首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The carbon pool and its fluxes were studied in Karelian pine forests of automorphic sites for the characterization of the regional carbon cycle. On the permanent sample plots arranged in pine stands (dominant forest types) of the middle and northern taiga, the structure and dynamics of the phytomass, as well as the composition of the soil organic matter, were investigated. The contribution of different components of the forest ecosystems to the regional carbon budget was studied. The carbon pools in the soils of the middle and northern taiga subzones were 330–440 × 102 and 440–550 × 102 kg/ha, respectively. The share of soil carbon in the total carbon pool of the forest biogeocenoses studied amounted to 46–35 and 33–24%, respectively. The period of considerable carbon fixation in the pine ecosystem (nearly 20 × 102 kg/ha/yr) turned out to be limited to the middle-aged stands. In the mature and overmature pine forests, only 4 × 102 kg of C/ha/yr were fixed. The main part of carbon in the soil (65–75%) was contained in the illuvial horizons, although its content there was less that 1% as compared to 30–50% in the forest litters. On industrial harvesting of wood, the main reserves of soil carbon are not spent; only the fund of mobile carbon in organic horizons of poor soils is exhausted or carbon accumulates intensely due to the development of continuous plant cover on fertile soils.  相似文献   

2.
The Rybachii Peninsula is composed of Proterozoic sedimentary rocks and differs sharply from the rest of the Kola Peninsula in its geological structure, topographic forms, and parent rocks. It is dominated by Al–Fe-humus soils formed on moraines with an admixture of local rock fragments, including slates. Organic horizons of tundra soils in the peninsula are less acid than those on granitoids of adjacent mainland of the Kola Peninsula. The content of exchangeable calcium in the organic horizons varies from 17.4 to 68.0 cmolc/kg, and the content of water-soluble carbon reaches 400 mg/100 g amounting to 1–2% of the total soil organic matter content. The total number of bacteria in the organic horizons of tundra soils varies from 3.5 × 109 to 4.8 × 109 cells/g; and bacterial biomass varies from 0.14 to 0.19 mg/g. The length of fungal mycelium and its biomass in the organic horizons are significant (>1000 m/g soil). The biomass of fungal mycelium in the organic horizons exceeds the bacterial biomass by seven times in podzols (Albic Podzols) and by ten times in podbur (Entic Podzol), dry-peat soil (Folic Histosol), and low-moor peat soil (Sapric Histosol).  相似文献   

3.
半干旱区不同土层深度土壤有机碳变化   总被引:6,自引:1,他引:5  
选择内蒙古自治区赤峰市敖汉旗黄花甸子流域为研究对象,运用地统计学与ArcGIS空间分析工具相结合的方法研究了不同土层深度土壤有机碳含量、密度以及储量的变化情况。结果表明,不同土层有机碳含量与密度由高到低均表现为:表层(0—20cm)中层(20—60cm)底层(60—100cm)。表层土壤碳密度随海拔高度的增加而下降,有机碳含量呈现先增加后降低的趋势;底层土壤有机碳含量随海拔高度的改变无明显变化。同时海拔高度对土壤有机碳的影响也随土壤深度的增加而减小。研究区有机碳总储量为2.04×105 t,不同土层有机碳储量由高到低表现为:中层(8.56×104 t)底层(6.41×104 t)表层(5.47×104 t)。土壤有机碳储量与其对应海拔高度下面积的大小具有显著相关性。  相似文献   

4.
Soil biological and biochemical properties are highly sensitive to environmental stress and thus can be used to assess quality. Any soil quality index should include several biological and biochemical variables so as to reflect better the complex processes affecting soil quality and to compensate for the wide variations occurring in individual properties. Many authors recommend the use of a native soil supporting climax vegetation that has undergone minimal anthropogenic disturbance as a high quality reference soil. In this study which examined three such native soils of Galicia (N.W. Spain) bearing Atlantic oakwood as the climax vegetation, biological and biochemical properties were found to vary widely seasonally and with sampling site and depth. These variations were closely correlated with the total carbon (C) and/or total nitrogen (N) contents of the soils. The following equation: Total N= (0.38×10–3) microbial biomass C +(1.4×10–3) mineralized N +(13.6×10–3) phosphomonoesterase +(8.9×10–3) β-glucosidase+(1.6×10–3) urease explained 97% of the variance in total N for the soils studied, suggesting that a balance exists between the organic matter content of a soil and its biological and biochemical properties. A simplified expression of the above equation may be useful as a biochemical quality index for soils. Received: 5 March 1997  相似文献   

5.
Abstract. Knowledge of the stocks and the potential range of soil organic carbon (SOC) in various land–soil combinations is an important precursor to policies aimed at linking, for example, management of SOC to greenhouse gas emission controls. To investigate the factors controlling the percentage of SOC (%SOC) of soils in England and Wales, we made a multiple regression analysis of data for the 2448 arable and ley-arable sites in the 1980 England and Wales National Soil Inventory (NSI). Clay content, average annual precipitation and depth of topsoil explained 25.5% of the variation in %SOC, when calcareous and peaty soils and those susceptible to flooding were excluded. Using 'robust' statistics, 'indicative SOC management ranges' were estimated for different physiotopes, that is, landscape units for which the environmental factors governing %SOC are similar, namely soil clay content and precipitation. These ranges describe the expected %SOC range for an arable soil in a given physiotope. They have potential to support approximate targets for the %SOC of arable soils and for estimating upper and lower limits for sequestered soil carbon in arable systems.  相似文献   

6.
ABSTRACT

To research soil organic carbon (SOC) in a typical small karst basin of western Guizhou in southwest China, data from the second national soil resource survey (1980) and data analysed in the laboratory in 2015 were used. This paper examines the changes in soil organic carbon density (SOCD) and soil organic carbon stock (SOCS) in the topsoil (0–20 cm) over the past 35 years based on soil types, and the primary influencing factors are also discussed. The SOCD and SOCS slightly increased over this period. The SOCD increased from 4.91 kg m?2 to 5.13 kg m?2, and the SOCS increased from 368.27 × 103 t to 385.09 × 103 t. The basin sequestered a low level of carbon during this time. Paddy fields were the key contributor to the increases, and the SOCD and SOCS of paddy fields increased by 1.61 kg m?2 and 32.39 × 103 t, respectively. Generally, the SOCD and SOCS in the soils from the southern part of Houzhai Basin increased considerably, and those from the northern part of the basin decreased significantly. The spatial variation of SOCD in the Houzhai Basin was mainly due to natural factors. However, the temporal change of SOC was primary caused by human activities.  相似文献   

7.
An approach to assess the soil organic carbon (SOC) pools in megapolises and in small settlements with due account for the natural, economic, and historical heterogeneity of urban territories; the degree of the soil sealing; and the specific features of their functional use is discussed. Cartographic information, satellite imagery, geoinformation systems, and field and literature data have been applied to adapt this approach for Moscow and for the town of Serebryanye Prudy in Moscow oblast. The pool of SOC has been calculated for the topsoil horizons (0–10 cm) and for the total thickness of the cultural layer (habitation deposits) in these urban areas. The total SOC pool comprises 13 833.0 × 103 t (with an error of 30–40%) for Moscow and 2 996.6 × 103 t (with an error of 50–70%) for Serebryanye Prudy. The specific carbon pools for these territories reach 128 and 810 t/ha, respectively. The cultural layer of Moscow concentrates about 75% of the total SOC pool; in Serebryanye Prudy, it contains about 95% of the total SOC pool. The SOC pools in the urban soils are comparable with or exceed the SOC pools in the corresponding natural zonal soils.  相似文献   

8.
This work aimed to evaluate the potential of mid‐infrared reflectance spectroscopy (MIRS) to predict soil organic and inorganic carbon contents with a 2086‐sample set representative of French topsoils (0–30 cm). Ground air‐dried samples collected regularly using a 16 × 16‐km grid were analysed for total (dry combustion) and inorganic (calcimeter) carbon; organic carbon was calculated by difference. Calibrations of MIR spectra with partial least square regressions were developed with 10–80% of the set and five random selections of samples. Comparisons between samples with contrasting organic or inorganic carbon content and regression coefficients of calibration equations both showed that organic carbon was firstly associated with a wide spectral region around 2500–3500 cm?1 (which was a reflection of its complex nature), and inorganic carbon with narrow spectral bands, especially around 2520 cm?1. Optimal calibrations for both organic and inorganic carbon were achieved by using 20% of the total set: predictions were not improved much by including more of the set and were less stable, probably because of atypical samples. At the 20% rate, organic carbon predictions over the validation set (80% of the total) yielded mean R2, standard error of prediction (SEP) and RPD (ratio of standard deviation to SEP) of 0.89, 6.7 g kg?1 and 3.0, respectively; inorganic carbon predictions yielded 0.97, 2.8 g kg?1 and 5.6, respectively. This seemed appropriate for large‐scale soil inventories and mapping studies but not for accurate carbon monitoring, possibly because carbonate soils were included. More work is needed on organic carbon calibrations for large‐scale soil libraries.  相似文献   

9.
华北落叶松人工林碳汇功能的研究   总被引:13,自引:1,他引:12  
以河北省木兰林管局14~59年生华北落叶松人工林为对象, 研究树木不同器官和林分不同组分水平的生物量与碳储量.结果表明, 华北落叶松树干碳储量在树木总储量中所占比重最大, 林地土壤和林木碳储量所占林分碳储量的比重最大.华北落叶松人工林林分碳密度为平均206.02 t·hm-2;林木碳密度为27.58 t·hm-2, 林地土壤碳密度为157.14 t·hm-2.以林木蓄积量(M)为基础的林木生物量(W)与碳储量(C)的拟合方程为:W =10.210 1+ 0.732 1M, C=5.188 4+0.373 6M;以林龄(A)和优势木平均高(H)为基础的林地土壤碳密度(Soc)拟合方程为:Soc=-24.635 6-5.606 1A+14.936 0H+0.439 8AH.在此基础上计算得出, 木兰林管局华北落叶松人工林总碳储量约为571.43×104 t, 其中林木生物量约150.00×104 t、碳储量约为76.49×104 t, 土壤碳储量约435.85×104 t.  相似文献   

10.
THE SURFACE TENSION OF SOIL WATER   总被引:1,自引:0,他引:1  
Because of their organic matter content, the surface tension of water of soils is about 8 to 9 erg cm -2 (8 to 9 × 10 -7 J cm -2) less than that of pure water. It is estimated that the surface tension of soil solution is 63–64 erg cm -2 in the surface soils studied.  相似文献   

11.
A series of models has been proposed for estimating thermal diffusivity of soils at different water contents. Models have been trained on 49 soil samples with the texture range from sands to silty clays. The bulk density of the studied soils varied from 0.86 to 1.82 g/cm3; the organic carbon was between 0.05 and 6.49%; the physical clay ranged from 1 to 76%. The thermal diffusivity of undisturbed soil cores measured by the unsteady-state method varied from 0.78×10–7 m2/s for silty clay at the water content of 0.142 cm3/cm3 to 10.09 × 10–7 m2/s for sand at the water content of 0.138 cm3/cm3. Each experimental curve was described by the four-parameter function proposed earlier. Pedotransfer functions were then developed to estimate the parameters of the thermal diffusivity vs. water content function from data on soil texture, bulk density, and organic carbon. Models were tested on 32 samples not included in the training set. The root mean square errors of the best-performing models were 17–38%. The models using texture data performed better than the model using only data on soil bulk density and organic carbon.  相似文献   

12.
It is estimated that half the soil carbon globally is in the subsoil, but data are scarce. We updated estimates of subsoil organic carbon (OC) in England and Wales made by Bradley et al. (2005) using soil and land‐use databases and compared the results with other published data. We estimated that the soils of England and Wales contained 1633, 1143 and 506 Tg of OC at 0–30, 30–100 and 100–150 cm depths, respectively. Thus, half of the soil OC was found below 30 cm depth. Peat soils accounted for the largest proportion, containing 44% of all the OC below 30 cm despite their small areal extent, followed by brown soils, surface‐water gley soils, ground‐water gley soils and podzolic soils. Peat soils had more than 25% of their profile OC per unit area in the 100–150 cm depth, whereas most other soils had <8% at this depth. The differences between soil types were consistent with differences in soil formation processes. Differences in depth distributions between land uses were small, but subsoil OC stocks in cultivated soils were generally smaller than in soils under grassland or other land uses. Data on subsoil OC stocks in the literature were scarce, but what there was broadly agreed with the findings of the above database exercise. There was little evidence by which to assess how subsoil OC stocks were changing over time.  相似文献   

13.
云南省土壤有机碳储量估算及空间分布   总被引:4,自引:2,他引:2  
根据云南省第二次土壤普查资料,采用土壤类型法估算了云南省主要土壤类型的有机碳(SOC)密度和储量,并对云南省土壤有机碳密度的空间分布差异和影响土壤有机碳储量的主要因子进行了分析。结果表明,云南省0-20 cm土层平均SOC密度为59.77 t/hm2,SOC储量为2.30×109 t;0-100 cm土层平均SOC密度为159.95 t/hm2,SOC储量为6.15×109 t,占全国储量的7.28%,占全球陆地生态系统SOC储量的0.41%;其中SOC储量占前4位的土壤类型为红壤、黄棕壤、赤红壤、棕壤,不同深度下4者之和约占云南省总储量的60%。在土壤有机碳密度空间分布上,SOC密度分布最高的区域为云南省西北部和东北部地区,其次是西部的横断山脉和东部的云南高原地区,而以紫色土为主的中北部地区SOC密度则最低。由于降雨量、温度、海拔和土地利用类型的共同影响,导致了区域内的SOC密度分布不均,其中降雨量、温度和海拔等自然因素是影响SOC密度分布的主要因子。  相似文献   

14.
Soil organic carbon (SOC) is the most important carbon pool in the terrestrial ecosystem. However, temporal variations in paddy SOC under a temperate continental monsoon climate are poorly understood. Here, we demonstrate that significant SOC variations occur in meadow soil (MS), black soil (BS) and planosol (PS) paddy soils. Several soil samples were collected from different regions where rice was cultivated for 1, 6, 10, 23 and 40 years for MS samples; for 1, 6, 10, 20 and 35 years for BS samples and 1, 5, 10, 15 and 25 years for PS samples. The total organic carbon (TOC) content and humus organic carbon (HOC) content were found to increase as the rice cultivation duration increased, while the mineralizable organic carbon (MOC) content and carbohydrate organic carbon (COC) content exhibited the opposite trend. The relationships between the relative carbon accumulation (Y) in the three soil types and time (X) were consistent with the following models: YTOC = 0.9973X0.0245, YHOC = 0.9936X0.0457, YMOC = 1.023X−0.073, and YCOC = 1.040X−0.059, describing the temporal variation in the various forms of organic carbon in paddy soils under a temperate continental monsoon climate. The results of this study provide a reference for soil carbon pool management and fertilization management.  相似文献   

15.
An interpolation method was used to calculate the reserves of soil organic matter on the basis of data in the FAO soil database, the database developed by V.S. Stolbovoi with certain additions made by the authors for the territory of Russia, the climatic variables (the mean air temperature, the partial pressure of water vapor, precipitation, the relationship between the mean air temperature and precipitation, the number of days with subzero temperatures, and the number of days with precipitation for every month), the normalized difference vegetation index (NDVI) values for every month and for the whole year, the height above sea level, the macroslope steepness, and the presence of permafrost. The method of step-by-step discriminant analysis was applied for the calculations, and the results obtained were displayed on a grid map of the world for cells of 1°. The interpolation errors were also calculated. The global pool of soil organic carbon was estimated at 1.35 × 1012 t (from 1.31 × 1012 to 1.38 × 1012 t with a probability level of 0.95). It was demonstrated that the reserves of soil organic carbon on the global level could be described as a function of the heat and moisture supplies, the relationship between them, and the biological productivity. The global changes in the climatic variables and the net primary production describe about 40% of the variability of the soil organic matter reserves as assessed on the basis of the factual data included in our analysis.  相似文献   

16.
基于RUSLE模型的安徽省土壤侵蚀及其养分流失评估   总被引:10,自引:0,他引:10  
基于修正的通用土壤流失方程(RUSLE)和GIS空间分析技术,定量分析了安徽省土壤侵蚀及其养分流失的空间分布特征,探讨了土壤侵蚀强度与海拔、坡度等地形因子的关系。结果表明:2010年安徽省土壤侵蚀总量为3 454×104 t a-1,土壤侵蚀模数平均值为256.9 t km-2 a-1。全省以微度土壤侵蚀为主,侵蚀强度由北向南逐渐加剧。淮北与沿淮平原、江淮丘陵岗地以微度土壤侵蚀为主,皖南丘陵山区和皖西大别山区以强度侵蚀为主。海拔200~500 m和坡度15°~25°的区域土壤侵蚀量最大。不同土壤侵蚀强度在各高程、坡度带的面积分布比例规律相似,随着海拔和坡度的增加,土壤侵蚀强度逐渐加剧。微度侵蚀的面积比例逐渐减小,其他侵蚀强度的面积比例逐渐增加。全省因土壤侵蚀引起的土壤有机碳(SOC)、全氮(TN)、全磷(TP)和全钾(TK)等养分流失总量为106.6×104 t a-1,其中SOC、TN、TP和TK的平均流失量分别为3.57、0.37、0.10和3.90 t km-2 a-1。土壤养分流失量总体上由北向南逐渐增多,淮北与沿淮平原四种养分平均流失量和流失总量最小,皖南丘陵山区平均流失量和流失总量最大。  相似文献   

17.
Long-term changes in carbon and nitrogen storage in the top 100 em layers of soils from different physiographic units in Bangladesh were evaluated using 460 soil samples from 43 profiles collected in 1967 and 1994/95. The study area consisted of ten physiographic units, viz.: Old Himalayan Piedmont Plain (OHP), Tista Floodplain (TF), Barind Tract (BT), Ganges Floodplain (GF), Madhupur Tract (MT), Brahmaputra Floodplain (BF), Meghna River and Estuarine Floodplain (MF), Surma-Kushiyara Floodplain (SKF), Northern and Eastern Piedmont Plain (NEP), and Chittagong Coastal Plain (CCP).

During the period 1967–1995, mean values of soil carbon and nitrogen declined by 16.2 t C ha-1 and 1.38 t N ha-1 in Bangladesh. The total carbon and nitrogen budgets showed a fall of 42.8 × 106 t C and 3.36 × 106 t N within the 27 y period in Bangladesh. All the physiographic units showed a decline in carbon and nitrogen contents except for BT which showed an increase of 3.76 t C ha-1 and 0.77 t N ha-1 for these elements. MT showed the highest decline in carbon (30.5 t C ha-1) and nitrogen (3.25 t N ha-1). The lowest decline in carbon was observed in SKF (7.18 t C ha-1) while the same applied to nitrogen in GF (0.50 t N ha-1). The other physiographic units showed a moderate decline in the contents of these elements.

Based on the land area occupied by the sampled soil series of each physiographic unit, GF showed the highest decline of 13.7×106 t C and a moderate decline of 0.52 × 106 t N. Decrease in the carbon level for BF was moderate (9.31 × 106 t C) but the decline in the nitrogen level was the highest (0.95 × 106 t N). Decrease in the amount of carbon and nitrogen stored for the other physiographic units was: OHP (0.67 × 106 t C, 0.03 × 106 t N), TF (2.54 × 106 t C, 0.25 × 106 t N), MT (4.28 × 106 t C, 0.45 × 106 t N), MF (6.06 × 106 t C, 0.61 × 106 t N), SKF (2.87×106 t C, 0.24×106 t N), NEP (2.68×106 t C, 0.22×106 t N), and CCP (0.81 × 106 t C, 0.11 × 106 t N). Increase in carbon and nitrogen contents was only observed in BT (0.08 × 106 t C, 0.02 × 106 t N).  相似文献   

18.
Abstract. The Representative Soil Sampling Scheme of England and Wales was started in 1969. During the 25 year period 1969–1993 mean soil pH values under arable and ley-arable cropping changed little, but under grassland they fell by 0.3 units. Under arable cropping, mean available phosphorus declined whilst available potassium increased fairly steeply for the first eight years then declined again to near the start value by 1993. No significant changes in soil phosphorus and potassium levels were found under ley-arable cropping, but the percentage of fields under ley-arable rotations declined from 33% to 14%. Under grassland, phosphorus and potassium levels both declined, although potassium levels rose initially before falling.
For this report England and Wales were also divided into five regions. Wales and the West Country had the lowest pH values; these regions together with the Northern region were also found to have declining pH values. Phosphorus and potassium concentrations have been falling in the Northern region which stands out as having the lowest current potassium status with 20% of all fields deficient at index 0.
Changes in pH and nutrients are discussed for soils sampled following the main arable crops. The largest changes found were the reductions in phosphorus and potassium in soils after potatoes. In 1993 almost one in ten sugarbeet crop soils had an excessive phosphorus level (index 5+) giving an increased risk of water pollution by this element.
Under arable cropping the proportion of soils with low (< 1.8%) organic matter declined. Average soil organic matter levels for all crops and grass have remained static during the period. It is concluded that agricultural soils in England and Wales have not contributed to an increase in the greenhouse gas carbon dioxide.  相似文献   

19.

Purpose

Soil organic carbon (SOC) stock is one of the most important carbon reservoirs on the earth and plays a vital role in the global climate change. However, research on the carbon sequestration and storage of coastal wetland soil is very scarce. Therefore, a study in the coastal wetland was conducted to investigate the SOC distribution, storage, and variation under the influence of human activities.

Materials and methods

Surface soil samples in different seasons and profile soil samples were collected in the Changyi coastal wetland. SOC content, soil physicochemical properties, and sedimentation rate were determined. Organic carbon storage and burial flux were calculated. On the basis of correlation analysis and comparative study, factors affecting the distribution and storage of SOC were investigated.

Results and discussion

The average SOC content of the surface soil in June and November was 4.65 and 6.13 g kg?1, respectively. The distribution of surface SOC content was consistent with the distribution of vegetation and was affected by the soil particle size. In plant-covered area, the relationship between SOC content and depth could be expressed by the power function y?=?ax b . The contribution of plants to SOC was only significant in the shallow layer. As for the deep layer, the SOC content was higher in the mudflat. The organic carbon storage in the upper 1 m soil was estimated at 1.795 kg m?2 in average and the total organic carbon storage of Changyi wetland was estimated at 6.373?×?107 kg. The sedimentation rate was very low and the average organic carbon burial flux of the whole wetland was 17.5 g m?2 a?1.

Conclusions

Low sedimentation rate, weak downward migration, and high decomposition rate of organic matter caused by poor hydrological condition were the reasons why the SOC storage in Changyi wetland was low. Under intensive human activities, the Changyi wetland was drying and the organic carbon storage was reducing. Strategies were proposed to be taken urgently to restore the wetland for the long-term benefit.
  相似文献   

20.
Cultivation of irrigated desert soils in Central Iran is one way of utilizing under‐exploited land to produce more food. This study explores the value of soil quality indicators as measures when converting desert to croplands. Soil samples from unfarmed desert, wheat and alfalfa sites in the Abarkooh Plain (Central Iran) were taken from 0–10, 10–20 and 20–30 cm depths. Soil quality indicators including organic carbon, total nitrogen, carbohydrate, particulate organic carbon (POC) in aggregate fractions, and aggregate water‐stability were determined. The desert soils contained organic carbon of 0·26–0·56 g kg−1, total nitrogen of 0·05–0·08 g kg−1 and carbohydrate of 0·03–0·11 g kg−1 at 0–30 cm depth. Across this depth, the contents of organic carbon, total nitrogen and carbohydrate in wheat were about 3–7, 2–3 and 6–26‐times higher than those of desert soils, respectively. These values for alfalfa were 5–12, 3–4 and 7–35 times, respectively. The POC (near zero in desert soils) and generally other soil quality indicators showed greater improvement in alfalfa than in wheat fields. The results indicated a significant decrease in proportion of the fraction <0·05 mm in cultivated soils, whereas the proportion of the large aggregate size classes (2–4 and 1–2 mm) was increased by irrigation and cultivation. A significant improvement in aggregate water‐stability was observed in cultivated soils. At all depths, a large portion of the total soil organic carbon was stored in the fractions <0·05 mm for desert and macroaggregates (0·25–2 mm) for cultivated soils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号