首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two experiments were conducted to evaluate wheat middlings as a supplement for cattle consuming dormant bluestem-range forage. Effects of supplement type and amount were evaluated in Exp. 1, which consisted of feeding supplements of soybean meal:grain sorghum (22:78) or two different amounts of wheat middlings. Sixteen ruminally fistulated steers were blocked by weight (BW = 374 +/- 8.3 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) soybean meal:grain sorghum (SBM/GS) formulated to contain the same CP concentration (21%) and fed to provide a similar energy level (3.5 Mcal of ME/d); 3) a supplement of 100% wheat middlings fed at a low level (LWM); and 4) 100% wheat middlings fed at twice the amount of LWM (7 Mcal of ME/d; HWM). The influence of different supplemental CP concentrations in a wheat middlings-based supplement was evaluated in Exp. 2. Sixteen ruminally fistulated steers were blocked by weight (BW = 422 +/- 8.1 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) 15% CP; 3) 20% CP; and 4) 25% CP supplements. These supplements consisted of 60% wheat middlings and various ratios of soybean meal and grain sorghum to achieve the desired CP concentration. In Exp. 1, SBM/GS and HWM supplements increased (P less than .10) and LWM tended to increase (P = .16) forage DMI compared with NS. All supplements in Exp. 1 increased (P less than .10) DM digestibility, ruminal DM fill, and ruminal indigestible ADF (IADF) passage rate compared with NS, although the greatest response in fill and passage was observed with HWM. In Exp. 2, forage DMI, DM digestibility, NDF digestibility, ruminal DM and IADF fill, IADF passage rate, and fluid dilution rate were increased (P less than .01) by supplementation. Forage DMI, ruminal IADF passage rate, and fluid dilution rate increased quadratically (P less than .10), and NDF digestibility, ruminal DM and IADF fill increased linearly (P less than .10) with increased supplemental CP concentration. These experiments indicate that wheat middlings performed similarly to a SBM/GS supplement of equal CP concentration, when both were fed to provide a similar amount of energy daily. Additionally, use of poor-quality range forage was enhanced when wheat middlings-based supplements were formulated to contain a CP concentration of 20% or greater.  相似文献   

2.
Eight mature dogs (19.3 +/- 0.1 kg) were used in an experiment to compare the effects of feeding soybeans containing low concentrations of oligosaccharides and phytate on nutrient availability in complete foods fed to dogs. All foods were formulated to be isonitrogenous and contained low-oligosaccharide, low-phytate soybean meal (LLM); conventional soybean meal (SBM); low-oligosaccharide, low-phytate whole soybeans (LLB); or conventional whole soybeans (WSB) as the protein source. Daily DMI averaged 287 +/- 4 g/d. Fecal outputs were greatest for LLB and WSB, averaging 48.2 g DM/d. Small intestinal DM digestibility ranged from 80.9% (LLM) to 74.0% (LLB) but was unaffected by treatment. Large intestinal DM digestibility did not differ among treatments (P = 0.652). Total-tract DM digestibility was higher (P = 0.020) for LLM (87.0%) than for SBM (84.8%). No difference in total-tract DM digestibility was observed for the two WSB foods (average = 83.3%; P = 0.286). Nitrogen retention did not differ among foods containing LLM and SBM (1.2 g of N/d; P = 0.486) or LLB and WSB (0.9 g of N/d; P = 0.225). Small intestinal N digestibility did not differ among LLM- and SBM-containing foods (80.6%; P = 0.190) or LLB and WSB (69.3%; P = 0.640). Total-tract N digestibility did not differ among foods containing LLM and SBM (83.5%; P = 0.627) or LLB and WSB (76.8%; P = 0.968). Tryptophan digestibility was higher for SBM than for LLM (P = 0.039). Histidine and tryptophan digestibilities were higher in WSB compared with LLB (P = 0.049 and P < 0.001, respectively). No differences in nonessential AA digestibility were observed when comparing soy-based foods. The results of this study demonstrate that LLM, SBM, LLB, and WSB can be effective sources of protein for canine foods and have a high digestibility. Differences in small intestinal digestibility of tryptophan and histidine may require consideration when formulating diets using low-oligosaccharide, low-phytate soybeans or meal.  相似文献   

3.
Thirty-two beef cows (467 kg) were individually fed native grass hay and supplement for two 14-d periods in each of 2 yr. Supplement treatments and amounts fed (kilograms/day) were negative control (NC), 0, or equal amounts of protein from soybean meal (SBM), .7; a blend of soybean meal and corn gluten feed (SBM/CGF), 1.0; or corn gluten feed (CGF) 1.6. Cows received supplement at 0645 and had ad libitum access to native grass hay from 0700 to 1130 and from 1530 to 2000. Compared with NC, all protein supplements increased (P less than .05) ruminal NH3, propionate and butyrate concentrations at 4 and 25 h postfeeding. Ruminal fluid pH, total VFA and acetate concentrations at 4 and 35 h postfeeding were not affected by supplements. All supplements increased (P less than .01) hay intake as well as hay, acid detergent fiber (ADF) and total diet dry matter (DM) digestibility. Compared to supplemental SBM, feeding CGF reduced (P less than .01) hay intake. Calculated daily intakes of metabolizable energy (ME) were 12, 17, 18, and 17 Mcal for NC, SBM, SBM/CGF and CGF, respectively. Hay intake, DM and ADF digestibility and ME intakes tended to be higher for SBM/CGF than for the average of SBM and CGF fed alone. Intakes of digestible DM and ADF were not altered by protein supplements, suggesting that intake responses were due to increased diet digestibility. Corn gluten feed appears to be an effective source of supplemental protein and energy for cows consuming low-quality roughage.  相似文献   

4.
Brahman x British crossbred steers were used in growth and digestion trials to evaluate the response of source (corn, sugar cane molasses, or soybean hulls) and feeding rate (0, 1.4, or 2.8 kg DM per steer daily in the growth trials; 0, 15, or 30% of the ration DM in the digestion trial) of energy supplementation in cattle fed ammoniated (4% of forage DM) stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) hay. Cattle on all treatments were fed 0.5 kg cottonseed meal daily. In the growth trials, steers grazed dormant bahiagrass (Paspalum notatum) pasture. Increasing the levels of supplementation decreased hay intake but increased total dietary intake for all diets (P < 0.07). Daily gain and feed efficiency of steers were improved (P < 0.03) with supplementation. Steers supplemented with corn or soybean hulls at 2.8 kg DM/d had a higher ADG (0.92 kg) and gain/feed (0.103) than steers supplemented with molasses (0.78 kg, 0.08, respectively) at the same level. Seven crossbred steers (200 kg) were used in a five-period digestion trial to evaluate apparent OM, NDF, ADF, and hemicellulose digestibility. Apparent OM digestibility of all diets increased linearly (P = 0.02) as the level of supplementation increased. Apparent NDF and ADF digestibility decreased (P < 0.03) as the level of supplementation with corn or molasses increased, whereas increasing the level of soybean hulls in the diet increased (P < 0.06) apparent NDF and ADF digestibility. Four ruminally fistulated crossbred steers (472 kg) were used in a 4 x 4 latin square design to investigate ruminal characteristics with energy supplementation at 30% of ration DM. Ruminal pH in steers supplemented with soybean hulls or corn declined after feeding. Ruminal pH decreased more rapidly with corn supplementation and remained below 6.2 for a longer period of time than with the other diets. Ruminal pH did not change within 24 h after feeding for steers fed the control or molasses diets. No change in total VFA concentration was observed in steers fed molasses or corn. Total ruminal VFA concentration in steers supplemented with soybean hulls increased initially after feeding and then declined within 24 h after feeding. Soybean hulls produced fewer negative associative effects than corn when fed with ammoniated stargrass hay at 2.8 kg DM/d. The reduced gain/feed of steers supplemented with molasses compared to soybean hulls or corn indicates that molasses was not utilized as efficiently as the other energy sources.  相似文献   

5.
We evaluated the optimal level of alfalfa inclusion in soybean hull-based diets. In Exp. 1, 20 Holstein steers (319 kg of BW) were used in a complete block design. Treatments included a soybean hull mix (95.7% soybean hulls, 3% molasses, 0.5% urea, 0.8% mineral mix; DM basis) fed alone (100:0) or with 10.4, 20.7, or 30.9% (DM basis) coarsely chopped alfalfa hay (90:10, 80:20, and 70:30, respectively) or alfalfa alone (0:100). Diets were fed once daily at 1.75% (DM basis) of BW. In some cases, orts were present, which caused DM, OM, and NDF intakes to decrease (linear, P < 0.05) as alfalfa was added to the diets. Digestibilities of DM, OM, and NDF decreased linearly (P < 0.05) as alfalfa was added to the diets, but quadratic responses (P < 0.05) indicated that positive associative effects occurred between soybean hulls and alfalfa. Liquid dilution rates increased (linear, P < 0.05) with alfalfa additions to the diets and also demonstrated positive associative effects between soybean hulls and alfalfa (quadratic, P < 0.05). Solid passage rates were similar for 100:0 and 0:100 but were increased (quadratically and cubically, P < 0.05) when combinations of soybean hulls and alfalfa were fed. In Exp. 2, in vitro NDF digestibilities were measured for soybean hulls, alfalfa, and a blend of 85% soybean hulls and 15% alfalfa, each with no N source or supplemented with casein or urea to ascertain the effects of protein from alfalfa on digestibility. Disappearances were increased (P < 0.05) by addition of urea or casein, but no interactions between substrate and N supplement were observed. Addition of 30% alfalfa to diets consisting primarily of soybean hulls led to positive associative effects on diet digestibility, but alfalfa additions led to increased liquid and solid passage rates, suggesting that the benefit was not a result of slower passage of soybean hulls from the rumen.  相似文献   

6.
Two experiments were conducted to determine the effects of whole soybean supplementation on intake, digestion, and performance of beef cows of varying age. Treatments were arranged in a 2 x 3 factorial with 2 supplements and 3 age classes of cows (2-yr-old, 3-yr-old, and mature cows). Supplements (DM basis) included 1) 1.36 kg/d of whole raw soybeans, and 2) 1.56 kg/d of a soybean meal/hulls supplement. Supplements were formulated to provide similar amounts of protein and energy, but a greater fat content with the whole soybeans. Supplements were individually fed on Monday, Tuesday, Thursday, and Saturday mornings. During the treatment period, cows had free choice access to bermudagrass hay [Cynodon dactylon (L.) Pers.; 8.4% CP; 72% NDF; DM basis]. In Exp. 1, 166 spring-calving Angus and Angus x Hereford crossbred beef cows were individually fed supplements for an average of 80 d during mid to late gestation. During the first 50 d of supplementation, cows fed soybean meal/hulls gained more BW (10 kg; P < 0.001) and body condition (0.18 BCS units; P = 0.004) than cows fed whole soybeans. However, BW change (P = 0.87) and BCS change (P = 0.25) during the 296-d experiment were not different between supplements. Although calves from cows fed soybean meal/hulls were 2 kg heavier at birth, there was no difference in calf BW at weaning between supplements. Additionally, first service conception rate (68%; P = 0.24) and pregnancy rate (73%; P = 0.21) were not different between supplements. In Exp. 2, 24 cows from Exp. 1 were used to determine the effect of supplement composition on forage intake and digestion; cows remained on the same supplements, hay, and feeding schedule as Exp. 1. Crude fat digestibility was the only intake or digestibility measurement influenced by supplement composition; fat digestibility was higher for cows fed whole soybeans compared with cows fed the soybean meal/hulls supplement (58.1 vs. 48.8%). Hay intake and DMI averaged 1.63 and 1.92% of BW daily, respectively. Dry matter, NDF, and CP digestibility averaged 54.1, 55.1, and 63.2%, respectively. Compared with supplementation with soybean meal/ hulls, whole soybean supplementation during mid to late gestation resulted in reduced BW weight gain during supplementation, inconsistent effects on reproduction, no effect on calf weaning weight, and no effect on forage intake or digestion.  相似文献   

7.
Six cannulated beef cows (one Angus, two Hereford and three Angus x Hereford; 405 kg) were used in a 6 x 6 latin square experiment with a 2 x 3 factorial arrangement of treatments. Prairie hay (.77% N, 73% neutral detergent fiber [NDF] and 7% acid detergent lignin) was fed ad libitum from d 1 through 14 and at 90% of ad libitum intake from d 15 through 21 during digesta collection. Periods lasted 21 d. Soybean meal (SBM) was offered at 0 (control, C), .12 (low, L) or .24% of body weight (high, H; dry matter basis). Cows received daily doses of an antibiotic mixture (1 g neomycin and .125 g bacitracin) or saline in the duodenum. Prairie hay dry matter (DM) intake increased (P less than .05) linearly with SBM supplementation, being 25 and 40% greater for L and H than for C, respectively. Ruminal fluid concentrations of NH3-N and total volatile fatty acids increased (P less than .05) linearly as SBM was added to the diet. Ruminal fluid dilution rate increased linearly and particulate passage rate increased (P less than .05) quadratically with increasing SBM. True ruminal digestibilities of organic matter, NDF and N increased (P less than .10) quadratically with increasing SBM (organic matter; 50.3, 57.9 and 58.3%; NDF: 54.7, 60.4 and 59.8%; N: 17.5, 45.1 and 51.4% for C, L and H, respectively). Main effects of antibiotic administration were not significant. Increases in DM intake when SBM was given were large compared with the small elevations in ruminal digestion, implying that metabolic regulation was modifying intake of low-quality forage.  相似文献   

8.
To evaluate the effects of balancing total diet degradable intake protein with dietary total digestible nutrients (TDN), we conducted two studies during 2 yr with 100 (302 +/- 8 kg initial BW) mixed-breed yearling steers and 12 ruminally cannulated steers (526 +/- 28 kg). Steers individually received one of four supplements 5 d/wk while grazing dormant native tallgrass prairie. Supplements included: 1) corn and soybean meal, balanced for total diet degradable intake protein in relation to total diet TDN (CRSBM), 2) corn and soybean hulls, equal in supplemental TDN to CRSBM (CORN), 3) soybean meal, equal in supplemental degradable intake protein to CRSBM (SBM), or 4) a cottonseed hull-based control supplement (CONT). At each feeding (5 d/wk), steers consumed 13.6, 13.6, or 4.2 g of dry matter/kg of body weight, or 178 g of DM, respectively, of supplement. Steers fed CRSBM had greater (P < 0.01) average daily gain than cattle fed CORN or SBM. Feeding soybean meal (CRSBM, SBM) resulted in improved (P < 0.01) efficiency of supplement. Grazing time, intensity, and harvesting efficiency were reduced (P < 0.05) by corn supplementation (CRSBM and CORN), whereas the number of grazing bouts per day was increased (P < 0.08). Intake and digestibility of forage organic matter were reduced (P < 0.01) for steers supplemented with corn (CORN and CRSBM) vs cattle not fed corn (SBM and CONT). Total diet digestibility (P < 0.12) and digestible organic matter intake (P < 0.01) were greater for CRSBM-fed steers than for cattle fed either CORN or SBM. Steers fed CRSBM had greater (P < 0.01) fecal nitrogen and serum insulin than cattle fed CORN or SBM. Corn-fed cattle had lesser (P < 0.01) fecal pH and ADF concentrations than steers not consuming grain. Cattle fed supplements with soybean meal (CRSBM and SBM) had greater (P < 0.01) serum urea nitrogen than steers fed supplements without soybean meal (CORN, CONT). Supplemented steers grazing dormant tallgrass prairie had a greater rate of gain, with the greatest response in animal performance occurring when grain supplements were balanced for total diet degradable intake protein in relation to total diet TDN. These results lead us to suggest that grain-supplemented cattle grazing dormant tallgrass prairie require a balance of total diet degradable intake protein in relation to total diet TDN to optimize animal performance.  相似文献   

9.
Four experiments were conducted to determine the effect of adding corn gluten mean (CGM) or soybean meal (SBM) at 24- or 48-h intervals to diets based on corn stalks. In each experiment corn stalks was the primary diet ingredient fed to wethers or steers. Monensin was also fed to determine whether its effects on ruminal fermentation would improve the efficiency of N utilization under these conditions. Evaluation criteria included ruminal fermentation characteristics, DM intake and utilization, N balance in sheep, and steer feedlot performance. Ruminal ammonia nitrogen (NH3 N) concentrations measured over time were higher (P < .05) when diets contained SBM. Diet did not influence (P > .10) total VFA concentrations in ruminal fluid. Differences in diurnal shifts in ruminal NH3 N and total VFA due to protein source resulted in diet x hour interactions (P < .05). Dry matter intake response to protein source and frequency of supplement feeding was variable. Dry matter digestibility and nitrogen digestibility were not affected (P > .10) by protein source or feeding interval. The 48-h interval feeding of CGM was favorable compared with 24-h interval feeding (P < .05). The opposite response occurred with SBM, resulting in a diet x feeding interval interaction (P < .05). Nitrogen retention was greater (P < .05) when CGM was fed and with alternate day feeding. Diets that contained CGM supported higher (P < .05) ADG and gain/feed than diets that contained SBM when fed to steer calves. Alternate day feeding of supplements that contained monensin was detrimental to steer performance under the conditions of these experiments. Corn gluten meal is an effective substitute for SBM when alternate day protein supplementation is practiced.  相似文献   

10.
Sixteen mature, lactating (453 kg) and 16 nonlactating (487 kg) Hereford and Angus x Hereford cows were used to determine effects of different dietary supplements and lactational status on forage intake, digestibility, and particulate passage rate. Supplement treatments and amounts fed (kg/d) were as follows: control, 0; and equal daily amounts of CP from soybean meal (SBM), 1.36; wheat middlings (WM), 3.41; or a blend of corn and soybean meal (corn-SBM; 22% corn and 76% SBM), 3.41. Cows were fed supplements at 0800 and had ad libitum access to prairie hay (4.9% CP) in stalls from 0800 to 1100 and from 1300 to 1600 for three 17-d periods. Lactational status and supplement type did not interact (P greater than .50) for hay DMI, DM digestibility, or particulate passage rate. Cows fed SBM ate more hay DM (P less than .01) and had greater hay DM digestibility (P less than .01) than did cows in other treatment groups. Average hay DMI (kg/100 kg of BW) was 1.95, 2.16, 1.94, and 1.89, and hay DM digestibility was 52, 61, 55, and 53% for control, SBM, WM, and corn-SBM supplements, respectively. Total diet DM digestibility was increased by supplementation (P less than .01), but no differences (P greater than .18) were observed among supplements. Lactating cows ate more (P = .13) hay DM (2.11 vs 1.87 kg/100 kg of BW) and had greater (P less than .05) fecal output (4.6 vs 4.3 kg/d) than did nonlactating cows. Dry matter digestibility and particulate passage rate were not affected (P greater than .35) by lactational status.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Two digestion studies were conducted to evaluate the use of pretanned leather shavings as a component of a protein supplement. In Exp. 1, the in situ and in vitro disappearance of pretanned leather shavings and soybean meal was evaluated. Results revealed that less than 18.4% of the pretanned leather shavings was solubilized and disappeared when exposed to McDougall's buffer for 48 h, but there was 90.0% disappearance with 48-h exposure to a .1 N HCl/pepsin treatment and 97.0% disappearance with exposure to a two-stage digestion. In situ disappearance following 72 h in the rumen allowed 6.8% disappearance. Thus, leather shavings seem to be relatively indigestible in the rumen, but postruminal digestion may be possible. In Exp. 2, six Angus x Holstein steers, fitted with ruminal and duodenal cannulas, were used in a replicated 3 x 3 Latin square to evaluate ruminal and digestion effects of the following supplements combined with fescue hay at 1.7% of BW (DM basis): no supplementation (control); supplementation intraruminally with soybean meal at .07% of BW (as-fed basis); and supplementation intraruminally with a combination of soybean meal and pretanned leather shavings (17:8 ratio) at .05% of BW (isonitrogenous to soybean meal; as-fed basis). Ruminal fluid passage rate was greater and fluid turnover time was shorter in steers fed leather shavings than in those fed soybean meal (P = .10). Ruminal pH was lower (P = .04) for supplemented steers than for control steers and ruminal NH3 N concentration was greater (P = .01) in steers fed soybean meal than in those fed leather shavings. Total VFA concentration was increased (P = .02) by supplementation. Supplementation with soybean meal increased (P < .05) ruminal molar proportions of butyrate, valerate, and isovalerate compared with leather shavings. Duodenal OM flow and OM disappearing in the intestines were increased by supplementation (P < .10), but not by the type of supplement fed (P > .10). Ruminal digestion of OM and total tract OM digestion were unaffected (P > .10) by supplementation and the type of supplement fed. Flow and digestion of NDF were unaffected (P > .10) by the treatments. Flow of N and the quantity of N disappearing in the intestines were increased (P < .05) by supplementation but did not differ (P > .10) between supplementation groups. Microbial N flow, N utilization for net microbial protein synthesis, and ruminal N disappearance were unaffected (P > .10) by supplementation and the type of supplement provided. Combining pretanned leather shavings with soybean meal seemed to have no deleterious effects on digestion or fermentation and to allow for escape of some N to the lower tract.  相似文献   

12.
Two metabolism trials were conducted with yearling steers fed mature native forage to measure the effect of supplemental protein degradability on selected metabolic variables. Supplements contained 40% crude protein equivalence. In Trial 1, four abomasal-cannulated steers weighing 290 to 379 kg were fed supplements containing the following N sources: (1) 15% corn, 85% urea (U); (2) 100% soybean meal (SBM); (3) 10% corn, 40% soybean meal, 50% urea (SBM-U) and (4) 14% corn, 36% blood meal, 50% urea (BM-U). Equal portions of the daily diet (2.2% of body weight) were fed every 2 h. Treatment differences were not significant for organic matter digestibility, abomasal organic matter flow, nonammonia N flow, feed N flow, bacterial N flow and efficiency of microbial protein synthesis. There was a positive (P less than .05) relationship between quantity of slowly degraded protein fed and nonammonia N flow (r = .97) or feed N flow (r = .98). Escape N was determined to be 21.5, 16.5 and 54.2% in SBM, SBM-U and BM-U supplements, respectively. In the second trial, no supplement, SBM, SBM-U and BM-U were fed in a N balance trial. Dry matter, crude protein and neutral detergent fiber digestibilities were higher (P less than .05) for steers fed supplemented diets. Acid detergent fiber digestibility was higher (P less than .05) for steers supplemented with SBM than steers fed the unsupplemented diets. Nitrogen retention was greater (P less than .05) for cattle fed SBM and BM-U than for cattle fed SBM-U or no supplement.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Ninety-six Hereford x Angus steers (mean initial BW = 295 kg) were used in two growth experiments conducted at moderate and high ambient temperatures (AT), 48 steers per AT. Within each AT, calves were assigned to six dietary treatments consisting of a basal diet (approximately 60% corn and 20% grass hay) supplemented with either 0, 2.5, or 5% fat and with either soybean meal (SBM) or Menhaden fish meal (FM) included at levels such that a ratio of 16.3 kcal of NEm per kilogram of CP was maintained. Blood and ruminal fluid were collected 40 d before slaughter. During the final 28 d of the moderate AT experiment, apparent digestibility of dietary components was measured in four individually fed steers from each dietary treatment. Steer ADG was not affected by fat, and DMI and efficiency of gain were not affected (P > .10) by treatment. Average daily gain was lower for steers fed FM than for those fed SBM at moderate AT but higher at high AT (CP source x AT interaction; P < .05). Ruminal ratio of acetate to propionate declined linearly with increasing fat at moderate AT but was not affected by fat at high AT (fat x AT interaction trend; P = .08). Plasma urea N concentration increased linearly (P < .05) with increasing fat and was higher (P < .05) in steers kept at high than in those kept at moderate AT. Although apparent digestibility was not altered in steers fed FM, DM and NDF (P < .05) and ADF (P = .07) digestibility decreased with increasing fat in steers fed SBM (CP source x fat interaction).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Three experiments were conducted to determine the relative feeding value of frost-damaged soybeans (FDS) for ruminants. Frost-damaged soybean ether-extract content was variable and differed (P less than .05) from mature soybeans. Isonitrogenous supplementation of corn silage diets with soybean meal (SBM), SBM+soybean oil (SBO), mature raw soybeans (MSB), and FDS was compared in sheep. Acid detergent fiber and apparent N digestion were lower (P less than .001) for supplements containing oil. Nitrogen retention was reduced (P less than .07) only for raw soybean supplements. Ruminal NH3 N and branched-chain VFA concentrations differed (P less than .01) between SBM and supplements containing oil. Maximum tolerable inclusion level of FDS in corn silage diets was tested in wethers using diets containing 0, 7, 14, or 21% FDS. Dry matter and ADF digestibility declined linearly (P less than .01) with increasing dietary FDS. Ether extract digestibility was unchanged due to treatment, but GE digestibility decreased quadratically (P less than .01). The most pronounced decline in GE digestibility occurred when FDS increased from 14 to 21% of the diet. The effects of FDS on corn silage utilization were similar to MSB effects. Oil content and antinutritional factors contributed to detrimental effects. Frost-damaged soybeans should not exceed 14% of corn silage diets fed to growing wethers.  相似文献   

15.
Five ruminally fistulated 3-yr-old mature Holstein steers (average BW 691+/-23 kg) were used in a 5 x 5 Latin square experiment with a 2 x 2 + 1 fact orial arrangement of treatments. Effects of protein concentration and protein source on nutrient digestibility, excretion of DM and fecal N, ruminal fluid volume and dilution rate, ruminal characteristics, and in situ DM disappearance of whole shelled corn, ground corn, and orchardgrass hay were measured in steers limit-fed high-concentrate diets at 1.5% of BW. A negative control basal diet (NC; 9% CP) was supplemented to achieve either 11 or 14% CP; supplemental CP was either from soybean meal (11 and 14% SBM) or a 50:50 ratio of CP from urea and soybean meal (11 and 14% U). Dry matter and OM digestibilities were 5% greater (P < .07) for steers fed the SBM diets than for those fed the U diets. Starch digestibility did not differ (P > .10) among steers fed any of the diets. Nitrogen source did not affect (P > .10) apparent N digestibility or fecal N excretion; however, steers fed the NC diet had the lowest (P < .10) apparent N digestibility compared with those fed all other diets. Ruminal fluid volume was lower (P < .06) when steers were fed the NC diet compared with all other diets; there were no differences (P > .74) among diets for ruminal fluid dilution rate. In general, ruminal ammonia N and VFA molar proportions were not affected by protein source or concentration. Although CP concentration affected (P < .06) in situ DM disappearance of ground corn, CP concentration did not (P > .48) affect total tract digestion of DM or OM. This indicates that CP concentration may have affected site of digestion, but not extent of digestion. When mature ruminants were limit-fed a corn-based diet to meet primarily a maintenance function, protein source and concentration had little effect on measures of nutrient digestion.  相似文献   

16.
Four rumen-fistulated steers averaging 400 kg in body weight were used in a 4 X 4 Latin square arrangement with 18-d periods to investigate the effect of treating soybean meal (SBM) with formaldehyde on nitrogen (N) utilization and ruminal fermentation. Experimental diets, on a dry matter basis, consisted of 42% corn silage, 48.5% cracked corn-mineral mixture and 9.5% SBM treated with 0, .3, .6 or .9% formaldehyde by weight. Dry matter and organic matter digestibilities were not affected by treatment. Formaldehyde treatment of SBM resulted in a linear decrease in N digestibility (P less than .005) and urinary N excretion (P less than .01) and a quadratic increase (P less than .05) in N retention. The depression in apparent N digestibility was small when SBM was treated with .3% formaldehyde. This level of formaldehyde treatment also had little effect on in vitro enzymatic hydrolysis of SBM. Ruminal ammonia-N concentrations were lower (P less than .05) in steers fed formaldehyde-treated SBM. Ruminal pH was lower (P less than .05) at 6 and 8 h postfeeding while volatile fatty acid concentrations were higher (P less than .05) at 8 and 12 h postfeeding for steers fed untreated SBM. Propionic acid (mol/100 mol) decreased linearly (P less than .05) with increasing level of formaldehyde treatment. Urea-N concentrations in plasma were decreased (P less than .001) and plasma-free essential amino acid concentrations were increased (P less than .10) by formaldehyde treatment. Ruminal disappearance of N from polyester bags containing the SBM supplements was greatly reduced (P less than .005) by formaldehyde treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Six beef steers (British x Brahman) cannulated at the rumen, duodenum and ileum (avg wt 334 kg) and three mature steers (British x British) cannulated at the esophagus were used in a replicated 3 x 3 latin square design and fed no supplement (C), .5 kg soybean meal (SBM) or .5 kg steam-flaked sorghum grain (SFS).head-1.d-1 (DM basis) while grazing blue grama rangeland. Periods of the latin square included a minimum of 14 d for adaptation and 11 d for esophageal masticate collection and digesta sampling. In September, October and November, respectively, forage collected by esophageally cannulated steers averaged 74.5, 88.8 and 71.0% grasses; 2.06, 1.53 and 1.77% N and 68.3, (P greater than .10) by treatment, but total N intake was greater (P less than .05) for SBM vs C and SFS treatments. No differences (P greater than .10) were detected among treatments in OM, NDF, ADF and N digestibilities in the rumen, small intestine or hindgut, but total tract OM digestibility was greater (P less than .10) for SBM and SFS than for C, and total tract N digestibility was greater (P less than .10) for SBM than for C or SFS. Duodenal ammonia N flow was greater (P less than .05) when SBM was fed that when SFS and C were fed, but microbial N and non-ammonia, non-microbial N flows and microbial efficiency were not altered by treatment. Likewise, ileal N flow was not affected (P greater than .10) by treatment. Particulate passage rate, gastrointestinal mean retention time, forage in vitro OM disappearance and in situ rate of forage NDF digestion also were not affected (P greater than .10) by treatments. Ruminal fluid volume was greater (P less than .05) for SFS vs SBM and C treatments, but no differences were noted in fluid dilution rate. Ruminal fluid ammonia concentration was greater (P less than .05) when SBM was fed than when SFS and C were fed (13.5, 9.9 and 8.7 mg/dl, respectively), whereas pH and total VFA concentrations were not different (P greater than .10). Proportion of acetate in ruminal fluid was less (P less than .10) for SBM and SFS than for C. Small amounts of supplemental SBM and SFS had little effect on forage intake, ruminal fermentation and site of digestion but both increased total tract OM digestion in steers grazing blue grama rangeland.  相似文献   

18.
The digestibility of AA in dry extruded-expelled soybean meal (DESBM) and regular, solvent-extracted soybean meal (SBM) were determined in pigs and poultry. In the pig assay, 4 Cotswold barrows (average initial BW of 80.4 kg) fitted with a T-cannula at the distal ileum were allotted to 4 semipurified diets in a 4 x 4 Latin square design. Diet 1, a low protein diet (5% casein), was used to quantify endogenous CP and AA losses. Diets 2, 3, and 4 were formulated to contain 35% regular, solvent-extracted SBM; batch 1 of DESBM (DESBM-1); and batch 2 of DESBM (DESBM-2), respectively, as the sole source of protein. The DESBM samples were obtained from 2 different batches but were subjected to the same processing conditions. Chromic oxide (0.3%) was included as a digestibility marker in all diets. Compared with DESBM-1 and DESBM-2, apparent ileal digestibility of DM in SBM was greater (P < 0.05). Apparent and true ileal digestibilities of AA in SBM were greater (P < 0.05) compared with DESBM-2. In the poultry assay, 4 dietary treatments were each assigned to adult cecectomized roosters in a completely randomized design. Treatment 1 was a nonnitrogenous diet (NND; 90% sucrose and 10% vegetable oil) used to estimate endogenous N and AA losses. Treatments 2, 3, and 4 contained SBM, DESBM-1, and DESBM-2 as the only source of protein. Each of these diets was fed in 25-g quantities formulated to provide 5 g of CP from the respective soybean meal source. The SBM had greater (P < or = 0.05) true digestibility for isoleucine, leucine, cysteine, proline, serine, and tyrosine compared with DESBM-1. The results indicate that, relative to regular, solvent-extracted soybean meal, AA digestibilities of different batches of dry extruded-expelled soybean meal varied in pigs and poultry.  相似文献   

19.
Twelve Hereford cows and four mature, ruminally cannulated Hereford x Angus heifers were fed supplements providing either 0 (control), 1, 2, or 3 kg/d of soybean hulls and including 440 g of protein/d (cottonseed meal was used to equalize protein intake) to determine the effects of supplementation on intake and utilization of low-quality native grass hay. Cattle were housed in individual pens and fed coarsely chopped (5-cm screen) native grass hay harvested in mid-November (4.1% CP, 76.9% NDF). Hay OM intake peaked (quadratic, P = .04) at 10.1 kg/d with 1 kg of soybean hulls and decreased when 2 kg (9.8 kg/d) or 3 kg (9.1 kg/d) of soybean hulls were fed. Although hay intake decreased when soybean hulls replaced cottonseed meal, feeding 3 kg soybean hulls decreased hay OM intake by only .64 kg. Total OM digestibility increased linearly (P = .009) with added increments of soybean hulls (45.8%, 46.2%, 46.6% and 48.6% for 0 through 3 kg soybean hulls/d, respectively), indicating that hulls were more digestible than the hay. Digestibility of NDF was not affected (P = .14) by level of soybean hull supplementation, although ADF digestibility increased (linear, P = .03). Increases in OM intake and digestibility with soybean hulls combined to increase digestible OM intake (linear, P = .0001). Soybean hull supplementation increased ruminal VFA concentrations (linear, P = .04) and the molar proportion of propionate (linear, P = .006).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Reducing the frequency of supplementation to beef cattle would reduce labor and vehicle maintenance costs and could have the potential to increase profits if performance is not negatively affected. Six ruminally cannulated beef steers (362 ± 18 kg of BW) were used in a replicated 3 × 3 Latin square design to determine the effect of supplementation frequency (daily or on alternate days) on digestion and ruminal parameters when feeding medium-quality hay and supplementing with a mixture of soybean hulls and corn gluten feed. Dietary treatments consisted of ad libitum fescue hay (8.8% CP and 34.8% ADF) that was supplemented at 1% of BW daily (SD), supplemented at 2% of BW on alternate days (SA), or not supplemented (NS). The supplement (14.6% CP and 29.8% ADF) contained 47% soybean hull pellets, 47% corn gluten feed pellets, 2% feed grade limestone, and 4% molasses (as fed). Each period consisted of a 12-d adaptation phase followed by 6 d of total fecal, urine, and ort collection. All supplement offered was consumed within 2 h. Ruminal fluid was collected every 4 h for 2 d. Hay intake was reduced (P < 0.01) for SD and further reduced (P < 0.01) for SA. Hay intake was 1.54, 1.19, and 1.02% of BW (SEM ± 0.036) for NS, SD, and SA, respectively. There was a treatment (P < 0.01) × day interaction for mean ruminal pH. On the day of supplementation, ruminal pH for SA (6.13) was lower (P < 0.01) than those for both SD (6.29) and NS (6.52). However, on the day the SA treatment did not receive supplement, ruminal pH of SA (6.53) did not differ (P = 0.87) from ruminal pH of NS and was greater (P < 0.01) than that of SD. Ruminal pH of SD was lower (P < 0.01) than that of NS. Diet DM digestibility was increased (P < 0.01) by supplementation but did not differ (P = 0.58) because of frequency. Dry matter digestibility was 57.9, 64.1, and 64.6% (SEM ± 0.65) for NS, SD, and SA, respectively. The amount of N retained did not differ (P = 0.47) because of frequency (24.9 ± 5.61 and 22.0 ± 5.50 g/d for SD and SA, respectively) and was greater (P < 0.01) for the supplemented treatments than for NS (4.2 ± 3.30 g/d). When supplementing a blend of soybean hulls and corn gluten feed, producers can reduce the frequency of supplementation to every other day without reducing digestibility or N retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号