首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmocodynamics of single injections of florfenicol in yearling loggerhead sea turtles (Caretta caretta) were determined. Eight juvenile loggerhead sea turtles weighing 1.25 (+/- 0.18) kg were divided into two groups. Four animals received 30 mg/kg of florfenicol i.v., and four received the same dose i.m. Plasma florfenicol concentrations were analyzed by reverse-phase high performance liquid chromatography. After the i.v. dose, there was a biphasic decline in plasma florfenicol concentration. The initial steep phase from 3 min to 1 hr had a half-life of 3 min, and there was a longer slow phase of elimination, with a half-life that ranged from 2 to 7.8 hr among turtles. The volume of distribution varied greatly and ranged from 10.46 to -60 L/kg. Clearance after the i.v. dose was 3.6-6.3 L/kg/hr. After the i.m. injection, there was a peak within 30 min of 1.4-5.6 microg/ml, and florfenicol was thereafter eliminated with a half-life of 3.2-4.3 hr. With either route, florfenicol plasma concentrations were below the minimum inhibitory concentrations for sensitive bacteria within 1 hr. Florfenicol does not appear to be a practical antibiotic in sea turtles when administered at these doses.  相似文献   

2.
The pharmacokinetics of ceftazidime in yearling loggerhead sea turtles (Caretta caretta) following single i.m and i.v. injections were studied. Eight juvenile 1.25+/-0.18 kg turtles were divided into two groups. Four animals received 20 mg/kg of ceftazidime i.v. and four received the same dose i.m. Plasma ceftazidime concentrations were analyzed by reverse-phase high-performance liquid chromatography. The i.v. and i.m. administration half-lives were 20.59+/-3.24 hr and 19.08+/-0.77 hr, respectively. The volume of distribution was 0.42+/-0.07 L/kg, and the systemic clearance was 0.217+/-0.005 ml/min/kg. Ceftazidime was detected in all blood samples and its concentration exceeded the minimum inhibitory concentration for Pseudomonas for 60 hr after i.m. and i.v. injections.  相似文献   

3.
The pharmacokinetic parameters of phenylbutazone were determined in 18 elephants (Loxodonta africana and Elephas maximus) after single-dose oral administration of 2, 3, and 4 mg/kg phenylbutazone, as well as multiple-dose administrations with a 4-wk washout period between trials. After administration of 2 mg/kg phenylbutazone, mean serum concentrations peaked in approximately 7.5 hr at 4.3 +/- 2.02 microg/ml and 9.7 hr at 7.1 +/- 2.36 microg/ml for African and Asian elephants, respectively, while 3 mg/kg dosages resulted in peak serum concentrations of 7.2 +/- 4.06 microg/ml in 8.4 hr and 12.1 +/- 3.13 microg/ml in 14 hr. The harmonic mean half-life was long, ranging between 13 and 15 hr and 39 and 45 hr for African and Asian elephants, respectively. There was evidence of enterohepatic cycling of phenylbutazone in Asian elephants. Significant differences (P < 0.0001) in pharmacokinetic values occurred between African and Asian elephants for clearance (27.9 and 7.6 ml/hr/kg, respectively), terminal half-life (15.0 and 38.7 hr, respectively), and mean residence time (22.5 and 55.5 hr, respectively) using 2-mg/kg dosages as an example. This suggests that different treatment regimens for Asian and African elephants should be used. There were no apparent gender differences in these parameters for either elephant species.  相似文献   

4.
OBJECTIVE: To determine the pharmacokinetics of praziquantel following single and multiple oral dosing in loggerhead sea turtles. ANIMALS: 12 healthy juvenile loggerhead sea turtles. PROCEDURE: Praziquantel was administered orally as a single dose (25 and 50 mg/kg) to 2 groups of turtles; a multiple-dose study was then performed in which 6 turtles received 3 doses of praziquantel (25 mg/kg, PO) at 3-hour intervals. Blood samples were collected from all turtles before and at intervals after drug administration for assessment of plasma praziquantel concentrations. Pharmacokinetic analyses included maximum observed plasma concentration (Cmax), time to maximum concentration (Tmax), area under the plasma praziquantel concentration-time curve, and mean residence time (MRTt). RESULTS: Large interanimal variability in plasma praziquantel concentrations was observed for all dosages. One turtle that received 50 mg of praziquantel/kg developed skin lesions within 48 hours of administration. After administration of 25 or 50 mg of praziquantel/kg, mean plasma concentrations were below the limit of quantification after 24 hours. In the multiple-dose group of turtles, mean plasma concentration was 90 ng/mL at the last sampling time-point (48 hours after the first of 3 doses). In the single-dose study, mean Cmax and Tmax with dose were not significantly different between doses. After administration of multiple doses of praziquantel, only MRTt was significantly increased, compared with values after administration of a single 25-mg dose. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of 25 mg of praziquantel/kg 3 times at 3-hour intervals may be appropriate for treatment of loggerhead sea turtles with spirorchidiasis.  相似文献   

5.
Three captive loggerhead sea turtles, Caretta caretta, were used in four trials, one i.v. and three i.m., to determine the pharmacokinetic properties of a single dose of ticarcillin. For the i.v. study, each turtle received a single 50 mg/kg dose and blood samples were collected at 0, 0.5, 1, 2, 4, 6, 8, and 12 hr and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, and 14 days after administration. For the i.m. study, each turtle received one of three dosages (25, 50, or 100 mg/kg) in a randomized complete block design and blood samples were collected at the same time intervals. Each trial was separated by a minimum of 28 days to allow for complete drug clearance. Drug concentration in plasma was determined by a validated liquid chromatography-mass spectrometry assay. For the i.v. study, the elimination half-life was 5.0 hr. The apparent volume of distribution and plasma clearance were 0.17 L/kg and 0.0218 L/hr/kg, respectively. For the i.m. study, mean time to maximum plasma concentrations ranged from 1.7 ( +/- 0.58) hr in the 50 mg/kg group to 3.7 (+/- 2.5) hr in the 100 mg/kg group. Mean bioavailability ranged from 45% ( +/- 15%) in the 50 mg/kg group to 58% (+/- 12%) in the 100 mg/kg group, and the mean residence time ranged from 7.5 ( +/- 2.6) hr in the 25 mg/kg group to 16 (+/- 6.8) hr in the 100 mg/kg group. Two turtles had slight alanine aminotransferase elevations that were not clinically apparent at two different dosages, but otherwise, blood chemistries were unaffected. Possible i.m. dosage regimens for loggerhead sea turtles are 50 mg/kg q24 hr or 100 mg/kg q48 hr. Liver enzymes should be monitored during treatment.  相似文献   

6.
OBJECTIVE: To determine the pharmacokinetics of fluconazole in horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Fluconazole (10 mg/kg of body weight) was administered intravenously or orally with 2 weeks between treatments. Plasma fluconazole concentrations were determined prior to and 10, 20, 30, 40, and 60 minutes and 2, 4, 6, 8, 10, 12, 24, 36, 48, 60, and 72 hours after administration. A long-term oral dosing regimen was designed in which all horses received a loading dose of fluconazole (14 mg/kg) followed by 5 mg/kg every 24 hours for 10 days. Fluconazole concentrations were determined in aqueous humor, plasma, CSF, synovial fluid, and urine after administration of the final dose. RESULTS: Mean (+/- SD) apparent volume of distribution of fluconazole at steady state was 1.21+/-0.01 L/kg. Systemic availability and time to maximum plasma concentration following oral administration were 101.24+/-27.50% and 1.97+/-1.68 hours, respectively. Maximum plasma concentrations and terminal half-lives after IV and oral administration were similar. Plasma, CSF, synovial fluid, aqueous humor, and urine concentrations of fluconazole after long-term oral administration of fluconazole were 30.50+/-23.88, 14.99+/-1.86, 14.19+/-5.07, 11.39+/-2.83, and 56.99+/-32.87 microg/ml, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Bioavailability of fluconazole was high after oral administration to horses. Long-term oral administration maintained plasma and body fluid concentrations of fluconazole above the mean inhibitory concentration (8.0 mg/ml) reported for fungal pathogens in horses. Fluconazole may be an appropriate agent for treatment of fungal infections in horses.  相似文献   

7.
The pharmacokinetic properties of marbofoxacin, a third generation fluoroquinolone, were investigated in 12 healthy adult cats after single subcutaneous (SC) administration of 2 mg/kg BW (Part I, n=8 cats) and 4 mg/kg BW (Part II, n=4 cats). In each part of the study blood and urine samples were collected before treatment and thereafter for 5 days. The plasma and urine concentrations of marbofloxacin were determined by HPLC with UV detection. Pharmacokinetic calculations were performed for each treated animal using an open one-compartment-model with first-order elimination after SC dosing. Marbofloxacin in plasma (means): Maximum concentrations (Cmax) of about 1.2 and 3.0 microg/ml were measured 2.3 and 4 hours (tmax) after dosing of 2 and 4 mg/kg BW, respectively. Elimination from the body was low with a total clearance (Cl/F) of approximately 0.1 l/h/kg for both dosages. The half-life (t 1/2) for this process was calculated with 8-10 hours. AUC increased almost proportional when doubling the dose, i.e., 19.77 +/- 6.25 microg * h/ml (2 mg/kg BW) and 51.26 +/- 11.83 microg * h/ml (4 mg/kg BW). Plasma kinetics measured were in accordance with data from literature. Marbofloxacin in urine (means): Maximum drug concentrations were detected 4 and 8 hours after dosing with 70 microg/ml (2 mg/kg BW) and 160 microg/ml (4 mg/kg BW), respectively. Inhibitory effects of the urinary matrix on the antimicrobial activity of the drug were taken into account when performing PK/PD calculations. However, a concentration-dependent bactericidal activity (Cmax/MIC > 8-10) which is claimed for fluoroquinolones was sufficiently met with focus on Escherichia (E.) coli (MIC90 0.5 microg/ml). In the same matrix a threshold value of 1.0 microg/ml was undercut 82 and 116 hours after SC dosing, respectively. Hence, a time-dependent bacteria killing kinetic (T > MIC) which may be of relevance for some Gram-positive germs like Staphylococcus spp. (MIC90 1.0 microg/ml) should be covered, too.  相似文献   

8.
The pharmacokinetics of oxytetracycline in 2-yr-old loggerhead sea turtles (Caretta caretta) after single i.v. and i.m. injections were studied for biologic marking and therapeutic applications. Twenty juvenile turtles were divided into two treatment groups. Ten animals received 25 mg/kg of oxytetracycline i.v. and 10 received the same dosage i.m. Plasma oxytetracycline concentrations were analyzed by reverse-phase high-performance liquid chromatography. Data from the i.v. route best fit a three-compartment model, whereas noncompartmental analysis was used to compare data from both the i.v. and i.m routes. For the i.v. route, means for maximum plasma concentration, terminal phase half-life, systemic clearance, and apparent volume of distribution at steady state were 6.6 microg/ml, 66.1 hr, 290.7 ml/hr/kg, and 18.4 L, respectively. For the i.m. route, means for systemic availability, maximum plasma concentration, and elimination half-life were 91.8%, 1.6 microg/ml, and 61.9 hr, respectively. The remarkably high apparent volume of distribution may possibly be associated with a deep compartment of drug disposition such as bone deposition associated with the large skeletal mass of turtles and the fact that these were well-nourished, growing juveniles. Although maximum plasma concentration by i.m. administration was lower than for the i.v. route, the long elimination time indicates that an infrequent dosing interval may be effective for sensitive bacteria.  相似文献   

9.
Plasma concentrations and pharmacokinetics of enrofloxacin were determined in 12 loggerhead sea turtles (Caretta caretta) after oral administration. Six turtles in group 1 and group 2 received enrofloxacin at 10 mg/kg and 20 mg/kg of body weight, respectively. Blood was collected from the cervical sinus before administration and at timed intervals up to 168 hr following administration. Plasma concentrations of enrofloxacin were determined using a microbiologic assay. The mean peak plasma concentration (Cmax) was 4.07 microg/ml and 21.30 microg/ml for groups 1 and 2, respectively. Plasma levels were detectable at 168 hr postadministration, with mean values of 0.380 microg/ml for group I and 2.769 microg/ml for group 2. The mean elimination half-life for enrofloxacin was 37.80 hr for group I and 54.42 hr for group 2. These findings indicated that enrofloxacin is absorbed following oral administration in loggerhead sea turtles, and blood levels are maintained up to 168 hr following administration.  相似文献   

10.
This study determined the disposition of sulfadimethoxine in six, healthy, adult, gelded male llamas (Llama glama) by using a nonrandomized crossover design with i.v. dosing (58.8 +/- 3.0 mg/kg based on metabolic scaling) followed by oral dosing (59.3 mg/kg +/- 8.3). Blood samples were collected intermittently for a 72-hr period, and serum sulfadimethoxine concentrations were quantified using high-performance liquid chromatography. Serum sulfadimethoxine concentrations across time were subjected to standard pharmacokinetic analysis based on linear regression. Mean maximum serum concentration after oral dosing was 23.6 +/- 14.9 microg/ml, and extrapolated peak concentration after i.v. administration was 246.6 +/- 15.8 microg/ml. Total clearance of sulfadimethoxine was 45.4 +/- 13.9 L/kg. Half-lives after i.v. and oral administration were 541 +/- 111 min and 642.4 +/- 204.8 min, respectively. Oral bioavailability was 52.6 +/- 15%. These data suggest that the oral dose administered to llamas in this study, based on metabolic scaling from cattle, may be inadequate when compared with the reported minimum inhibitory concentration (512 microg/ml) breakpoint for sulfadimethoxine.  相似文献   

11.
The pharmacokinetic parameters of S(+) and R(-) ibuprofen were determined in 20 elephants after oral administration of preliminary 4-, 5-, and 6-mg/kg doses of racemic ibuprofen. Following administration of 4 mg/kg ibuprofen, serum concentrations of ibuprofen peaked at 5 hr at 3.9 +/- 2.07 microg/ml R(-) and 10.65 +/- 5.64 microg/ml S(+) (mean +/- SD) in African elephants (Loxodonta africana) and at 3 hr at 5.14 +/- 1.39 microg/ml R(-) and 13.77 +/- 3.75 microg/ml S(+) in Asian elephants (Elephas maximus), respectively. Six-milligram/kilogram dosages resulted in peak serum concentrations of 5.91 +/- 2.17 microg/ml R(-) and 14.82 +/- 9.71 microg/ml S(+) in African elephants, and 5.72 +/- 1.60 microg/ml R(-) and 18.32 +/- 10.35 microg/ml S(+) in Asian elephants. Ibuprofen was eliminated with first-order kinetics characteristic of a single-compartment model with a half-life of 2.2-2.4 hr R(-) and 4.5-5.1 hr S(+) in African elephants and 2.4-2.9 hr R(-) and 5.9-7.7 hr S(+) in Asian elephants. Serum concentrations of R(-) ibuprofen were undetectable at 24 hr, whereas S(+) ibuprofen decreased to below 5 microg/ml 24 hr postadministration in all elephants. The volume of distribution was estimated to be between 322 and 356 ml/kg R(-) and 133 and 173 ml/kg S(+) in Asian elephants and 360-431 ml/kg R(-) and 179-207 ml/kg S(+) in African elephants. Steady-state serum concentrations of ibuprofen ranged from 2.2 to 10.5 microg/ml R(-) and 5.5 to 32.0 microg/ml S(+) (mean: 5.17 +/- 0.7 R(-) and 13.95 +/- 0.9 S(+) microg/ml in African elephants and 5.0 +/- 1.09 microg/ml R(-) and 14.1 +/- 2.8 microg/ml S(+) in Asian elephants). Racemic ibuprofen administered at 6 mg/kg/12 hr for Asian elephants and at 7 mg/kg/12 hr for African elephants results in therapeutic serum concentrations of this antiinflammatory agent.  相似文献   

12.
The objective of this study was to determine the pharmacokinetics of a long-acting formulation of ceftiofur crystalline-free acid (CCFA) following intramuscular injection in ball pythons (Python regius). Six adult ball pythons received an injection of CCFA (15 mg/kg) in the epaxial muscles. Blood samples were collected by cardiocentesis immediately prior to and at 0.5, 1, 2, 4, 8, 12, 18, 24, 48, 72, 96, 144, 192, 240, 288, 384, 480, 576, 720, and 864 hr after CCFA administration. Plasma ceftiofur concentrations were determined by high-performance liquid chromatography. A noncompartmental pharmacokinetic analysis was applied to the data. Maximum plasma concentration (Cmax) was 7.096 +/- 1.95 microg/ml and occurred at (Tmax) 2.17 +/- 0.98 hr. The area under the curve (0 to infinity) for ceftiofur was 74.59 +/- 13.05 microg x h/ml and the elimination half-life associated with the terminal slope of the concentration-time curve was 64.31 +/- 14.2 hr. Mean residence time (0 to infinity) was 46.85 +/- 13.53 hr. CCFA at 15 mg/kg was well tolerated in all the pythons. Minimum inhibitory concentration (MIC) data for bacterial isolates from snakes are not well established. For MIC values of < or =0.1 microg/ml, a single dose of CCFA (15 mg/kg) provides adequate plasma concentrations for at least 5 days in the ball python. For MICs > or =0.5 microg/ml, more frequent dosing or a higher dosage may be required.  相似文献   

13.
Ketoprofen is a nonsteroidal anti‐inflammatory and analgesic agent that nonselectively inhibits cyclooxygenase, with both COX‐1 and COX‐2 inhibition. Recent studies on COX receptor expression in reptiles suggest that nonselective COX inhibitors may be more appropriate than more selective inhibitors in some reptiles, but few pharmacokinetic studies are available. The goal of this study was to determine single‐ and multidose (three consecutive days) pharmacokinetics of racemic ketoprofen administered intravenously and intramuscularly at 2 mg/kg in healthy juvenile loggerhead turtles (Caretta caretta). The S‐isomer is the predominant isomer in loggerhead sea turtles, similar to most mammals, despite administration of a 50:50 racemic mixture. Multidose ketoprofen administration demonstrated no bioaccumulation; therefore, once‐daily dosing will not require dose adjustment over time. S‐isomer pharmacokinetic parameters determined in this study were Cmax of 10.1 μg/ml by IM injection, C0 of 13.4 μg/ml by IV injection, AUC of 44.7 or 69.4 μg*hr/ml by IM or IV injection, respectively, and T½ of 2.8 or 3.6 hr by IM or IV injection, respectively. Total ketoprofen plasma concentrations were maintained for at least 12 hr above concentrations determined to be effective for rats and humans. A dose of 2 mg/kg either IM or IV every 24 hr is likely appropriate for loggerhead turtles.  相似文献   

14.
Pharmacokinetic parameters of florfenicol were determined in 10 adult sheep (five wethers and five ewes) after a single 40 mg/kg intravenous (i.v.) dose, and three daily subcutaneous (s.c.) doses of 40 mg/kg of a commercial preparation (Nuflor((R))). The concentration of florfenicol in serum samples was assayed using a proprietary HPLC assay method, and pharmacokinetic parameters derived for individual animal data by each route using compartmental and noncompartmental approaches. Two animals (one male and one female) were excluded due to observed i.v. dosing problems, and a biexponential model was found to fit the i.v. data well for six of the other eight animals. Data from two males showed prolonged low concentrations of florfenicol in serum and were better fit by a three-compartment model. The mean +/- SD for the half-lives of the distribution and elimination phases for the six sheep best fit with a two-compartment model were 0.069 +/- 0.018 and 1.01 +/- 0.09 h respectively, and for the V(d(ss)) and clearances were 0.503 +/- 0.035 L/kg and 366 +/- 53 mL/h/kg respectively. The data collected during the s.c. multiple dose study were analyzed using noncompartmental methods only. The bioavailability (F%) after s.c. dosing was calculated in three ways to compare estimation methods as steady-state had not been reached and single dose s.c. data were not obtained past 24 h. Using the AUC(0--24) and AUC(0--> infinity ) from the first dose, the F% values averaged 27 and 40% respectively. Using the AUC(0--> infinity ) for all doses, the F% was 65%. Calculations of the mean time during which the serum concentration exceeded 0.5 and 1.0 microg/mL were 105 +/- 3.9 and 74.7 +/- 12.2 h respectively.  相似文献   

15.
This study characterized and compared the pharmacokinetics of piperacillin after single 100 mg/kg i.m. injections in nine red-tailed hawks (Buteo jamaicensis) and five great horned owls (Bubo virginianus) over 48 hr by a modified agar well diffusion microbial inhibition assay. The mean maximum plasma piperacillin concentrations were 204 microg/ml and 221 microg/ml for the hawks and owls, respectively, and times of maximum concentrations were 15 min and 30 min, respectively. The calculated mean terminal elimination half-lives were 77 min in the hawks and 118 min in the owls. Area-under-the-curve values were 218 +/- 52 microg x hr/ml in the hawks and 444 +/- 104 microg x hr/ml in the owls. On the basis of the most common minimal inhibitory concentration (90%) for various bacterial isolates from clinical samples of 8 microg/ml, analysis of the data suggests that the maximum dosing interval for piperacillin at 100 mg/kg in medium sized raptors should be 4-6 hr.  相似文献   

16.
Pharmacokinetic studies of antifungal agents in reptiles are uncommon. Itraconazole, which has been used prophylactically in juvenile sea turtles suffering from hypothermia (cold stunning) on a regular basis, was evaluated for steady-state plasma concentrations. Five Kemp's ridley sea turtles (Lepidochelys kempi) receiving itraconazole at several dosages in a rehabilitation program had blood collected within 24 hr to estimate dosing frequency. Subsequently, serial blood samples of Kemp's ridley sea turtles that were given itraconazole at several dosages for 30 days to treat cold stunning were collected at various intervals to evaluate itraconazole plasma concentrations. Tissue samples were collected from one Kemp's ridley that died during rehabilitation. Plasma concentrations of itraconazole (and of hydroxyitraconazole [OH-ITRA], one of its major bioactive metabolites) were determined using a modified, validated reverse-phase high-performance liquid chromatography technique. Itraconazole concentrations in tissues were determined by bioassay to be far greater than the plasma concentrations measured in any of the turtles. At a 15-mg/kg dosage, the half-life (t1/2) was 75 hr for itraconazole and 55 hr for OH-ITRA. All dosages produced adequate concentrations in some turtles, but consistent therapeutic concentrations were produced only at 15 mg/kg q72hr and 5 mg/kg s.i.d., with the latter producing the highest plasma concentrations.  相似文献   

17.
Green sea turtles are widely distributed in tropical and subtropical waters. Adult green sea turtles face many threats, primarily from humans, including injuries from boat propellers, being caught in fishing nets, pollution, poaching, and infectious diseases. To the best of our knowledge, limited pharmacokinetic information to establish suitable therapeutic plans is available for green sea turtles. Therefore, the present study aimed to describe the pharmacokinetic characteristics of ceftriaxone (CEF) in green sea turtles, Chelonia mydas, following single intravenous and intramuscular administrations at two dosages of 10 and 25 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 96 hr. The plasma concentrations of CEF were measured by liquid chromatography tandem mass spectrometry. The concentrations of CEF in the plasma were quantified up to 24 and 48 hr after i.v. and i.m. administrations at dosages of 10 and 25 mg/kg b.w., respectively. The Cmax values of CEF were 15.43 ± 3.71 μg/ml and 43.48 ± 4.29 μg/ml at dosages of 10 and 25 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 2.89 ± 0.41 hr and 5.96 ± 0.26 hr at dosages of 10 and 25 mg/kg b.w, respectively. The absolute i.m. bioavailability was 67% and 108%, and the binding percentage of CEF to plasma protein was ranged from 20% to 29% with an average of 24.6%. Based on the pharmacokinetic data, susceptibility break‐point and PK‐PD index (T > MIC, 0.2 μg/ml), i.m. administration of CEF at a dosage of 10 mg/kg b.w. might be appropriate for initiating treatment of susceptible bacterial infections in green sea turtles.  相似文献   

18.
Ciprofloxacin, a fluoroquinolone antimicrobial agent, was administered orally to 4 healthy dogs at dosage of approximately 11 and 23 mg/kg of body weight, every 12 hours for 4 days, with a 4-week interval between dosing regimens. Serum and tissue cage fluid (TCF) concentrations of ciprofloxacin were measured after the first and seventh dose of each dosing regimen. The peak concentration was greatest in the serum after multiple doses of 23 mg/kg (mean +/- SEM; 5.68 +/- 0.54 micrograms/ml) and least in the TCF after a single dose of 11 mg/kg (0.43 +/- 0.54 micrograms/ml). The time to peak concentration was not influenced by multiple dosing or drug dose, but was longer for TCF (6.41 +/- 0.52 hour) than for serum (1.53 +/- 0.52 hour). Accumulation of ciprofloxacin was reflected by the area under the concentration curve from 0 to 12 hours after administration (AUC0----12). The AUC0----12 was greatest in the serum after multiple doses of 23 mg/kg (31.95 +/- 1.90 micrograms.h/ml) and least in the TCF after a single dose of 11 mg/kg (3.87 +/- 1.90 micrograms.h/ml). The elimination half-life was not influenced by multiple dosing or dose concentration, but was greater for TCF (14.59 +/- 1.91 hours) than for serum (5.14 +/- 1.91 hours). The percentage of TCF penetration (AUCTCF/AUCserum) was greater after multiple doses (95.76 +/- 6.79%) than after a single dose (55.55 +/- 6.79%) and was not different between doses of 11 and 23 mg/kg. Both dosing regimens of ciprofloxacin resulted in continuous serum and TCF concentrations greater than 90% of the minimal inhibitory concentration for the aerobic and facultative anaerobic clinical isolates tested, including Pseudomonas aeruginosa.  相似文献   

19.
Clarithromycin is a new, safe orally administered macrolide antibiotic active against Mycoplasma sp. in humans. Single-dose and multidose pharmacokinetic parameters were determined for clarithromycin in wild-caught desert tortoises (Gopherus agassizii) seropositive for M. agassizii. Clarithromycin blood levels were measured in three tortoises for up to 72 hr after a single oral dose of 7.5 mg/kg. In a second group of six tortoises, levels were measured after a dose of 15 mg/kg. Noncompartmental iterative two-stage Bayesian and nonparametric expectation maximization pharmacokinetic parameters were determined for each animal assuming first order rate constants. At 15 mg/kg, the maximum concentration was 1.37 microg/ml, the time to maximum concentration was 8.0 hr, and a plasma half-life of 11.69 hr was derived from the latter method. The absorption constant was 0.08/hr, the absorption half-life was 8.47 hr, and the weight-normalized volume of distribution was 5.30 L/kg. Predictions derived by the latter method suggested a dosage of 15 mg/kg p.o. every 24 hr to achieve maximal blood levels of > or =1 microg/ml for multiple dosing. However, results from a preliminary multidose study with three tortoises indicate that the drug is accumulated; therefore, the predicted dose may be closer to 15 mg/kg p.o. every 2-3 days to maintain blood levels of 2-7.5 microg/ml. (For n = 3, 2-point linear regression median estimates for the apparent elimination rate constant (K) and half-life are 0.0227/hr and 30.52 hr, respectively.) This multidose accumulation reflects a slower apparent elimination than that predicted in the eight single-dose tortoises (i.e., K = 0.0593/hr, t1/2 = 11.69 hr). This study highlights a potential pitfall of depending solely on single-dose studies and the potential value of oral administration in reptiles.  相似文献   

20.
OBJECTIVE: To evaluate s.c. administration of unfractionated heparin (UFH) in accordance with a dosing regimen for high-dose treatment in dogs. ANIMALS: 10 healthy adult Beagles. PROCEDURES: Two groups of dogs (5 dogs/group) were given 6 injections of heparin (500 units of UFH/kg of body weight, s.c.) at intervals of 8 (experiment 1) and 12 (experiment 2) hours. Blood samples were collected before and 4 hours after heparin injections to determine amidolytic heparin activity, activated partial thromboplastin time (APTT), thrombin time, antithrombin activity, platelet count, and Hct. RESULTS: For experiments 1 and 2, mean +/- SD heparin activities before (experiment 1, 1.32 +/- 0.20 U/ml; experiment 2, 0.69 +/- 0.174 U/ml) and 4 hours after the last heparin injection (experiment 1, 1.71 +/- 0.30 U/ml; experiment 2, 1.10 +/- 0.30 U/ml) were higher than values calculated for the regimen used in experiment 1. Results of the investigated thrombin time test system with low thrombin activity were frequently beyond the measurement range, even with UFH activities > or = 0.6 U/ml. Moreover, a severe decrease of antithrombin activity became evident during both experiments (eg, in experiment 2 from 95.6 +/- 4.8 to 59.2 +/- 6.6%). In each treatment group, 2 dogs developed hematomas. CONCLUSIONS AND CLINICAL RELEVANCE: Calculations of the course of heparin activity after a single injection do not result in a reliable dosing regimen for high-dose heparin treatment in dogs. High-dose treatment must be monitored for each dog. Thrombin time measured with low thrombin activity is unsuitable for this purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号