首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this research was to determine how surfactant micelles influence iron partitioning and iron-promoted lipid oxidation in oil-in-water emulsions. Lipids containing ferric ions were used to produce oil-in-water emulsions, and continuous-phase iron concentrations in emulsions were measured as a function of varying continuous-phase polyoxyethylene 10-lauryl ether (Brij) concentrations. Continuous-phase iron concentrations increased with increasing surfactant micelle concentrations (0.1-2.0%) and storage time (1-7 days). At pH 3.0, the concentration of continuous-phase iron was higher than at pH 7.0. Similar trends in iron solubilization by Brij micelles were observed when either hexadecane or corn oil was used as the lipid phase. Lipid oxidation rates, as determined by the formation of lipid hydroperoxides and headspace hexanal, in corn oil-in-water emulsions containing iron decreased with increasing surfactant concentrations (0.5-2.0%). These results indicate that surfactant micelles could alter the physical location and prooxidant activity of iron in oil-in-water emulsions.  相似文献   

2.
Oxidation of oil-in-water emulsion droplets is influenced by the properties of the interfacial membrane surrounding the lipid core. To evaluate how surfactant headgroup size influences lipid oxidation rates, emulsions were prepared with polyoxyethylene 10 stearyl ether (Brij 76) or polyoxyethylene 100 stearyl ether (Brij 700), which are structurally identical except for their hydrophilic headgroups, with Brij 700 containing 10 times more polyoxyethylene groups than Brij 76. Fe(2+)-promoted decomposition of cumene hydroperoxide was lower in Brij 700-stabilized than in Brij 76-stabilized hexadecane emulsions. Fe(2+)-promoted alpha-tocopherol oxidation rates were similar in hexadecane emulsion regardless of surfactant type. Brij 700 decreased production of hexanal from methyl linoleate and the formation of lipid peroxides and propanal from salmon oil compared to emulsions stabilized by Brij 76. These results indicate that emulsion droplet interfacial thickness could be an important determinant in the oxidative stability of food emulsions.  相似文献   

3.
To determine the role of surfactant hydroperoxides on the oxidative stability of fatty acids, the oxidation of methyl linoleate micelles and salmon oil-in-water emulsions was measured as a function of varying Tween 20 hydroperoxide concentrations. Increasing Tween 20 hydroperoxide concentrations from 3.5 to 14.7 micromol hydroperoxide/g Tween 20 decreased the lag phase of headspace hexanal formation but did not increase the total amount of hexanal formed in methyl linoleate/Tween 20 micelles. In the micelle system, Fe(2+) decreased the lag phase of hexanal formation but increased total hexanal concentrations only in micelles with the highest Tween 20 hydroperoxide concentrations (14.7 micromol hydroperoxide/g surfactant). Increasing Tween 20 surfactant hydroperoxide concentrations also increased the oxidation of salmon oil-in-water emulsions as determined by lipid hydroperoxides and headspace propanal. In both the micelle and emulsion systems, the prooxidant effect of Fe(2+) decreased with increasing Tween 20 hydroperoxide concentrations. These data show that surfactant hydroperoxides such as those in Tween 20 could decrease the oxidative stability of lipids in food emulsions.  相似文献   

4.
In oil-in-water emulsions, the physical location of antioxidants can be an important determinant in their activity. Surfactants can potentially influence the physical location of antioxidants in oil-in-water emulsions by causing solubilization of lipid-soluble antioxidants into the aqueous phase. Excess Brij micelles in an oil-in-water emulsion were found to increase the partitioning of phenolics into the continuous phase with polar antioxidants (propyl gallate) partitioning more than nonpolar antioxidants (butylated hydroxyltoluene). Solubilization of propyl gallate was rapid coming to equilibrium in less than 5 min. Increasing surfactant micelle concentrations from 0.3 to 2.8% increased the solubilization of propyl gallate by 2.3-fold. Solubilization of phenolic antioxidants into the aqueous phase by Brij micelles did not alter the oxidative stability of salmon oil-in-water emulsions, suggesting that surfactant micelles influenced oxidation rates by mechanisms other than antioxidant solubilization.  相似文献   

5.
Oxidation of oil-in-water emulsion droplets is influenced by the properties of the interfacial membrane surrounding the lipid core. Previous work has shown that an important factor in the oxidation of oil-in-water emulsions is surfactant properties that impact interactions between water-soluble prooxidants and lipids in the emulsion droplet. The purpose of this research was to study the impact of surfactant hydrophobic tail group size on lipid oxidation in oil-in-water emulsions stabilized by polyoxyethylene 10 lauryl ether (Brij-lauryl) or polyoxyethylene 10 stearyl ether (Brij-stearyl). The ability of iron to decompose cumene peroxide was similar in hexadecane emulsions stabilized by Brij-stearyl and Brij-lauryl. Oxidation of methyl linoleate in hexadecane emulsions containing cumene peroxide was greater in droplets stabilized by Brij-lauryl than in those stabilized by Brij-stearyl at pH 3 with no differences observed at pH 7.0. Oxidation of salmon oil was greater in emulsions stabilized by Brij-lauryl than in those stabilized by Brij-stearyl as determined by both lipid peroxides and headspace propanal. These results suggest that surfactant hydrophobic tail group size may play a minor role in lipid oxidation in oil-in-water emulsions.  相似文献   

6.
Lipid oxidation in dispersed lipids is prevalent at the oil-water interface where lipid hydroperoxides are decomposed into free radicals by transition metals. Free radical scavenging antioxidants are believed to be most effective in lipid dispersions when they accumulate at the oil-water interface. The surface activity of antioxidants could be increased by their conjugation to hydrocarbon chains. In this study, p-hydroxyphenylacetic acid (HPA) was conjugated with either a butyl or dodecyl group. The HPA conjugates were more effective at decreasing interfacial tension than unconjugated HPA, indicating that they were able to adsorb at lipid-water interfaces. However, free HPA was a more effective antioxidant than butyl and dodecyl conjugates in Menhaden oil-in-water emulsions as determined by both lipid hydroperoxides and thiobarbituric acid reactive substances. The increased antioxidant activity of free HPA could be due to its more effective free radical scavenging activity and its higher concentration in the lipid phase of oil-in-water emulsions in the presence of surfactant micelles where it can act as a chain-breaking antioxidant.  相似文献   

7.
The purpose of this research was to examine the influence of the physical state of lipids on iron-promoted oxidation of methyl linolenate in octadecane oil-in-water emulsions. Octadecane and methyl linolenate oil-in-water emulsions were prepared that contained droplets having the octadecane as either liquid or solid. The physical state of the octadecane was confirmed by a differential scanning calorimeter (DSC). The effect of the physical state of the lipid on oxidation rates was determined as a function of iron concentration (80 and 160 microM), pH (3.0 or 7.0), emulsifier type, and cooling rate. Oxidation of methyl linolenate was determined by lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Emulsions containing solid octadecane had higher rates of lipid hydroperoxide and TBARS formation than those containing liquid octadecane. The rate at which the emulsions were cooled had no influence on oxidation rates. Oxidation rates in both emulsions increased with increasing iron concentration and decreasing pH. Oxidation rates were lowest in emulsions with cationic droplet membranes (dodecyl trimethylammonium bromide-stabilized), presumably due to the repulsion of iron from the oxidizable methyl linolenate in the emulsion droplet core. These results suggest that upon crystallization of octadecane, the liquid methyl linolenate migrated to the emulsion droplet surface, where it was more prone to oxidation because it was in closer contact with the iron ions in the aqueous phase.  相似文献   

8.
The antioxidant polar paradox postulates that nonpolar antioxidants are more effective in oil-in-water emulsions than polar antioxidants. However, this trend is often not observed with antioxidants esterified with acyl chains to vary their polarity. In this study, the nonpolar eicosyl rosmarinate (20 carbons, R20) was less effective at inhibiting lipid oxidation in oil-in-water emulsions than esters with shorter fatty acyl chains such as butyl (R4), octyl (R8), and dodecyl (R12) esters. Interestingly, in the presence of surfactant micelles, the antioxidant activity of R20 was significantly increased while the antioxidant activity of R4 and R12 was slightly decreased. The presence of surfactant micelles increased the concentration of R20 at the interface of the surfactant micelles and/or emulsion droplets as determined by partitioning studies, front-face fluorescence properties, and the ability of R20 to interact with the interfacial probe, 4-hexadecylbenzenediazonium. A possible explanation for why the antioxidant activity of R20 was so dramatically increased by surfactant micelles is that a portion of the nonpolar R20 localizes in the emulsion droplet core and the surfactant micelles are able to increase the interfacial concentrations of R20 and thus its ability to scavenge free radicals produced from the decomposition of interfacial lipid hydroperoxides.  相似文献   

9.
Proteins dispersed in the continuous phase of oil-in-water emulsions are capable of inhibiting lipid oxidation reactions. The antioxidant activity of these proteins is thought to encompass both free radical scavenging by amino acid residues and chelation of prooxidative transition metals; however, the precise mechanism by which this occurs remains unclear. In this study, the oxidative stability of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin (beta-Lg) in a Brij-stabilized menhaden oil-in-water emulsion was determined. The presence of low concentrations of continuous phase beta-Lg (250 and 750 microg/mL) significantly inhibited lipid oxidation as determined by lipid hydroperoxides and thiobarbituric acid reactive substances analysis. It was observed that cysteine oxidized before tryptophan in beta-Lg, and both residues oxidized before lipid oxidation could be detected. No oxidation of the methionine residues of beta-Lg was observed despite its reported high oxidative susceptibility. It is conceivable that surface exposure of amino acid residues greatly affects their oxidation kinetics, which may explain why some residues are preferentially oxidized relative to others. Further elucidation of the mechanisms governing free radical scavenging of amino acids could lead to more effective applications of proteins as antioxidants within oil-in-water food emulsions.  相似文献   

10.
Transglutaminase-catalyzed cross-linking of interfacial proteins in oil-in-water has been shown to influence physical stability, but little is known about how this reaction impacts lipid oxidation. Therefore, this study evaluated the influence of transglutaminase-induced interfacial protein cross-linking on the oxidative stability of casein-stabilized menhaden oil-in-water emulsions. Interfacial casein in menhaden oil-in-water emulsions cross-linked by transglutaminase (pH 7.0) produced a cohesive interfacial protein layer that could not be removed from the emulsion droplet by Tween 20. Although transglutaminase cross-linked the interfacial casein, these emulsions did not show increased oxidative stability when compared to untreated emulsions as determined by measurement of lipid hydroperoxides and thiobarbituric acid reactive substances. These results indicate that increasing the cohesiveness of proteins at the interface of oil-in-water emulsions does not inhibit lipid oxidation. This could be due to the ability of prooxidative species such as iron to diffuse through the cross-linked protein layer where it could promote the decomposition of lipid hydroperoxides into free radicals that could oxidize unsaturated fatty acids in the emulsion droplet core.  相似文献   

11.
The effects of the emulsifiers lecithin, Tween 20, whey protein isolate, mono-/diacylglycerols, and sucrose fatty acid ester on oxidation stability of a model oil-in-water emulsion prepared with enzymatically synthesized menhaden oil-caprylic acid structured lipid were evaluated. Oxidation was monitored by measuring lipid hydroperoxides, thiobarbituric acid reactive substances, and the ratio of combined docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents to palmitic acid in the emulsion. After high-pressure homogenization, all emulsions, except those prepared with lecithin, had similar droplet size distributions. All structured lipid emulsions, except for the lecithin-stabilized emulsions, were stable to creaming over the 48-day period studied. Emulsifier type and concentration affected oxidation rate, with 0.25% emulsifier concentration generally having a higher oxidation rate than 1% emulsifier concentration. Overall, oxidation did not progress significantly enough in 48 days of storage to affect DHA and EPA levels in the emulsion.  相似文献   

12.
Formation of physical structures, known as association colloids, in bulk oils can promote lipid oxidation. However, the cause of this accelerated lipid oxidation is unknown. Therefore, the aim of this study was to investigate whether transition metals were important prooxidants in bulk oils containing reverse micelles produced from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and water. The Fe(III) chelator deferoxamine (DFO) increased the oxidative stability of stripped soybean oil (SSO) containing reverse micelles from 2 to 7 days. Because phosphatidylcholine (1,2-dibutyl-sn-glycero-3-phosphocholine) that does not form reverse micelles is not prooxidative, these results suggest that the prooxidant activity of DOPC reverse micelles could be due to their ability to concentrate both endogenous iron and lipid hydroperoxides at the water-lipid interface, thereby increasing the ability of iron to decompose lipid hydroperoxides. DFO was also able to improve the activity of α-tocopherol and Trolox in SSO containing DOPC reverse micelles increasing the lag phase from 2 to 11 and 13 days, respectively. DOPC reverse micelles decreased iron-promoted α-tocopherol and Trolox decomposition and decreased the ability of α-tocopherol and Trolox to decrease Fe(III) concentrations. Overall, these results suggest that iron is an important prooxidant in bulk oils containing reverse micelles; therefore, finding ways to control iron reactivity in association colloids could provide new technologies to increase the oxidative stability of oils.  相似文献   

13.
The influence of charge status of both lipid emulsion droplets and phenolic antioxidants on lipid oxidation rates was evaluated using anionic sodium dodecyl sulfate (SDS) and nonionic polyoxyethylene 10 lauryl ether (Brij)-stabilized emulsion droplets and the structurally similar phenolic antioxidants gallamide, methyl gallate, and gallic acid. In nonionic, Brij-stabilized salmon oil emulsions at pH 7.0, gallyol derivatives (5 and 500 microM) inhibited lipid oxidation with methyl gallate > gallamide > gallic acid. In the Brij-stabilized salmon oil emulsions at pH 3.0, low concentrations of the galloyl derivatives were prooxidative or ineffective while high concentrations were antioxidative. In SDS-stabilized salmon oil emulsions, oxidation rates were faster and the galloyl derivatives were less effective compared to the Brij-stabilized emulsions. Differences in antioxidant activity were related to differences in the ability of the galloyl derivatives to partition into emulsion droplets and to increase the prooxidant activity of iron at low pH.  相似文献   

14.
The effects of salt and pH on copper-catalyzed lipid oxidation in structured lipid-based emulsions were evaluated. Ten percent oil-in-water emulsions were formulated with a canola oil/caprylic acid structured lipid and stabilized with 0.5% whey protein isolate. alpha-Tocopherol and citric acid were added to the emulsions to determine how changes in pH or the addition of NaCl affected their antioxidant activity. The peroxide values and anisidine values of emulsions stored at 50 degrees C were measured over an 8-day period. Increased lipid oxidation occurred in the pH 7.0 emulsions and when 0.5 M NaCl was added to the pH 3.0 samples. Adding alpha-tocopherol, citric acid, or a combination of the two compounds slowed the formation of hydroperoxides and their subsequent decomposition products in pH 3.0 emulsions.  相似文献   

15.
Metal-catalyzed oxidation of a structured lipid model emulsion   总被引:5,自引:0,他引:5  
The effects of temperature, time, metal, citric acid, and tocopherol contents on the oxidation stability of a model oil-in-water emulsion prepared with enzymatically synthesized menhaden oil-caprylic acid structured lipid were evaluated by response surface methodology. The emulsions were stabilized by whey protein isolate. Oxidation was monitored by measuring lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). Cupric sulfate and ferrous sulfate were used to study the effect of metal concentration and type. A statistical model was developed to determine the relationships between all variables considered. The relationships differed depending on the type of metal catalyst used. For both metal types, the metal concentration had the highest positive effect on peroxide value. Citric acid had the highest negative effect on peroxide value for iron-containing emulsions, while tocopherol had the highest negative effects for copper-containing emulsions. Results from the TBARS test did not vary significantly enough to yield an acceptable model.  相似文献   

16.
The effects of riboflavin photosensitization on the oxidative stability of oil-in-water (O/W) emulsions were determined using lipid hydroperoxides and headspace volatile analyses. The influences of a metal chelator, sodium azide, and superoxide dismutase (SOD) on oxidation pathways were tested to gain a better understanding of the role of transition metals, singlet oxygen, and superoxide anion, respectively. Emulsions with riboflavin and visible light irradiation had significantly higher lipid hydroperoxides and volatiles (p < 0.05) as compared to samples without light irradiation or riboflavin. The addition of ethylenediammetetraacetic acid (EDTA) decreased the formation of lipid hydroperoxides, hexanal, 2-heptenal, and 1-octen-3-ol in a concentration-dependent manner. Sodium azide, a singlet oxygen physical quencher, only inhibited the formation of 2-heptenal and 1-octen-3-ol. Overall, photosensitized riboflavin participated in both type I and type II pathways in O/W emulsions, and these pathways enhance the prooxidant activity of metals through their ability to produce lipid hydroperoxides and superoxide anion.  相似文献   

17.
The effects of the purple-fleshed sweet potato extract (PFSPE) on oxidation stabilities of a model oil-in-water emulsion prepared with enzymatically synthesized fish oil-soybean oil structured lipid (SL) versus physically blended lipid (PBL) without modification were evaluated. The anthocyanins in PFSPE were analyzed and identified by HPLC-MS. The fatty acid composition of SL was similar to that of PBL, except palmitic acid (1.48 in PBL and 9.61% in SL) and linoleic acid (62.47 in PBL and 49.58% in SL). Peonidin 3-caffeoylsophoroside-5-glucoside, peonidin-3-(6',6'-caffeoylferuloylsophoroside)-5-glucoside, peonidin-dicaffeoylsophoroside-5-glucoside, peonidin 3-(6',6"-caffeoyl-p-hydroxybenzoylsophoroside)-5-glucoside were identified as the major anthocyanin compounds in PFSPE. Different levels (200, 500, 1000 ppm) of PFSPE were added into both SL- and PBL-based emulsions, with 200 ppm catechin as comparison. Oxidation was monitored by measuring the peroxide value and thiobarbituric acid reactive substances. The antioxidant activity of PFSPE increased with an increased concentration, the concentration of 1000 ppm showed high antioxidant ability similar to that of catechin in both PBL- and SL-based oil-in-water emulsions. It is notable that the SL-based emulsion appeared to have better oxidative stability than the PBL-based emulsion.  相似文献   

18.
The antioxidant activities of aqueous phase beta-lactoglobulin (beta-Lg) and its chymotryptic hydrolysates (CTH) were compared in this study. Proteins and peptides have been shown to inhibit lipid oxidation reactions in oil-in-water emulsions; however, a more fundamental understanding of the antioxidant activity of these compounds in dispersed food lipid systems is lacking. CTH was more effective than an equivalent concentration of beta-Lg in retarding lipid oxidation reactions when dispersed in the continuous phase of Brij-stabilized oil-in-water emulsions (pH 7). Furthermore, it was observed that CTH had higher peroxyl radical scavenging and iron-binding values than beta-Lg. Liquid chromatography-mass spectrometry (LC-MS) was used to measure the rate of oxidation of three oxidatively labile amino acid residues (Tyr, Met, and Phe) in certain CTH peptide fragments. Significant oxidation of specific Tyr and Met residues present in two separate 12 amino acid peptide fragments was observed in the days preceding lipid oxidation (39 and 55% of Tyr and Met were oxidized, respectively, by day 4 of the study); however, no significant oxidation of the Phe residue present in a specific 14 amino acid peptide fragment could be observed during the same time period. These data could suggest that Met and Tyr residues are capable of scavenging radical species and have the potential to improve the oxidative stability dispersed food lipids.  相似文献   

19.
Lipid oxidation in emulsions is influenced by the ability of transition metals to associate with emulsion droplets. The oxidative stability of 5% salmon oil-in-water emulsion was influenced by surfactant type, with oxidation rates being greatest in emulsions stabilized by anionic sodium dodecyl sulfate (SDS) followed by nonionic Tween 20 and cationic dodecyltrimethylammonium bromide (DTAB). EDTA inhibited lipid oxidation in all the emulsions, and apo-transferrin inhibited oxidation in the Tween 20-stabilized emulsions at pH 7.0, suggesting that continuous-phase iron was an active prooxidant. Iron associated with Tween-20 stabilized hexadecane emulsion droplets could be partitioned into the continuous phase by lowering the pH to 相似文献   

20.
Whey protein isolate (WPI), soy protein isolate (SPI), and sodium caseinate (CAS) can inhibit lipid oxidation when they produce a positive charge at the interface of emulsion droplets. However, when proteins are used to stabilize oil-in-water emulsions, only a fraction of them actually absorb to the emulsion droplets, with the rest remaining in the continuous phase. The impact of these continuous phase proteins on the oxidative stability of protein-stabilized emulsions is not well understood. WPI-stabilized menhaden oil-in-water emulsions were prepared by high-pressure homogenization. In some experiments WPI was removed from the continuous phase of the emulsions through repeated centrifugation and resuspension of the emulsion droplets (washed emulsion). Unwashed emulsions were more oxidatively stable than washed emulsions at pH 7.0, suggesting that continuous phase proteins were antioxidative. The oxidative stability of emulsions containing different kinds of protein in the continuous phase decreased in the order SPI > CAS > WPI, as determined by both hydroperoxide and headspace propanal formation. Iron-binding studies showed that the chelating ability of the proteins decreased in the order CAS > SPI > WPI. The free sulfhydryls of both WPI and SPI were involved in their antioxidant activity. This research shows that continuous phase proteins could be an effective means of protecting omega-3 fatty acids from oxidative deterioration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号