首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frizzled receptors, which mediate development and display seven hydrophobic, membrane-spanning segments, are cell membrane-localized. We constructed a chimeric receptor with the ligand-binding and transmembrane segments from the beta2-adrenergic receptor (beta2AR) and the cytoplasmic domains from rat Frizzled-1 (Rfz1). Stimulation of mouse F9 clones expressing the chimera (beta2AR-Rfz1) with the beta-adrenergic agonist isoproterenol stimulated stabilization of beta-catenin, activation of a beta-catenin-sensitive promoter, and formation of primitive endoderm. The response was blocked by inactivation of pertussis toxin-sensitive, heterotrimeric guanine nucleotide-binding proteins (G proteins) and by depletion of Galphaq and Galphao. Thus, G proteins are elements of Wnt/Frizzled-1 signaling to the beta-catenin-lymphoid-enhancer factor (LEF)-T cell factor (Tcf) pathway.  相似文献   

2.
Interleukin-8 (IL-8) is an inflammatory cytokine that activates neutrophil chemotaxis, degranulation, and the respiratory burst. Neutrophils express receptors for IL-8 that are coupled to guanine nucleotide-binding proteins (G proteins); binding of IL-8 to its receptor induces the mobilization of intracellular calcium stores. A cDNA clone from HL-60 neutrophils, designated p2, has now been isolated that encodes a human IL-8 receptor. When p2 is expressed in oocytes from Xenopus laevis, the oocytes bind 125I-labeled IL-8 specifically and respond to IL-8 by mobilizing calcium stores with an EC50 of 20 nM. This IL-8 receptor has 77% amino acid identity with a second human neutrophil receptor isotype that binds IL-8 with higher affinity. It also exhibits 69% amino acid identity with a protein reported to be an N-formyl peptide receptor from rabbit neutrophils, but less than 30% identity with all other known G protein-coupled receptors, including the human N-formyl peptide receptor.  相似文献   

3.
4.
The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of beta2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.  相似文献   

5.
Although the biological actions of the cell membrane and serum lipid lysophosphatidylcholine (LPC) in atherosclerosis and systemic autoimmune disease are well recognized, LPC has not been linked to a specific cell-surface receptor. We show that LPC is a high-affinity ligand for G2A, a lymphocyte-expressed G protein-coupled receptor whose genetic ablation results in the development of autoimmunity. Activation of G2A by LPC increased intracellular calcium concentration, induced receptor internalization, activated ERK mitogen-activated protein kinase, and modified migratory responses of Jurkat T lymphocytes. This finding implicates a role for LPC-G2A interaction in the etiology of inflammatory autoimmune disease and atherosclerosis.  相似文献   

6.
In skeletal muscle, intramembrane charge movement initiates the processes that lead to the release of calcium from the sarcoplasmic reticulum. In cardiac muscle, in contrast, the similarity of the voltage dependence of developed tension and intracellular calcium transients to that of calcium current suggests that the calcium current may gate the release of calcium. Nevertheless, a mechanism similar to that of skeletal muscle continues to be postulated for cardiac muscle. By using rapid exchange (20 to 50 milliseconds) of the extracellular solutions in rat ventricular myocytes in which the intracellular calcium transients or cell shortening were measured, it has now been shown that the influx of calcium through the calcium channel is a mandatory link in the processes that couple membrane depolarization to the release of calcium. Thus, intramembrane charge movement does not contribute to the release of calcium in heart muscle.  相似文献   

7.
The guanosine triphosphate (GTP)-binding proteins include signal-transducing heterotrimeric G proteins (for example, Gs, Gi), smaller GTP-binding proteins that function in protein sorting, and the oncogenic protein p21ras. The T cell receptor complexes CD4-p56lck and CD8-p56lck were found to include a 32- to 33-kilodalton phosphoprotein (p32) that was recognized by an antiserum to a consensus GTP-binding region in G proteins. Immunoprecipitated CD4 and CD8 complexes bound GTP and hydrolyzed it to guanosine diphosphate (GDP). The p32 protein was covalently linked to [alpha-32P]GTP by ultraviolet photoaffinity labeling. These results demonstrate an interaction between T cell receptor complexes and an intracellular GTP-binding protein.  相似文献   

8.
The hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C yields the second messengers inositol 1,4,5-trisphosphate (InsP3) and 1,2-diacylglycerol. This activity is regulated by a variety of hormones through G protein pathways. However, the specific G protein or proteins involved has not been identified. The alpha subunit of a newly discovered pertussis toxin-insensitive G protein (Gq) has recently been isolated and is now shown to stimulate the activity of polyphosphoinositide-specific phospholipase C (PI-PLC) from bovine brain. Both the maximal activity and the affinity of PI-PLC for calcium ion were affected. These results identify Gq as a G protein that regulates PI-PLC.  相似文献   

9.
A G protein directly regulates mammalian cardiac calcium channels   总被引:45,自引:0,他引:45  
A possible direct effect of guanine nucleotide binding (G) proteins on calcium channels was examined in membrane patches excised from guinea pig cardiac myocytes and bovine cardiac sarcolemmal vesicles incorporated into planar lipid bilayers. The guanosine triphosphate analog, GTP gamma S, prolonged the survival of excised calcium channels independently of the presence of adenosine 3',5'-monophosphate (cAMP), adenosine triphosphate, cAMP-activated protein kinase, and the protein kinase C activator tetradecanoyl phorbol acetate. A specific G protein, activated Gs, or its alpha subunit, purified from the plasma membranes of human erythrocytes, prolonged the survival of excised channels and stimulated the activity of incorporated channels. Thus, in addition to regulating calcium channels indirectly through activation of cytoplasmic kinases, G proteins can regulate calcium channels directly. Since they also directly regulate a subset of potassium channels, G proteins are now known to directly gate two classes of membrane ion channels.  相似文献   

10.
猪中性粒细胞磷酸二酯酶基因表达及活性研究   总被引:4,自引:0,他引:4  
 【目的】通过对猪中性粒细胞磷酸二酯酶(PDE)基因表达、活性及特异性抑制剂实验检测,研究其存在的主要PDE亚型及在体外的活性,为探讨PDE在中性粒细胞的分布、活性变化及对cAMP、cGMP调节与中性粒细胞功能关系提供依据。【方法】采用反转录聚合酶链反应(RT-PCR)检测PDE基因在猪中性粒细胞的表达,以高效液相色谱(HPLC)检测环核苷酸在PDE反应前后的含量变化,计算PDE活性。【结果】在检测的18个PDE亚型中,PDE1B、2A、3A、3B、4A、4B、4C、4D、5A、7A、7B、8A、8B、9A、11A 共15个PDE mRNA在猪中性粒细胞表达,特异性抑制剂实验表明PDE4、PDE5分别为水解cAMP、cGMP的主要PDE亚型;cAMP/cGMP-PDE在10~40 μl范围内,与其活性存在良好的线性关系(r=0.9929/0.9992)。【结论】猪中性粒细胞至少存在15个PDE亚型,其中PDE4、PDE5为主要存在的2个亚型,PDE样品量在一定范围内与其活性存在良好的线性关系,可作为筛选PDE型中性粒细胞功能调节剂的方法。  相似文献   

11.
Calcium-induced calcium release (CICR) may function widely in calcium-mediated cell signaling, but has been most thoroughly characterized in muscle cells. In a homogenate of sea urchin eggs, which display transients in the intracellular free calcium concentration ([Ca2+]i) during fertilization and anaphase, addition of Ca2+ triggered CICR. Ca2+ release was also induced by the CICR modulators ryanodine and caffeine. Responses to both Ca2+ and CICR modulators (but not Ca2+ release mediated by inositol 1,4,5-trisphosphate) were inhibited by procaine and ruthenium red, inhibitors of CICR. Intact eggs also displayed transients of [Ca2+]i when microinjected with ryanodine. Cyclic ADP-ribose, a metabolite with potent Ca(2+)-releasing properties, appears to act by way of the CICR mechanism and may thus be an endogenous modulator of CICR. A CICR mechanism is present in these nonmuscle cells as is assumed in various models of intracellular Ca2+ wave propagation.  相似文献   

12.
G protein-coupled receptor kinase 2 (GRK2) plays a key role in the desensitization of G protein-coupled receptor signaling by phosphorylating activated heptahelical receptors and by sequestering heterotrimeric G proteins. We report the atomic structure of GRK2 in complex with Galphaq and Gbetagamma, in which the activated Galpha subunit of Gq is fully dissociated from Gbetagamma and dramatically reoriented from its position in the inactive Galphabetagamma heterotrimer. Galphaq forms an effector-like interaction with the GRK2 regulator of G protein signaling (RGS) homology domain that is distinct from and does not overlap with that used to bind RGS proteins such as RGS4.  相似文献   

13.
Fura-2 calcium imaging in the cricket omega neuron revealed increased intracellular free calcium ion concentration in response to simulated cricket calling songs and other sound stimuli. The time course of the increase and decrease in intracellular calcium coincided with the time course of forward masking, a time-dependent modulation of auditory sensitivity. The buffering of calcium transients with high concentrations of a kinetically fast calcium buffer eliminated the post-stimulus hyperpolarization associated with forward masking, whereas the uncaging of calcium inside the neuron produced a hyperpolarization. The results suggest that sound-stimulated intracellular calcium accumulation acts by means of a calcium-activated hyperpolarizing current to produce forward masking. These findings underscore the importance of chemical dynamics in neural computation by demonstrating a behaviorally relevant role of calcium dynamics in vivo.  相似文献   

14.
Phototransduction in rod cells is likely to involve an intracellular messenger system that links the absorption of light by rhodopsin to a change in membrane conductance. The direct effect of guanosine 3',5'-monophosphate (cGMP) on excised patches of rod outer segment membrane strongly supports a role for cGMP as an intracellular messenger in phototransduction. It is reported here that magnesium and calcium directly affect the conductance of excised patches of rod membrane in the absence of cGMP and that magnesium, applied to intact rod cells, blocks a component of the cellular light response. The divalent cation-suppressed conductance in excised patches showed outward rectification and cation-selective permeability resembling those of the light-suppressed conductance measured from the intact rod cell. The divalent cation-suppressed conductance was partly blocked by a concentration of the pharmacological agent L-cis-diltiazem that blocked all of the cGMP-activated conductance. Divalent cations may act, together with cGMP, as an intracellular messenger system that mediates the light response of the rod photoreceptor cell.  相似文献   

15.
 【目的】以茶碱为参照,观察中药成分牛蒡子苷对原代骨骼肌细胞磷酸二酯酶(Phosphodiesterase,PDE)活性及蛋白质合成的影响,探讨中药通过抑制PDE促进肌肉生长的作用及机理。【方法】分离1~3日龄ICR小鼠四肢肌肉用于骨骼肌原代细胞培养,在培养至第5~6天时向培养基中添加不同浓度的牛蒡子苷和茶碱,以不含牛蒡子苷和茶碱的培养基为阴性对照,继续培养24 h,采用HPLC、ELISA以及考马斯亮蓝法分别测定骨骼肌细胞cAMP PDE的活性、细胞内cAMP水平以及细胞总蛋白质合成。【结果】牛蒡子苷终浓度达到2.5 μg•ml-1、茶碱终浓度为20 μg•ml-1时均能极显著抑制原代培养骨骼肌细胞cAMP PDE的活性(P<0.01),显著提高细胞内cAMP水平(P<0.05),极显著促进肌细胞总蛋白质的合成(P<0.01)。【结论】中药成分牛蒡子苷具有通过调节骨骼肌细胞内PDE的活性和cAMP水平,增加肌细胞蛋白质合成,促进骨骼肌细胞生长的作用。结果提示对PDE有抑制作用的中药有望成为促进动物生长的新型饲料添加剂。  相似文献   

16.
The objective of this experiment is to evaluate the role of intracellular and extracellular Ca2+ and calmodulin (CAM) in jasmonic acid (JA) signaling. The laser scanning microscopy was used to detect the changes of [Ca2+]cyt of Arabidopsis thaliana leaf cells which pretreated with different types of calcium channel blocker. Moreover, the expression of VSP, one of JA response genes, was also investigated after pretreated with the above blocker and antagonist of CaM. The results showed that extracellular and intracellular calcium both involved in the JA-induced Ca2+ mobilization, and then Ca2+ exerted its functions through activating the CaM or CaM related proteins. The apoplast calcium influx and the calcium release from the calcium stores are both involved in the JA-induced calcium mobilization, then the JA-induced Ca2+ transmited the JA signal through CaM or CaM related proteins, and regulated the JA responsive genes.  相似文献   

17.
Calmodulin (CaM) is a major effector for the intracellular actions of Ca2+ in nearly all cell types. We identified a CaM-binding protein, designated regulator of calmodulin signaling (RCS). G protein-coupled receptor (GPCR)-dependent activation of protein kinase A (PKA) led to phosphorylation of RCS at Ser55 and increased its binding to CaM. Phospho-RCS acted as a competitive inhibitor of CaM-dependent enzymes, including protein phosphatase 2B (PP2B, also called calcineurin). Increasing RCS phosphorylation blocked GPCR- and PP2B-mediated suppression of L-type Ca2+ currents in striatal neurons. Conversely, genetic deletion of RCS significantly increased this modulation. Through a molecular mechanism that amplifies GPCR- and PKA-mediated signaling and attenuates GPCR- and PP2B-mediated signaling, RCS synergistically increases the phosphorylation of key proteins whose phosphorylation is regulated by PKA and PP2B.  相似文献   

18.
The mammalian heart rate is regulated by the vagus nerve, which acts via muscarinic acetylcholine receptors to cause hyperpolarization of atrial pacemaker cells. The hyperpolarization is produced by the opening of potassium channels and involves an intermediary guanosine triphosphate-binding regulatory (G) protein. Potassium channels in isolated, inside-out patches of membranes from atrial cells now are shown to be activated by a purified pertussis toxin-sensitive G protein of subunit composition alpha beta gamma, with an alpha subunit of 40,000 daltons. Thus, mammalian atrial muscarinic potassium channels are activated directly by a G protein, not indirectly through a cascade of intermediary events. The G protein regulating these channels is identified as a potent Gk; it is active at 0.2 to 1 pM. Thus, proteins other than enzymes can be under control of receptor coupling G proteins.  相似文献   

19.
Signaling by heterotrimeric GTP-binding proteins (G proteins) drives numerous cellular processes. The number of G protein molecules activated by a single membrane receptor is a determinant of signal amplification, although in most cases this parameter remains unknown. In retinal rod photoreceptors, a long-lived photoisomerized rhodopsin molecule activates many G protein molecules (transducins), yielding substantial amplification and a large elementary (single-photon) response, before rhodopsin activity is terminated. Here we report that the elementary response in olfactory transduction is extremely small. A ligand-bound odorant receptor has a low probability of activating even one G protein molecule because the odorant dwell-time is very brief. Thus, signal amplification in olfactory transduction appears fundamentally different from that of phototransduction.  相似文献   

20.
Catecholamines signal through the beta2-adrenergic receptor by promoting production of the second messenger adenosine 3',5'-monophosphate (cAMP). The magnitude of this signal is restricted by desensitization of the receptors through their binding to beta-arrestins and by cAMP degradation by phosphodiesterase (PDE) enzymes. We show that beta-arrestins coordinate both processes by recruiting PDEs to activated beta2-adrenergic receptors in the plasma membrane of mammalian cells. In doing so, the beta-arrestins limit activation of membrane-associated cAMP-activated protein kinase by simultaneously slowing the rate of cAMP production through receptor desensitization and increasing the rate of its degradation at the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号