轮内相对速度分布逐渐变均匀;叶轮上的径向力大小和方向时刻变化,呈现六角星型分布,径向力脉动的主要激励频率均为叶频及其整数倍频;蜗壳各断面内压力脉动峰值随着断面变化逐渐增大,蜗壳各断面内压力脉动的主要激励频率均为叶频及其整数倍频,说明叶轮出口与蜗壳的耦合作用是蜗壳内压力脉动的主要影响因素.研究结果可为超低比转数离心泵的水力优化设计和合理运行区间的选择提供一定参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号